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An integral equation for the two-body absorptive amplitude based on the multiperipheral model is pro-
posed. The general property and the bootstrap potentiality of the equation are discussed.

'N this paper, we propose an integral equation for the
~ - absorptive part A(s, t) of a two-body amplitude
based on an approximation to the multiperipheral boot-
strap model of Chew and Pignotti. ' Our equation is
similar to the one derived by Chew, Goldberger, and
Low' (hereafter referred to as the CGL equation), where
an auxiliary function B(s,t) is employed. We discuss
the general structure of our equation as well as the
mechanism through which Regge poles are produced by
the "coherence" of moving cuts in the j plane.

The simplest version of the CGL model is defined by
the following equations: The absorptive part A (p,po, Q)
of the elastic two-body amplitude (p+-', Q)+(po —~e)~ (p —ke)+ (p()+2Q) is given by

and

+ d'p" ~DP' p")' ~'jg(-t+', t+"-, t ',t ")--
XL(p —p")'7' '+' 'B(p' p" POQ) (2)

B.(p,p,p.,e)=g«, '(P.--:e)', t-', (P+!e)')
XL(P+P.) j- ~ +- "' ~((P'+P.)'-~'). (3)

For simplicity, we have taken all particle masses to be
the same t(. We also introduce Q'=t (the negative
squared momentum transfer), t+= (P&-', Q)2,
= (p'&-', Q)', and t+"——(p"&-',Q)'; and we shall also use
the conventional variables s=(p+po)', s'=(p'+po)',
and s"(p"+p())'. The residue-propagators function g
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where

B(P P' Po Q) =Bo(p,p', Pa,e)

need not be specified at the moment, but in the simplest
model g(t+, t+', t,t ') =G(t+,t+')G*(t, t ').

The 8 equation above is quite complicated, and the
equation we propose for the absorptive amplitude itself
is (see Fig. 1)

~(P Po,Q)

=g(t+ (pp 2Q)' t—(P()+2Q)')()L(p+po)' —p'j
—(p+p )2- a((+I)+a(l-I)

+t ' d'P' ~((p P')' t '—)—
(P'+Po)'-

Xg(t+, t+', t ,t' )~(P',-Po, -Q). (4)

To "derive" this equation, we note that in the limit of
large s,

(p p")'=t 'L—(p+ po)'/(p'+ po)'j
Xsinhq'/(coshIt'+ cosa&'),

where cosh''=-,'(t(' —t+—t+')/(t+t+')'~', and I' is the
angle introduced by Bali, Chew, and Pignotti. ' We
remark that if the function g is large only in the neigh-
borhood of t~', t+ near zero, then cosh''&) j., and we may
disregard the factor (sinhq') (coshq'+cosa)') ', since it
is essentially unity. If we use the resulting approxima-
tion for (p —p")2 in the B equation and the definition4
of A in terms of 8, we obtain what is essentially the
once-iterated form of the above A equation. '

Our equation for 3 may be regarded as a different
approximation to the multi-Regge model or simply as a
large-s approximation of the CGL equation. Their main
difference lies in the treatment of the angle cv. In the
case of co-independent residues, they are equivalent to
each other in the large-s, small-3 regime. Although the
CGL equation appears to be able to handle the co depen-
dence more readily, our 3 equation seems to have all
the essential physical content and to be easier to work
with. In order to gain some insight into the structure of
these equations, let us study the behavior of the solution
at large value of s.

FIG. 1. Diagrammatic representation of the 2 equation.

"Work supported by the U. S. Air Force OfEce of Scientific
Research under Contract No. AF49(638)-1545.
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4 We have extended the definition of A to an arbitrary value of

t+ and t through Eq. (1). This presupposes that the end-vertex
function in a multiperipheral chain coincides with the analytic
continuation of the internal vertex function.' Under our approximation to the Regge cell t (P;—P; ~}'] ("—»,
the A equation can also be written directly without any reference
to the B.'equation.
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In terms of the conventional variables s, s', s", and h, larity structure of A i(t+,t; t) in the complex / plane.
the large-s limit of the A equation is' Forming this (Mellin) transform of the A equation,

we find
A(s,t,t; t)

dt+'dt '
=g (t+,ti'; t,ti') b (S ti') +—hi'

L
—a(tt, 't ')$'h2

ds' s ~(g+~&+a(t-I)

xtt( a(t, t—', t '))
s s'

where
Xg(t, t ',t, t ')A(s', t, t ', t), (5)

A, (t,t; t) =
60

dss ' 'A(s, t+,t; t).

The large-s behavior of 3 is determined by the singu-

a(t, t+', t ') =t2+t+"+t " 2th+' 2t—t ' 2t—+'t '. —

To solve this equation, we make a partial-wave analysis
by writing

A i(t+,t; t)
dt+'dh 'tt( a)——(~2) l lg—(t

—+2. h+2)++2
L-&(h+', h-', h) j"'

g(h, t+', t ',t ')A, (t ',t ',t)
x , (6)

t —X(t,', h ')

where A(t+, t )=.n(t+)+—r2(t ) 1. If th—e functions g are
sufficiently well behaved, we expect this equation to be
of the Fredholm type. The zeros of the Fredholm deter-
minant D(l, t) will give rise to /-plane poles which are
just the Regge poles referred to in CGI, .The eigenvalue
condition is simply D(u(t), t) =0.

To see this in more detail and to illustrate some other
features of the solution, assume that g(h+t+', t t ')
= f(t+, t )f(t+', h ') In this. case we may solve for
A i(t+,t; h) explicitly, with the result

Ai(ti t t)=(hi) ' 'g(tp, hi I t hi')

2)
—i

dt+'dt 'e( a) g(t„t —'; t, t ')g(h ',h2; t ',„2)
p2

L
—a(t+', h ', t)7'h2 t —X(t+', t ')

dh, 'dt 'tt( a) g(t, 't, '; t—'t ')
(7)

L
—a( +'h, t ', t)jih2 t X(t+'—,h ')

The first term above is trivial and irrelevant; its inverse
(Mellin) transform simply gives back the one-particle
absorptive part 6(s—hi2). The second term is the
interesting one. We have written the solution which is
exact for our separable g in a form which is also approxi-
mately valid for any g which vanishes very rapidly as
[tj increases. The Regge poles are given by the solu-
tions of

dh+'dk 'tt( a) g(t ', t+', —t ', t ')
D(t,t)=—1—h22 =0.

L
—a(t t+', t) j'h2 t —X(t+', t ')

(g

It is evident that a leading pole is located very close to
the maximum value of A(t+', t ') in the range of inte-
gration. One finds approximately for this leading pole
n,„2(t), for small t, o,«(t)=2n(4t) —1+g22(t), where
a«2(t) may or may not be equal to the input n(t), and
g22(t) is small if the coupling is weak.

It is evident from Kq. (7) that the numerator func
tion contains branch points in the complex l plan- in
particular, the well-known Amati-Fabini-Stanghellini
cuts. However, the denominator function contains the
same set of branch points and serves to damp the nu-
merator. It has been a long-standing problem that uni-

'The upper limit of the s' integration should be sf''t~, t~', t)
instead of simply s. f is a function which can be calculated ex-
plicitly. However, in our problem the presence of f is equivalent
to some modification of the internal coupling g; therefore, we set
f= 1..

tarity in the t channel demandsv that the partial-wave
amplitudes be finite at the branch points, whereas
models in the past have always led to branch points of
logarithmic type. The solution of our equation, however,
will not have this defect. In general, both our numerator
and denominator functions will have logarithmic branch
points in the l plane. Consequently, the resulting ampli-
tude A (l, t) will have only finite branch points with dis-
continuities vanishing like 1jlnLl —n. (t)j. The summa-
tion of terms with increasing order of logarithmic
singularity has led not only to a Regge pole; it has also
yielded smoothened branch points in the / plane for our
partial-wave amplitude.

Starting from a particular form of multiperipheral
hypothesis, we have derived an integral equation for
the absorptive amplitude A(s, t; t+, t ). This function
A (s,t; t+, t ) coincides with the physical absorptive part
when t+ and t are set equal to p', and it is de6ned com-
pletely in terms of observable quantities. By solving
our equation, we find that A (s,t; h+, t ) has Regge be-
havior, and the output Regge-tra]ectory function a(t)
is independent of t+ and t' . Furthermore, if one is to
identify the output trajectory function with the input
function, a bootstrap condition is obtained, the conse-
quences of which can readily be studied using our par-
tial-wave equation. In practice, more than one Regge

' J. B. Bronzan and C. E. Jones, Phys. Rev. 160, 1494 (1967}.
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trajectory is involved. To accommodate this fact, a
multichannel scheme can be formulated in a straight-
forward manner. Ho~ever, in order to avoid the addi-
tional complications of the multichannel problem, we
have studied the hypothetical model of a single self-
bootstrapping Regge pole. Ke have solved our equation

approximately both at small and large negative t values.
It is found that the zero-energy intercept a(0) cannot
be 1 if the internal Regge coupling is strictly factorizable.
If additional structure for this coupling is allowed, the
intercept n(0) could in principle be unity. Further appli-
cations of our equation will be discussed elsewhere.
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We write Veneziano amplitudes for all reactions involving the ~copoA1 system, paying particular attention
to kinematical constraints arising from spin. The minimal Veneziano amplitude for A& —+ 3m is shown to
be dependent on two parameters, which may be related to the AIpx vertex. A discussion is given on how
examination of the Dalitz plot may resolve the theoretical confusion surrounding the A i.

KCENTI Y, Veneziano' has written down an
amplitude that satisfies all the postulates of

S-matrix theory except unitarity. A series of successful
applications'' has generated much optimism that the
Veneziano amplitude may be a decent first approxima-
tion to the real world. 4 Here we attempt to apply the
Veneziano-i. ovelace analysis to the ~pA1 system. Ke
consider all possible reactions involving s., co, p, 0 (the
daughter of p), A~, and the "heavy pion" r (the
daughter of A q), such as sp —+ s.p, s A —+ s.A, ~~ ~ s.A,
xo- —+mo. , mv ~ mr, err~00. , etc. Consistency may be
achieved by incorporating a sufhcient number of
"Veneziano terms, " and relations between coupling
constants are obtained. Unfortunately, these relations
generally involve the daughters.

It must be emphasized from the outset that the
isolated Veneziano model lacks predictive power be-
cause of the possibility of adding higher terms. Ke seek
to use a minimum number of terms to construct an
amplitude consistent with the correct Regge behavior
in all channels, the Adler consistency condition, current
algebra (where applicable), the appearance of poles
with appropriate residues, the absence of isospin ~&2
exotic resonances, and, in cases with spin, the con-
straints imposed by angular momentum conservation.
Apart from simplicity, there is nothing against "non-
minimal" terms; we speak of them often in this paper.

To avoid unnecessary complications, we take te =0
and degenerate trajectories p(s) =~(s) = (s+m')/2m',

*Research supported in part by the Ofhce of Naval Research,
under Contract No. 1866 {55).

j' Parker predoctoral fellow.' G. Veneziano, Nuovo Cimento 5?A, 190 (1968).' C. Lovelace, Phys. Letters 288, 264 (1968}.
g M. Ademollo, G. Veneziano, and S. Weinberg, Phys. Rev.

Letters 22, 83 (1969).
G. Veneziano, in Proceedings of the Sixth Coral Gables

Conference on Symmetry Principles at High Energy, 1969
(unpublished); S. Weinberg, Comments Nucl. Particle Phys.
(to be published).

7r(s) =A(s) =s/2m', where the name of a particle de-
notes the trajectory to which it belongs (m=m, ).

Ke employ the notation

I'(m —x (s))I'(n —p (t))
x(m, a,n) =

I'(6—x(s) —p (t))

which behaves asymptotically as s&")+ ~ and t«')+" ~.
The residue of the leading pole x(s) =m [y(t) =n j is
a polynomial of order m+n It, in —t (in s).

I. n-(qp)n+(k) ~ n-(q, )A,+(e)p)

With &=II(s,t n)~(qq+qs)+K(s, t,l)ek, minimal
structure is

II=hg)(1, 2,2) +h2p(1, 2)1), (2)
K=k~(1,1,1)+ksp(1,2, 1)+ksp(2, 2, 1) +k4p(1, 2,2). (3)

For example, the hi term is necessary both for t —&~
before and for the correct residue on the s-channel p
pole, while the h2 term is necessary to accommodate
the t-channel p pole. In X, the k1 term alone appears
suKcient at 6rst sight. However, crossing symmetry
implies that hi=0 and relates k2, k3, and k4 to the two
truly independent parameters h1 and h2, which upon
going on the p pole are related to the two A jpx coupling
constants" by

ga/2m' =hs ———ks

' Our coupling constants are summarized by
Z =ge p„~m b8"2f +g„et g~8~po"au"B~m B~o

(aA„op~b~ —bA „p,ba~a"W)+X...~WW+gg. ,A „a~~~
+X«~rr +X, o'~ r +(X~~~/3l)ooo+g „e'b'p orb&I'&g,ob'p nrbgt'71 ~,aug „~A~ag.At'bp c

+ (two other pAA couplings) ~

6 The relation of our coupling constants to those of Gilman and
Harari is a=qgtm and b= ~gp+gl, For m =0, 1 (A ~~)= ~&'&

X {a'/42m) {1+{1/24)L1—3bm'/a+gab'm'ja'j). Note that a con-
trols the width unless bm' ja is very large; also note that the Gnite

correction factor to the vridth is as large as 1.6.


