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Coupled-Channels Model of Self-Consistent Regge Trajectories*
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A model in which a vacuum P and a meson M Regge trajectory are present is studied in the framework
of the multiperipheral bootstrap. Simultaneous self-consistency is imposed on the intercepts and slopes of
both trajectories. In this model the P slope tends to be larger than the M slope, and if the P intercept at
t =0 is close to 1, the P exchange does not give rise to strong effects.

I. INTRODUCTION
' 'N a recent paper, ' we carried out to some extent the
~ - multiperipheral bootstrap scheme. ' The starting
point in this approach is the assumption that multiple
exchange of an (input) average meson Regge pole 3E
gives a reasonable description of the production
amplitude. Through the unitarity sum, and using the
integral equation technique suggested by Chew,
Goldberger, and Low, ' and independently by Halliday, 4

an (output) Regge behavior is obtained for the imagi-
nary part of the two-body amplitude. In I, we con-
strained the input and output intercepts and slopes of the
M trajectory to be equal at t= 0, and obtained a solution
with only one degree of freedom. %e also showed that
the same dynamical mechanism, i.e., multiple M
exchange, can be used to generate the Pomeranchuk
pole P.

It is clear that the next step toward achieving a
complete self-consistent solution is to include also P
exchange, and simultaneously enforce self-consistency
for the intercepts and slopes of the M and P trajectories.
This is done in the present paper. Again we find a
solution in which there is some freedom, corresponding
to the various internal coupling constants5 involved,
for which a self-consistent determination has not yet
been attempted. This freedom enables us to study the
limiting cases in which M or P exchange dominates,
and various correlations such as between the P intercept
and the internal coupling of the P pole. In particular,
we find that the ratio of the P to the M slope is not
correlated to the smallness of the internal P coupling,
and that the M exchange dominates if the P intercept
is close to i.

II. MULTICHANNEL FORMALISM

In order to introduce simultaneous P and M ex-
changes, we have to extend the formalism used in I
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~ By "internal coupling constant" we mean the one associated
to a vertex at which two Regge poles and a physical particle
interact.

to the multichannel case. Ea,ch channel is labeled by a
pair of indices ij corresponding to the pair of Regge
poles that can be exchanged at a given stage in the
ladder of Fig. i. Following the procedure and notation
used in I, with the addition of channel indices, we
obtain for the imaginary part of the two-body amplitude

ImA (Q,kp, k, ') =p d'k B'p(Q, kp, k,kp')G'((Q —k) )

B"&'(Q k p, k', k") =Bp"& (Q,kp, k', k")

+ dpk B'&(Q,kp, k,k')lt'»"&'(Q, k,k',k"). (2.2)

The inhomogeneous term in this equation is

Bp""(Q,kp, k',k")=G"((Q—k')')G&'((Q+k')')
Xb((k' —k,)'—p)pP)R"&'(Q, kp, k', k"), (2.3)

where E'~ is a product of Regge propagators and depends
on the input trajectories 0.; and n;,

g('j'(Q k kl k«) —P(k«k)P/g j '((0 —&')')+~i ((0+&')')

XS""((Q—k')', (Q+k')') (2 4)

Here, 5"&' is the Regge phase associated with the

Q+k a+i

k — k tko lh
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FIG. 1. Unitarity diagram for the n-particle production
contribution to Imd.

XG'((Q+k)')5((k'p —k)' —m'), (2.I)

where 6' is the residue of the ith Regge pole at an
external vertex and re is the mass of the external
particie. The function B"(Q,kp, k,kp ) satisfies the
integral equation
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signature factor:

S""((Q—k')~, (Q+k')2)= exp{—i2ixLa; ((Q—k')2)

--; ((Q+k') )—:(-"--")3),(23)

and, for small Q',

e =2Q'(s' —s)/s',
b= —4(("—s)/")'"(tQ')'12»nv .

(2.9)

where 0.' denotes the signature of the ith Regge pole.
The kernel of the equation is

&*""(Qk,k',k")=8g"'g"'4'((Q k)—')4'((Q+k)')
X~'((Q-k) W ((e+k') )
Xb((k' —k)' —p,')R"i'(Q k k' k")

(2.6)

where p is the mass of the produced particles, and we
have assumed a factorized form g"'PQ" for the residue
at an internal vertex. The functions p' are normalized
as in I:

Ly'(t) j'dt =1.

We also use linear trajectories, i.e. , a;(t)=a;+a t

Equations (2.1)—(2.6) are the generalizations of Eqs.
(2.16), (2.15), (2.12), (2.7), (2.8), and (2.14) of I.
Again, we solve the integral equation (2.2) for 8 in
terms of its Mellin transform„ the singularities of which
determine the high-energy behavior of ImA. This is
of the Regge type and defines the output trajectory.

We start by expressing the integration in Eq. (2.2) in
the form of an integration over a two-body phase space
and over the invariant, mass squared s of one of the
intermediate "particles. " Figure 2 sho~s this pseudo-
two-body intermediate state, and defines the invariants
used. The most convenient frame for performing the
integration is a c.m. frame in which the combination
of t+n,'r depends only on the polar angle 8 but not on
the azimuthal angle ~i, to first order in Q'. In this frame
we have

u,'t+a/ r =a+'(2t+erg)

P'(t) = ( v' a)e"~4,

G'(t) =G'( & a)e"I4
(2.11)

We point out that the output trajectories are indepen-
dent of the external residues G'(t) The solu. tion of the
integral equation is

ItgiI(Q2 f I sl sl/)

( I/ ) '(i')+ i ')g'i'(t )(~ ) o(i'+")I

Xfg"'g"'b"(Q', s'/m')+G"G&'5(s' m')], —(2.12)

where summation over repeated indices is implied, and
where b"(Q',x) is expressed in terms of its Mellin
transform b"(Qm P):

C+ico

b"(Q',x) = . b"(Q',P)*'dP
2%1 g

(2.13)

The functions b*"(Q',P) are solutions of a linear algebraic
system of equations and can be written

b*"'(Q',P) = ( G' 'G /ii)io"U"(P, Q')

XLD (P,Q2)j"'i, (2.14)
with

Di. i"i' (PQ2) =g. .. . gi~'gii'o~'i'Ui'i' (P Qm) (2 15)

The approximation

(k"—k)'/so= (k"—ko)'/(k' —ko)' (2.10)

again provides an important simplification, after which
it is possible to obtain a solution for the integral
equation, in analogy to Eq. (3.10) of I.To minimize the
number of parameters, we assume a channel-indepen-
dent' exponential parametrization of the vertex func-
tions g '(t) and G'(t), i.e.,

and

where
a t ur=u+'br;, +—a '(2t er;,), —

(2.7) The factor 0'& contains the phase caused by a possible
diGerence of intercepts and signatures of the poles ~

and j, namely,
a+'= 2 (a''~ai')

t = —-,'(s' —s) (1—cose),

-Q —k o l +k, T

(2 8) o"=exp{—2iizLa; —a ——(o'—o~)j) . (2.16)

The functions U'& are given by

U"(P,Q') =~"(P Q') —u"(P+1, Q')

+u"(P+1, 0), (2.17)
with

P, S
p i

I"(p,Q2) =v'&(P, Q2) 1+aQ2 2 r;; i'orr;, — —

Q —k -k, t

6 Cl+ CK

7rr;, i P —a,—a,+1 —. —(2.18)
2G+ 6

FIG. 2. Definition of variables and channel indices
used in the integral equation.

'We can solve the integral equation also with parameters a'
that depend on which pole is exchanged. However, we conclude
in this paper that M exchange dominates, and therefore the
choice of a value of a different from a~ is unlikely to produce
significant changes in the results.
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a
s"(P,Q') =

2A'+

with

e&' a
dy'= +(1,1,y'~), (2.19)

y'~ —y' 2n+'

l

y"= +t 'n-. (J3—n.—n.+1—2Q'r "n+') (2 20)
20.'+, Q+

Here, v'I(P, Q') are Hilbert transforms of' the vertex
functions, and can be written in terms of the conQuent
hypergeometric function 4:

FIG. 4. {a)Diagram for P generation
at g~=O. (b) Equivalent PP interac-
tion.

(b)
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The high-energy behavior of ImA is controlled by the
singularities of b(Q,P), and the leading pole originates
from a zero of the determinant of the matrix D" "".
Note that this matrix is Hermitian for P real and
larger than the highest branch point. At Q'=0, this is
located at /=max(n;+n, —1).

2
g -Csgp

The output P pole originates from the zero of the
determinant

~.(J3,Q) =1 g»"-"e,Q)
g 4C IUjrsr(P Q2)UPP(P Q2) (3 1)III. SIMULTANEOUS POMERANCHUK AND

MESON SELF-CONSISTENCY
c.e.,

QPLn&out(QR) Qt7 0 (3.2)

C, g C g„g

i
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FIG. 3. Interactions considered and definitions of coupling
constants and crossing coefhcients. The symbols M and P at
the left of each diagram stand for the t-channel quantum numbers
over which the diagram has been projected.

We use the formalism developed in Sec. II in a model
in which only two trajectories M and I' are present,
and combined I' and M exchanges generate output &
and M poles. Ke assign positive signature to both the
I' and the 3f poles, but similar results are obtained
with the opposite choice for the M signature. Ke
consider ladder unitarity diagrams built up by itera-
tion of the basic "interactions" of Fig. 3, where the
relevant coupling constants are defined. Therefore, two
coupled channels, MM and I'I', contribute to the
vacuum-exchange amplitude, and three channels, &M,
MI', and MM, to the amplitude for M exchange.
The coeKcients C; in Fig. 3 follow from projection of the
diagrams on states of given 3-channel quantum numbers.
%'e call them crossing coefBcients, and they depend on
the internal quantum numbers assumed for the M pole
and the on-shell particle represented by a dashed line
in»g. 3. Because they are related to Clebsch-Gordan
coeKcients, they can vary within a limited range.

Similarly, the output M trajectory is defined by

QMLn out(Qs) Q27 —0
with

(3.3)

IV. DOMINANT-P-EXCHANGE LIMIT

In I we presented a model which only includes the
interactions (a) and (d) of Fig. 3, i.e., in which only M
exchange is present. Now we can put g~——0 and explore
the opposite limit, in which only the interactions (c)
and (e) of Fig. 3 are left. We observe that in this limit
the I" trajectory is generated by the iteration of the
box diagram of Fig. 4(a), which is equivalent, after a
loop integration, to the diagram of Fig. 4(b). This

~ Q,Q') =Ll-Cc 'U (P,Q')7L1-g" IU "Q,Q') I'7
—2C2tg~ gp2U~~(P, Q ){Re[a ~U sr(P Q )7

+g~'I U'"(P,Q') I') (3 4)
If we define

pa, sr= 2n~, M /u
we have

1 ggP, M(P Q2)
pz, m" = ——

~(Q')

ggP, M(p Q2) i

(3.5)
@2~0, P~~~ ~oil%

The output values of p and of the trajectory intercepts
depend on the input values of p, but not on the input
slopes and on a separately. Therefore, the independent
parameters in the model are ~~, 0~, p~, p~, the coupling
constants g~ and g~, and the model-dependent crossing
coeKcients Cy, C2, and C3. The self-consistency equa-
ions o& ~oue afI,~ and p& ~out p& ~ impose four

constraints on these parameters.
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TABLE I. Solution for dominant-E-exchange model |'gM =0)
with a meson of isospin 1 {IM=1).

0.4
0.5
0.6

0.78
0.83
0.86

0.43
0.35
0.28

pp

0.30
0.29
0.26

0.29
0.26
0.22

gives rise to multi-P-exchange ladders, and with this in
mind, we call the gM =0 limit the dominant-P-exchange
limit.

It is clear that in this limit the values of C~ and C2
are irrelevant. If we assume that the M pole has isospin
1, then C3' =3. There is only one degree of freedom left,
and we can study the solution of the self-consistent
equations as a function of o.M. The results are presented
in Table I for n~=0.4, 0.5, and 0.6. Ke observe that
the P intercept is too far from 1, and, correspondingly,
gp2 is much too large. ~ Alternatively, we can let C32 vary
as a free parameter and 6x o.M—for instance, at n~ =0.5.
The results in Table II show that it is possible to obtain
an intercept for the P pole close to 1, and a small value
for gp', but as we approach a solution of this type, C3'
increases to values of the order of 1/(1 —np)=1/2,
which are dificult to justify. The values of pp and pM are
of order ~, and the M slope turns out to be smaller than
the P slope.

The necessity of having

We Gnd

UMM(o out P)~1
UPP(& out P)~ 1/&

U (42
'"' 0)~1/4

(4.5)

4)UPM(& out 0)j2 0 (4 &)

The result (4.1) immediately follows.
Large values of C32 are clearly unrealistic, and we can

avoid them by introducing in the self-consistent model
other mechanisms in addition to those considered in
this section.

Before abandoning the dominant-P-exchange model,
we examine the energy dependence of the average
number of particles produced, n(s). Utilizing the
optical theorem, we can write for the total cross section

and therefore

&tot�

(S)~ (S/m2) ap'"' —2 (4 g)

g&tot (S) tlcYpout

n(s) = gp'Ct ln(s/mt) . (4.9)0'"(s) 8(gp2C2) tl(gptC2)

From Eqs. (4.2)—(4.6), we hand

and Eqs. (3.2) and (3.3) read

g 4C 2UMM(+ out P) UPP(& out P) —0 (4 6)
and

C22~ l /2~ 1/gp2 (4.1)

in order to Gnd a solution with e small and gM =0, can
be understood if we accept the result

-gc,
a(gp'Ct)

and thus, using Eq. (4.1),

(4.10)

PP~PM~ g (4.2) n (s) 2 ln(s/m'), (4.11)

lim, o(1/2)%'(1, 1,1/2) = 1. (4 4)

TABLE II. Solution for dominant-E-exchange model (gM =0)
for aM=0.5 and variable Cg.

0.999
0.99
0.97
0.95
0.91

412
40.5
15.6
9.6
4.2

gP

0.0027
0.027
0.076
0.11
0.20

pp

0.0040
0.038
0.096
0.13
0.21

pM

0.0026
0.026
0.069
0.10
0.17

and examine the espression

U(J()()l,p) = 2)'&(8,0)

2 2
2 1,1, (2—;—;+1)),(4.3)

p'+p& p'+p&

keeping in mind that

whereas the observed coefficient for a logarithmic
dependence of the multiplicity is of order i. This is
another difBculty that arises in the dominant-P-
exchange model.

TABLE III. Solution for aM =0.5 and IM = 1.

g.ll gP pp PM

V. MODEL WITH NONVANISHING gM

We consider now the case in which all the interactions
of Fig. 3 are present. In order to gain some insight, we
start again with the assumption that the M pole is a
pure I=1 state. In this case, we have C~=-,', C2'=1,
and C32=3. We have still two degrees of freedom, which
we reduce to one by choosing aM=0.5. Ke then study
the solution as a function of gp' in the range between the
value gp'=0. 35 of Table I and gp'=0. The decrease in

'See Ref. 2 for a rough phenomenological estimate of gP'.
Notice that we use Cage for what is called gp' in Ref. 2.

0.97
0.98
0.99

1.18
1.17
1.15

0.009
0.006
0.004

0.39
0.37
0.35

0.26
0.23
0.19
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g&' is compensated by the eGect of a nonvanishing g~'.
As we can see from Fig. 5, small values of e can be
obtained only for small g&~, and, corresponding1. y, g~2

of order 1. For instance, if we require &&0.03, we
obtain gg'&0.01.'

Some typical solutions are shown in Table III. The
small values of g~' obtained suggest that in the interest-
ing range of values of e, the dominant mechanism is M
exchange. This exchange gives rise to the terms Cg~g
)&U~~ and g~'U™in the determinants A~ and 6,
respectively, and for &=0.03, these terms account for
80%%uo and more than 99%%uo of the contributions needed
to produce the zeros of the respective determinants.
The smallness of g~' also makes it possible to neglect
the terms of order g~' in A~ and 6"for &&0.03 without
changing the results by more than 2%. This corre-
sponds to neglecting the diagrams (c) and (e) of Fig. 3.
If this is done, only the Cj crossing parameter is
relevant, because C2 merely redefines gp. Ke can then
relax the assumption of I= 1 for the meson, and let C~

vary in some range around the value -', . Table IV shows
the results of putting C& equal to 0.4 and 0.6. In the
limit of gp =0, the last case coincides with the model
of I.

l.O

0.5 '

O. l

O. l o.p. 0,3

TABLE IV. Solution for o'~=0.5 and variable Ci.

Ci

0.4
0.4
0.6
0.6

0.97
0.99
0.97
0.99

1.14
1.11
1.28
1.31

g~2

0.017
0.009
0.0012
0.0002

pp

0.33
0.30
0.49
0.49

0.20
0.13
0.40
0.41

Vl. CONCLUSION

We have investigated the question of how important
the P exchange is in a multiperipheral bootstrap model.
We had shown in I that a self-consistent solution in
which there is no P exchange can be found. Here we
began by studying the opposite limit, i.e., the dominant-
P-exchange solutions, and found that they are un-
interesting, because either the P intercept is too low or
unrealistic values of the crossing coefficient C3 are
needed. It is still true in these solutions that the P slope
is not smaller than the M slope. In the more general
case in which all the interactions of Fig. 3 are present,
we conclude that to obtain a P intercept near 1, not
only gg has to be small, but also g~' has to be of order 1.
The only significant correction to the M-exchange
model arises from the interaction of Fig. 3(b). The main
features of the dominant-M-exchange solutions are
still present, and again the P slope is of the same order
of magnitude as the M slope.

Actually, the P slope obtained is systematically larger
than the M slope. The origin of this higher slope can be

Frc. 5. Dependence of g~' and e on g~' in the model with an M
pole of 0..~=0.5 and isospin 1.

understood by the following chain of arguments:
The contributions of various multiplicities to IrnA as
a function of t have widths that decrease with n.
The average value of n is roughly n=gmin(s/m2).
As ln(s/m') increases, the peak of ImA shrinks, because
higher values of n dominate. This logarithmic shrinkage
is a typical manifestation of Regge behavior. Thus, the
output slope originates from the rate at which higher
n values become more important. This rate is again
roughly proportional to g', and therefore it is highest
for the vacuum-exchange amplitude.

We do not know how much this result may be altered
by more realistic versions and further refinements of the
multi-Regge model; it seems unlikely, however, that
the rnultiperipheral bootstrap may produce a P slope
significantly smaller than the typical meson slope.
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' There is another source of output slope in our formalism,
because of the shrinkage of the contribution of a 6xed multiplicity.
This slope is of the cut type, i.e., e' '"'= ~u'. It is clear that this
mechanism is not sufFicient to produce a self-consistent slope
diGerent from zero.


