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Low-Energy Theorem for Compton Scattering*
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The low-energy theorem for Compton scattering on arbitrary spin targets is derived. Knowledge of the
Born term of the amplitude, which is calculated explicitly, enables us to prove Singh's lemma, which allows
us to calculate the threshold value of the amplitude from the gauge condition. Every multipole moment
of the target is written down explicitly in terms of the low-energy limit of the amplitude. Up to linear
order in photon energy co, this theorem becomes a generalization to arbitrary spin of the theorem derived
by Low and by Gell-Mann and Goldberger. To describe the spin-nonffip amplitude up to order c0', we need
two structure-dependent parameters in addition to the charge and magnetic moment.

I. INTRODUCTION AND SUMMARY

'HE low-energy theorem for Compton scattering
was first derived by I.ow' and by Gell-Mann

and Goldberger' who expressed the zero-energy limit
of the Compton scattering amplitude of a spin-2 par-
ticle up to linear order in photon energy in terms of
the charge and magnetic moment of the particle. The
assumptions used in the derivation were the following:

(i) The target is stable, and (ii) there is no virtual
photon in intermediate states. The derivation does not
depend on the internal structure of the target.

The theorem was extended to higher spin targets by
Pais' and Bardakci and Pagels. ' They showed the exis-
tence of a low-energy theorem which relates each multi-
pole moment of the target to the Iow-energy limit of
the amplitude. It has also been shown that to describe
the amplitude of spin--,' particles up to co' (a&= photon
energy) it is necessary to introduce two structure-
dependent parameters, electric and magnetic polari-
zability, in addition to the multipole moments. ' 6

In this paper we reexamine the low-energy theorem
for an arbitrary spin target. We use Low's method. '
Each multipole moment of the target is given explicitly.
If we restrict ourselves to linear order in cv, we obtain
the total expression of the amplitude for all s (s= target
spin), which is a generalization of the low-energy
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theorem of I.ow and Gell-Mann and Goldber ger
(s= —,').' ' It is also shown that the electric and magnetic
polarizabilities are sufricient to determine the spin-
nonRip amplitude of an arbitrary spin target up to
order ~'. To describe the total amplitude to this order,
we need two more parameters besides these.

The Compton scattering amplitude, written in the
form

satisfies the gauge-invariance condition
3 3

P k M;„= i&a'M—4„adng k,M„,= io&M—„4, (1.2)

where e. and k„=(k,ice) Lc„'and k„'=(it', ice') 1 are the
polarization vector and the four-momentum of the
incident (outgoing) photon. Each equation of (1.2)
implies the other by time-reversal invariance. We choose
the Coulomb gauge, sothat onlyM;;(i, j =1, 2, 3) enter
the cross-section formula. The proof of the theorem
consists of showing that the excited intermediate states'
contribution to the right-hand side of (1.2) is vanishingly
small compared with the unexcited states' contribution
at co=0. This has 6rst been proved by Singh' and then
by Bell, ' and it is called Singh's lemma.

As will be discussed in Sec. IV, we prove Singh's
lemma as follows: First we calculate the Born term
explicitly. Using the expression of the Born term in
314„,we find that it dominates the excited-state con-
tribution to M4„atco = 0 as the photon mass approaches
zero.

Furthermore we see in Sec. IU that the Born-term
contribution to

Q k, 'M,
„

is higher in co than its contribution to ~ M4„.Therefore,
combined with Singh's lemma, we can write (1.2) in
the form

3

Q k M;„~.x.;tgeig = i(o'M4„~s„,„—at o) =0, (1.3)

V. Singh, Phys. Rev. Letters 19, 730 (1967}.' J. S. Bell, Nuovo Cimento S2A, 635 (1967).
j.894
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i.e.
„

the linear combination of M;„on the left-hand
side is given by the right-hand side, which is known.
There are some amplitudes on the left-hand side of
(1.3) which a priori are of lower order in co than the
right-hand side. Such terms must vanish. "

The calculation of the Born term of a general spin
target is given in Sec. III. Xarious properties of the
electromagnetic multipole moments are given in Ap-
pendix B. Another important problem is to know the
kinematical structure of the amplitude. All the kine-
matical singularities and zeros should be removed
before we take the low-energy limit. This is done for
the amplitude which is irreducible under spatial ro-
tations. VVe study the analyticity of this amplitude in
~ in the Breit frame and the analyticity in t (the mo-
mentum transfer squared) in the c.m. frame. Combin-
ing these we find that the kinematical singularities in
both variables can be removed from the amplitude in
a simple way. Ke discuss this in Appendix A.

II. KINEMATICS

A. Irreducible Tensor Amplitudes

Ke define the T amplitude by

(p'm'; I 'p'i Z'i pm; hp)

4

e„(k'P)e„(kP)M „,„(p,Q) (2.1)
(2)r)'(4b)(0')"') =i

The indices c and b take on the values 0 and +1, and
are related to the Cartesian ones i = 1, 2, 3 by

j(p)(x) = %(1/v2)[j)(x)&ij2(x)j, j(o)(x)= j3(x) (2 5)

Ke v ill also use the notationj„4(x)= ijp(x), (2.6)

s j s s j s
( 1)J+J'+2s+r)

Nf S I Q S Ns

with a=o, to represent the time component of the cur-
rent density. This component transforms as a scalar
under spatial rotations, and it should be distinguished
from the third space component j&())(x). In (2.5)

t( s u s
etc.

4 —m'T m'

are the signer 3-j symbols. In particular we denote the
amplitude whose s axis is chosen along p by Fsbr &"'&(k,t),
where k =

~
k ~. In terms of this invariant amplitude, the

differential cross section in the laboratory system is
given by

do'

(M+b)) —(e)') p (2j+1)
dQ( (4)r)'M(0)2

M „,(p, Q) = d'x e'o'(p'm'~ T(j„(—-', x), j„(-',x))

I9

+i tt((xb) j„(—,'x), —.4 „()2x)
~ p,m),

~X4

Xp~~t pM;"S.... ;(tt))Fs))&'"')(k))t)Fs .)r &"'"&"(k),t),
(2.7)

where the summation should be taken over all repeated

(2 2) indices.
s j s

where j„(x)is the electromagnetic current density
which satis6es [7A„(x)= j„(x),with A„(x),the electro-
magnetic vector potential, and

Q= —,'(k+k') . (2.3)

p and m are the momentum and the z component of the
spin of the target in the initial state. P denotes the
helicity of the incident photon. Corresponding quantities
of the particles in the final state are indicated by primes.

In order to discuss the low-energy phenomena we
use amplitudes which are irreducible with respect to
spatial rotations:

~-.:-(n,Q)=z( —))'-'(, )( )

Qy s N

is the Wigner 6-j symbol,

p. * (p.I')
is the statistical tensor describing the spin configuration
of the initial- (final) state target and is defined by

(m'~ p;~m) =(—1)"
S zf s S

XQ (—1)' "' p,", (2.8)
tCjTj —m' T' m

where p; (pr) is the density matrix of particle spin
components in the initial state. h(8() contains all the
photon polarization dependence and is a function of the
scattering angle 8~ between the photons,

h-.""(|)()=

Here we introduce the spherical notation j,(x), jb(x).
"This was also derived by A. Pais, Ref. 3, for a particular

case, i.e., A g(0) =0 in this paper.

X (ek' ')Peb(kP)b, (k', —n')eb (k, n)—
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In the following, we use the Breit frame rather than
the laboratory frame. This is the frame which is speci-
fied by

(2.10)p'+p= 0

Equations (2.3) and (2.10) show that

k'=Q+p, k=Q —p, and

which also implies

p Q=o

CO =Q)q (2.11)

(2.12)

B. Invariant Amplitudes and Their
Kinematical Properties

We define the amplitude M „&"'&(pQ) by

M &"'(p Q) = (2N+1)

S I S
X P (—1) "' M „,.(P,Q). (2.13)

rN f fls —m 7 'm

This amplitude satisfies the following symmetry proper-
ties:

I'))e(k') is the spherical harmonic function whose argu-
ments are the polar and azimuthal angles of k', the
unit vector parallel to k'. H~, )L&""&(k,t) is an invariant
function of k and t. The space-reflection invariance
(2.14) imposes

(2.22)I+K= even

in (2.21). Combining this and (2.20) with the triangle
condition /+I.)J due to the 3-j symbol in (2.21), we
find

p &ue)(p Q)~kJ+eg+eu

at small values of k, where

(2.23)

e,= 0 or 1 corresponding to x= even or odd. (2.24)

Since this is the consequence of purely kinematical
requirements, we expect that we can divide the ampli-
tude by the power of k given in (2.23), without intro-
ducing any kinematical singularities at k= 0.

The argument in Appendix A shows that the ampli-
tude F~&)&&""&(k,t) is regular at k=o (except for a pos-
sible dynamical singularity) after the factor

Under space reflection, (sine) ')e (2.25)
~"&"'(p,Q) = ~ .3I '"'(—p —Q)

$„„=—1, if one of )& or v is the time component
= T otherwise. (2.14)

Under time reversal,

~.'"'(p, Q) = (—1)"kI"'"'(p, —Q) (2 15)

Under crossing,

M„„&u'&(P,Q; &o) =Ã.„&"'&(y,—Q; —&o), (2.16)

where the change of the sign of the energy component is
written explicitly. In terms of the invariant amplitude
Fq&e&&""&(k,t), these relations are:

is removed, where 0 is the photon scattering angle.
In addition to FJ&)r {""&(k,t), w'e introduce another

invariant amplitude Gg.)I&""&(k,t), which we will use to
derive the low-energy theorem. This amplitude is
specified by taking the s axis along k, so that it is related
to F,M&-&(k, t) by

Gg))&&"e&(k,t) =g Fg»r &""&(k,t)d)&I'&)r & '( 8) . (2.26—)

Here d~ ~(~) is the usual d function representing a
rotation around the y axis; 8 is the angle between p
and k and is related to 8 by

space reflection,
8= -', (0+)r) . (2.27)

FJ))r& &(k, tu) = ( 1)~ ~F~ .«"—"&(k,t), (2.17)

time reversal,

F&&)r&ue)(k t) —( 1)u+e+MF &uv)(k t) (2 18)

and crossings

Fz&a &ue&(k)t) = ( 1)"+~Fgoal&""&( k, t—), (2.19)—
respectively. By expanding Aalu„&u'&(P, Q) in powers of
k, we find from (2.15) and (2.16)

M„.&"'&(P,Q) = even (odd) power series

of k if I= even (odd). (2.20)

In order to see more details, we expand the amplitude
in terms of the harmonic polynomials of h' and k:

I J
&ue)(p Q) —P kl+L

l L=O 33 L3 3f
XI')),(k') VLLe(k)H g. )L&u'(k, t). (2.21)

To find the kinematical singularities of Gq)&r(k, t) we
first show that Hg, )L in (2.21) is free of kinematical
singularities. If we put p along the s axis in (2.21) and

I'«, (k') = I')),(&r 8, 0), —FLL,(k) = I'LL,(8,0), we
obtain the expression for F~&)r(k, t):
FgL&&""'(k t)

t'I I J Il I. 7' I I.
kl+L/

I, ee V, I., v)(o o . o)
(2t+1)(2L+1)(I'—~)! '"2J'+1

X( 1))+Le
(J'yM)!

XPJ' (cosB)Hj;)L&""&(k,t) ~ (2.28)

Pg ~(cos 8) is the associated Legendre function. In
(2.28),

=0
Eo o oj



184 LOW —ENERGY THEOREM FOR COM PTON SCATTERING i897

unless i+I.+J' is even, and so the condition (2.22)
demands that J' is even. In this case Ps.~(cos e) is
proportional to cos 8 sin e=~ sin8, if M is odd, and
its remaining factor is a polynomial function of cos'e
= —,'(1—cos8). For M even, Ps (cos 8) is just a
polynomial function of cos'8 (or cos8). Thus
PJ i)r(cos 6) is proportional to the factor (2.27) which
contains all kinematical singularities of Fg)r(("")(k,t).
Since cos8 is a linear function of t,

t = —2k'(1 —cos8), (2.29)

a polynomial in it does not introduce any kinematical
singularities. Therefore we conclude that Hj $i, ("')(k,t)
is a kinematical singularity-free amplitude.

The amplitude Glair("")(k, t) is obtained from (2.21)
by choosing the s axis along k:

00 l I. J
Gs2(("'(k, t) = p k'+~

t 1-=0 —~ O M

1 (2l+1)(2I.+1)(t —M)!X—
4)r (1+M)!

Pi (cos 8)Hs )J.(""'(k,t&. (2.30)

written in the form

&
—p 'I j.(o) IQ~&=&m'ltt '( —y)j.(0)~(Q) lu&

=p A„„.(p, —y)&m'IR(@)j„.(0)ii(f)R(y) I22), (3.4)

where
I m) denotes the state of one particle at rest. By

choosing the z and x axes along p and Q, we can replace
A(p)A(Q) by the successive operations of the Lorentz
transformation it(|') along the s axis and two rotations
E((t) and R(!t) around the y axis:

~(y)~(Q) =&(~)~(~)&(V). (3.5)

A„„(p,—g) is the matrix element describing the Lorentz
transformation A(p) after the spatial rotation around
the y axis by the angle —p. The velocity of the Lorentz
transformation tanhi is given by

(tanh i') ' = 1—M'/8'(y) E'(Q) v (3.6)

whereas the magnitudes of the rotations are given by

cosP= lyly(Q)/M2sinhf, cosP= lpl/M'sinhf. (3.7)

We de6ne the electromagnetic multipole moment
cP a byll

P(sr(cos 8) is again proportional to (2.27) multiplied
by a polynomial function of cos8 (or t) Combin. ing
this with (2.23), we define the regularized amplitude
Cps('""'(k t) by

Csir(ov)(kvt)=k " '"(sin8) '2(Gssr("")(kvt)
v (2.31)

which does not have kinematical singularities or zeros
at 4=0.

&m'I j.(0)ti(f ) lm)

and
J-(a)

Ia)

&m'
I h.(f')j,(0) I m)

s S s)
(—1) "', l&s (3.g)

a m)

s J s)
(—1)

( —m' a m/
III. BORN TERM

The Born term has to be known up to the required
order in k in order to obtain the low-energy limit of
the amplitude. We compute it explicitly in the Breit
frame. The Born term, which is de6ned as the term due
to the unexcited intermediate state in the Low equation,
is given by

Mm'o; mv(pvQ) I soro

The expression for the Born term (3.1) becomes

Mm')v; mv(pvQ) I soro

s u s 1 (—1)"
=2K (—1) "'

Q, f —tS' 7. m cO —cO„M GO~

XZ,.("'(p,Q), (3.9&

~"("'(y,Q) =Z A- (p, —0)A,"(—p, e)n. .n;~

where

. ~-';-(y Q) ~-";-.(y, —Q))
I, (3.1)

~

~

CO Glp co+~„] X(2v+1)(—1) "( )( )
&- ',-.(y,Q)

=Z &
—y 'Ij„(0)IQu&&Qul j,(o) ly & (3.2)

and P„denotes summation over the spin component
of the intermediate state. co„is given by

—g(Q) +(p) —(M2+ Q2) 1/2 (M2+y2) 1l2 (3 3)
We denote the Lorentz transformation with velocity
p/E(p) by A(y); then each vertex function in (3.2) is

s J2 s
)( d, (Zr)(@)d2, 2(J2)( y)—e b' tn

&&d- ."L2(4+4)j&sr'&s2', (3 1o)

where y„,is deined by

j (z) =2 rt).j.(z)

"L.Durand, III, P. C. DeCelles, and R. B. Marr, Phys. Rev.
126, 1882 (1962}.
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Ke now consider the threshold behavior of the Born
term. to„,defined by (3.3), behaves as

has to behave as

td3f 44"'&(p Q) m k"+' orhigherorderofkatk=O,

(—1)" 24o„cose
~+~p CO

—
CO& M

if I is even

if u is odd.

o&~ (k' cos8)/235 at k =0,
so that the singular factor of (3.9) becomes

(3.11)

(3.12)

(4.3)

As m~ approaches zero, a singularity appears at k=0
which suppresses the extra k' '" power of the Born
term. Ke assume that the amplitude is a regular
function of m~ around m~=0, so that the behavior
(4.3), after the singular term is subtracted, does not
change when we take the m„~0 limit. Taking (2.20)
into account we 6nally conclude that

The polynomial expansion of R„„&"'(p,Q) Lsimilar to
(2.21) and (2.14)) shows that R4 &"'&(p Q) and
R44'"'(p Q) behaves as ~k"+'" ' and k~+'" respec-
tivelv, or as higher powers of k at k=O. In order that
3f„,'"'(p, Q) ~

s„satisfies (2.20), however, we have to
have the following behavior:

3f.o'"'(p, Q) I -. .o-k" b= (0) (~) (4 4)

A similar discussion shows that (4.4) is true for b= 0 too.
This proves Singh's lemma, which claims that
M.b&"'(p, Q) ~,~„t~can be ignored compared with the
Born term (3.14) as far as terms of order k".

R4 («&(p Q)~k&4+4+ &4= 1~4 (3.13) V. LOW-ENERGY THEOREMS

M4„&"'&(p,Q) ~
s„„k",u= 1 4. (3.14)

If the mass of the photon is 6nite, say re~, we obtain
from (3.12)

According to the results discussed in the previous
section, we can write (4.1) in the form

.'"'(,Q)I -.- "( / )' '" (3.15)

This result will be used for the proof of Singh's lemma.

IV. GAUGE INVARIANCE

XFsor "
(p, Q) ~

exoite&i=~ot(&p&Q)
~

&&Orn, (5 1)

b=(0), (+), u=O, 1, 2 . 2s,

The gauge-invariance condition (1.2) can be rewritten
by using the irreducible tensor amplitude in the follow-
ing form:

1 v 1 n v J
k.'( )t—4&" '( )oz & &(t& o&""

M.b("'&(-p,Q) (4 1)

b=(0), (+), u=O, 1, 2 2s.

up to order k". The space-reQection and time-reversal
invariances show that there are 2u+2 (2u) independent
equations in (5.1) corresponding to b=(0), (+) and
r= 0, 1 ~ ~ u (r= 1, 2 ~ u) for u even (odd). On the other
hand, the number of independent Fs&»&""&(p,Q) in
order k", after (2.14) and (2.15) are taken into account,
is 3u+1, (3u) for u even (odd). Therefore (5.1) de-
termines the values of Ps&»4"'&(p, Q) ~, oft~(J=u, u —1,
u —2) of order k" leaving u —1 (u) functions of u even
(odd) undetermined.

It is easy to prove the following relation using
the current conservation equation

Z.= (P -P).(p IJ.(0) tp)=0:
3 k

R- 4;- (p,Q) =4 2 —R- ';-,(p, Q)

A. Low-Energy Theorem of Order A

There are tern&s on the left-hand side of (5.1) which
behave as ~k" ' at k=0. Such terms should vanish
since the right-hand side behaves as k (3.14). Thus,
we obtain

Because of (3.11), we can see that the Born-term con-
tribution to the right-hand side of (4.1) is smaller than
its contribution to the right-hand side by the factor
k/3E.

Since the right-hand member of (4.1) behaves as
k "+' at k =0, so must the left-hand member. VVhen the

photon mass is finite, the behavior of the Born term on
the right-hand side changes to (3.15), whereas the be-
havior of the left-hand side is unchanged (i.e., k"+').
This demands that the right-hand side of (4.1) also

XPo-o, &»&" '&(p Q) =0 (5.2)

(5.3)

(5 4)

at k= 0. In particular

+oo""(p,Q) =0
and

(1/k')+o»""(p&Q) =0
Equation {5.3) has been also derived by Pais, "
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B. Low-Energy Theorem of Multtpole Moments

Instead of (5.1), we use the gauge-invariance con-
dition in the form

are the total charge and the total magnetic dipole
moment. If we use the invariant amplitude Hs, ir, ("'&(k,t)
related to Gs&tr(""&(k,t) by (2.30), we can take the 8
dependence into account explicitly and obtain

Xrl's.v "
(p, Q) I excited =Moo " (prQ) I sore r (5 5)

u=01. 2s

which is obtained by combining two equations of (1.2)
and also by using the results obtained in Sec. IV. In
order to separate the 2"-pole moment from the others on
the right-hand side of (5.5), we choose the s axis along
k and put 7 = u. The appropriate invariant amplitude
in this case is Gs&tr("'(k, t) Calc.ulating the Born term
explicitly from (3.9) and (3.10), we obtain

and

= —4tri((2u+1)6u(2s+1)]'(' —g„, (5.10)
M

— 2u —1
+u; te—1,1 +3 IIu; te—1,1

5(2u+3)

(2u) 1"H„.,('&+ 0(1)
2(u+1)"'

2u —1
,(s)

2 5(u+1)(2u+3)

cos8 2u(2u —1)
(0&+ (1&

L3(2u+1)]"' S(2u+3)(u+1)

-(u+1)(2u+1)

(u —1)(2u —1)
II+—1;u—1,1(1)

sin28
(V's) &-,--1"&

2L(u+1) (2u+1)]i(1

3(2u —1) '" sin'(&

Gu, u—1 +
2(2u+1)'"

1
X Gu —1 u—1 +

V3 5(u+1)

u —1
(2)

L(2s+ 1)(2u) (]'('

2"uI

e
cosg (sin t&)"—g (5.6)

M

for u even and

1 — u —1
et/S(-ru —i,u—I + Gu —l, u—1

2(2u+1)'" 5(u+1)

L(2u —1)!]'&'
=21(2s+1)'" (sin |&)"-'

2"(u —1)!

s+1 'r2 e—OR„+-,'u(-,'(2s+u+1)(2s —u+1)]'('
u+1 M

1 1 (r&1 e)
(5.7)

2u —1 Mks M)

for u odd. The superscript (u) of Gssr(ue& is omitted
because u is fixed. g„andOR„are the electric and mag-
netic 2"-pole moments defined by

3(u —1)
+ &u 1;u i-i"'-.=0 (5.11)

5(u+1)
for even u, and

3(u —1)
IIu—1; te—1,1 + +u—1; te—1,1

5(u+1)

u(4u' l.) '( — s+l. '(' e
=Six. —BR„

u —1 s(u+1) M

j-',uL-', (2s+u+1)(2s —u+1))'('

1 &tt e )
X ——IZ--1 (5 12)

2u —1 s M)

for odd u. The values of Hg,. Il. ' should be evaluated at
k=O. Equations (5.10) and (5.12) are the low-energy
theorems for the electric and magnetic 2"-pole moments,
respectively. The u=2 case was derived by Pais' and
by Bardakci and Pagels. ' Equation (5.11) is a new type
of low-energy theorem which does not depend on the
static moments.

C. Low-Energy Theorem of the Total AmpHtude

From (5.6) and (5.7), we immediately obtain

G(&o( &(Or0) I exc(ted= iL3(2 +1s)] & e /M (5.13)
and

Goo (OrO) I excited

and

V'„'=(2s+1)'"kug„

'7„(+&= —L1/s(s+ 1)(2s+ 1)]'"k OR (5.8)

2(s+1)(2s+1) '&' 1—l3 —
2&1—s— (5.14)

s M M

aIl d
e=Qo and &t=ORi

corresponding to u=O and u= 1. Equations (2.23) and
(5.9) (5.3) show that these are only the amplitudes which
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D=O,

are left in the complete expression of the amplitude up where (r, ) is the mean-square radius of the charge.
to linear order in k besides the Born terms. Adding the (See Appendix B.) Substituting (6.4) and (6.3) into
Born terms calculated from (3.9) and (3.10), we arrive (6.2) we find
at the following: (6.5)

o„(k',p') o„(k,p)M „., „(p,Q)
p, ,v=1

g2 e 8
=i—(e' e)8„„+—2&4

—s—k(a'xs). S ~

M M 3f
8p

-[(e k')(a'Xk') —(a' k)(aXk)7 S
kM

p2—[("xk')x(.+k)7s . +0(k),
ks

because all terms in (6.2) except D are proportional to
cosa. For the spin-o4 case, (6.5) was proved by Singh. "

From the transversality condition of the photon
we see that C does not appear in the amplitude
p;; 4 4+I,;(oo& If . we define the modified electric
polarizability n by

(&(= c4 i(2s—+1)'t'C+ (e /3f)(r4o) o (2s+ 1), (6.6)

we can write the spin-non6ip amplitude in the form
(5.15)

where

(s+1&(2s+1& "' z 1 s)( 1)a-m'

s —m' 7 m

s—=s(k,p), and s'—=s(k', p') .

p 4 otÃ;t(oo&(y, Q)
1 4 J 1

(2s+1)eo
sin28

(2s+1)"' 43f' 3l
2k'n—(e' e)

This is the generalization of the low-energy theorem of
Low and Gell-Mann and Goldberger" to the arbitrary
spin case.

VI. LO%'-ENERGY THEOREM OF HIGHER ORDER

In order to determine the amplitude up to order k',
we have to consider its dependence on the internal
structure of the target, as was discussed in Sec. IV.
Ke will show in the present section that two parameters,
in addition to the static multipole moments, determine
the spin-nonAip part of the amplitude completely up to
this order, for arbitrary spin.

The spin-nonQip amplitude can be written in terms of
the notation defined by (2.13)

3E;,("&(y,Q) = 8@A(k)+(k;k;+k';k', )C+k';k~D
—[2i/(2s+1) 7[k;k —(k'. k) b,;7P, (6.1)

which satisfies space reflection, time reversal, and cross-
ing symmetry. The gauge-invariance condition demands

k k;M "(oo&(p Q) =(k' k)A(k)+2k'(k' k)C+k4D
4

= —k 3f44"'&(p,Q). (6.2)

The excited-state contribution to 3144&"~ can be speci-
6ed by the electric polarizability 0. "as

2i
M44(oo&(p, Q) ~, „4,4 = (k' k)a. (6.3)

(2s+1)"'
The Born term is calculated from (3.9)
~«- (.,Q) i..-= -'(2 +»"

k2 g2

Xcos8 1— sin'0 —
3 r.2 P' +g P4' ' Jft/I

'~ A. M. Saldin, Nucl. Phys. 18, 310 (1960). See also the paper
by A. Klein in Ref. 2.
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APPENDIX A: KINEMATICAL SINGULARITIES

Ke discuss the kinematical singularities of the invari-
ant amplitudes Fssr&""'(k,t) in the Breit frame. Since

t= —4p2 (A1)

in this frame, the s dependence of the 3I function is
contained only in e'&* in (2.2). Equations (2.3), (2.10),
and (2.11) show that

j Q ~

= [((s—M')'+st)/(4&V —t)7't, (A2)

and therefore the kinematical singularities in s can
"V. Singh, Phys. Rev. 165, j.532 (1968).

(e'Xk') (sXk)P+0(k'). (6./)
(2s+1)'t'

This formula contains another parameter P™,which is
called the magnetic polarizability of the target, " and
cannot be determined from (6.2).

As was shown in Sec. V, Eq. (5.1) determines six amp-
litudes among seven independent ones Gssr(""&(p,Q),
to order k2 for u= 2. Other aInplitudes, which can con-
tribute to this order, were shown to vanish at k=O in
(5.4). Therefore, to determine the total amplitude up to
order k2, we have to introduce two more parameters
which specify one of the amplitudes Sz~&"& corre-
sponding to the terms proportional to k2 and k2 cos8.
This is the generalization of the low-energy theorem of
k' order" to the arbitrary spin case.
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~—0 Ã+
Xdo."' d&, &,

&»
~, (A4)

2 2)'
where ~&~&(P)=-', (P~I), a&0&(P)=0, we can see that
(A3) implies that

( pen'; k'P'—
~
T

~ pm; kP) is an even (odd) power function
of

~ Q ~
if m' —m is even (odd). (A5)

The kinematical singularities in t are known for the
helicity amplitude in the c.m. frame. The T amplitude
(2.1) is related to the helicity amplitude in the c.m.
frame by

(—pm'; k'P'~ T
~
p»&; kP) = P (—1)'+"'d ~ "(—&&)

p~p

Xd &'&(x)(—p, p'; k 'p'~ T~ p, p', k, p), (A6)

where p (p') is the helicity of the initial- (6nal) state
target in the c.m. frame, and p, , k. , etc., denote the
three-momentum of the corresponding particles in this
frame. '4 X is the Kigner rotation angle which speci6es
the Lorentz transformation from the Breit frame to the
c.m. frame along the x axis; its magnitude is given by

s+M2 /I /

cos X= ——,sin X=
s—M' E(p)

2M/Qf

s—M'
(A7)

This angle X is exactly the same angle which appears in
the crossing matrix from the s-channel c.m. helicity
amplitude to the t-channel one."If we dehne the ampli-
tude T by

(—y..~.p', k,.~.'P'( T
( p, p; kP..,, )=—(sin-,'8,)&"'—"&

X (cos-,'8,)~"'+"
& T;t&', ,»(s, &&), (AS)

where 8, is the scattering angle in the c.m. frame, and

(A9)
"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
'~ T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322

(~964)'.

enter only through odd powers of
~ Q ~. This is equiva-

lent to stating that the amplitude has the kinematical
singularity given by (A2) if it is an odd function under
the change of Q to —Q. When p lies along 9 and Q
along 9, (2.14) and (2.15) show that

&z~&""&(P, —Q) = ( 1)—~&g»r&""&(I& Q)
—( 1)&&&F &ue&(Q t)

From this we see that

Fg~&"'(k, t) is an even (odd) power function of ~Q~
if M is even (odd). (A3)

From (2.1) and (2.4), and by using

e.(k'&')~~(4) = Z ~"(ff')~~ (/3)

APPENDIX B: PROPERTIES OF THE
MULTIPOLE MOMENTS

From the definition of the multipole moment (3.8),
we have

Writing A(l) in the form

X(~'I q.(0)A(f) l~). (al)

A(f) = e-'« (B2)
"M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and

F. Zachariasen, Phys. Rev. 133, B145 {1964).

this amplitude is kinematical singularity free in f.'6 8, is
given by

cos -', 8,= 2
i Q i E(p)/(s —M')

= P(s M—')' st—]'&2/(s M—')

sin -'8 = 2(+s)
~ p~ /(s —M') = (—st)'"/(s —M2) . (A10)

Substituting (AS) into (A6), and using (A7) and (A10),
we see that the factor

( 1)a+m'd, , &a&( y)d &1&(&&)(g
—&&2 sin&8 )I&'—&&

X (cos28,)&"'+"& (A11)

is proportional to
~ Q

~

I"™.This is the only kinematical
singularity in s which can be involved in the T ampli-
tude, as can be seen in (AS). Thus the amplitude
(Qs)~"' "&T;t&...s(s, t) is kinematical singularity free
in s as well as t. Equation (A11) contains all kinematical
singularities of the T amplitude.

The kinematical singularities of (A11) in t come from
odd powers of

~ p ~
and E(p) = (M' r't)'—", after those

singularities coming from odd powers of ~Q~ are re-
moved. Equations (A7), (A9), and (A10) show that
(A11) is an even (odd) function of E(p) for integer spin
targets, and is an odd (even) function for half-integer-
spin targets when (A11) is an even (odd) function of
~p~. The change of ~p~ to —

~p[ in (A11) is equivalent
to changing the signs of m and m' in (A11). Since
(—pm'; k'P'~ T&pm; kP) changes to (—p, —m', k'P'~

T~y —m; k&3), and e, (k'P') e&,(kP) in (A4) changes to
e,(k'P') ~ &,(kP) when

~ p~ is replaced by —
~p~, we can

see from the de6nition (2.1) that

Fz»r&""&(k,t) is an even (odd) function of
~ p~

if M is even (odd). (A12)

If we ignore the kinematical singularity (M' —4t)'"
which exists only in the amplitude of a half-integer-
spin target, we can conclude from (A12) and (A3)
that FJ&&&

& &(k,t) is kinematical singularity-free in s and
t around 4=0 after the factor

(lpl IQI)'~" (»n 8)'~
is removed.
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sinhg
cI'J (o)— cl' 0

1+cosh|
(810)" (—iY)"

=(2J+1) 2 2 (—1)' ""
n J g f mm'

where f is given by (3.6) and K, denotes the generator In terms of the multipole moment, this is equivalent to
of the boost along the s axis, we obtain

s J s
X &m'I j.(0)K."Im) ~ (83)—m' u m

Since K, commutes with j(+&(0),
whereas (39) shows that

IT'J Co&= q J(o) (811)
Since 1' "k/M' for small values of k,

&k/N) a.t k=0.
Space reAection shows that

(m'I j,(0)K,"Im) = W( —1)"(m'I j,(0)K,"Im&,

upper sign for u= (0), (&)
lower sign for a= 0.

(84)

(35)

which also implies that IT'J —V J'.
In order to relate the multipole moment defined by

(31) to the conventional one, we calculate (Bl) for
spin ~ by using the Pauli and Dirac form factors P~ and
F2 dined by

&p'I j.(o) I p&= f~(p') Lee,~&((p' —p")
—

& gFs((P' —P)')o„„(p'—p),jl(P), (812)

After the transformation Y= e—' JflP, where P is the
space reflection and J„is the generator of a rotation
around the y axis, we obtain

where u(p) is the usual Dirac spinor, & ~ is the anomalous
magnetic moment, and o„,= (1/2i)(y„y„~,y„) Sub.sti-
tution of (312) into (31) gives us

(ml~ (0)e (7Kgl—m& ( 1)m m+e

X( m'I —j,(0)e 'rx
I

——m) ~ (86)

v 0'= v2(e ', (r '—)k-'e)+0(k'),

v'x(+&= —(Q6)) k+O(k'),

(813)

(814)
As a result of this, we get

s—( 1)zg —a

Ke use the time-reversal result

where @=e/235+@~ is the total magnetic dipole mo-
(BI) ment. The mean-square radius of the charge &r 2& is

the one de6ned by'~

&m'I j(,)(0)e-*r *Im) = —(—1)"™
X(—m'I j(0&(0)e+'r~

I

—m)* (38)

dFy 3 3pg
&r,') = —6 + +

dk' 4%2 feM
(315)

in order to relate 9s(') to 9"s'. Since both j(0&(0) and K,
are invariant under an arbitrary space rotation around
the s axis, m™By a comparison between (86) and
(88), we get the following relation:

(ml j(0&(0)e "x*lm&= —
&mI e "x j(o)(o) lm& (39)

Equations (813) and (314) hold for the arbitrary spin
case if v2 and Q6 in these formulas are replaced by
(2s+1)'" and I:(s+1)(2s+1)/sg'", respectively.

'~ F. J. Ernst, R. G. Sachs, and K. C. Wali, Phys. Rcv. 119,
1I05 (1960).


