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We present dispersion relations which give the full off-energy-shell T-matrix elements Ti~. (p,p'; s)
for all values of the parametric energy s in terms of bound-state form factors, a subtraction constant, and
the half-oft-shell T-matrix elements T~~ (p,s";s) in the scattering (s&0) region. Study of the half-oQ'-shell
T matrix for s&0 shows that it can be written as the product of a reul matrix Hfl (p,s) and the on-shell
T matrix. We combine these results to obtain a representation of the full ofF-energy-shell T-matrix elements
in terms of experimental on-shell T-matrix elements, the real half-o6'-shell factors Bg~ (p,s), a subtraction
constant and bound-state form factors. Our results are based only on assumptions of time-reversal in-
variance, oG-energy-shell unitarity, analyticity, and asymptotic behavior. The results are independent of
any speci6c dynamical assumptions. We conclude with a discussion of the special case of uncoupled partial
waves and the advantages of a separable representation of the half-oft-shell factors.

I. INTRODUCTIOH

~ 'HK full oG-energy-shell partial-wave two-body
T (transition) matrix elements T«(p, p'; s) are

necessary inputs to many multiparticle-scattering cal-
culations. Omnes and Basdevant' have commented upon
the shortcomings of the usual approximations to these
T-matrix elements. Ke are therefore led to further
consideration of the T-matrix elements T«(p, p'; s)
for elastic two-body scattering in a state of total angular
momentum J, for the case where S partial waves are
coupled. If the reduced mass of the two particles is p,
we use units in which 6=2@=i, so that k'=s, the c.m.
energy.

%e shall make the following assumptions about the
amplitudes T«(p, p'; s):

(i) Time reversal inv-ariance and Nnitarity We assum. e
that the T matrix is time-reversal invariant and satisfies
oft-energy-shell two-body elastic unitarity. This enables
us to write the expression

rmT(p (p,p', s)

= —~p(s) p T„(p,t;s)T, , *(tt,p', s) (1)

for the discontinuity of the T-matrix element across the
unitarity cut.

(ii) Analytici ty. We assume that the only singularities
of the T-matrix elements in the complex energy variable
s are the bound state and resonance poles and the
unitarity cut prescribed by Eq. (1).

(iii) Asymptotic behavior. We assume that the off-shell
T-matrix element T«. (p,p'; s) approaches a constant
as s —+~00. This is not a critical assumption. If
T«. (p,pp; s) ps" as s~ &~, we need only make
(n+1) subtractions, instead of one subtraction, in the
dispersion relations set forth below.

All these assumptions are true, for example, for
T-matrix elements obtained from the Lippmann-
Schwinger (LS) equation

'R. Omnes and J. L. Basdevant, Phys. Rev. Letters 14, 775
(1966).
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T«(p, p', s) = V«'(p, p')

"q'dq Vt (P q)T~'(q, P's)
+

j=l p s q+Ze

which satisfies the nonrelativistic form of two-particle
elastic unitarity with p(s) =s'". The assumptions are
also true for T-matrix elements derived from the
Blankenbecler-Sugar (BS) equation

T«(PP' s)=V«(PP')
q'dq Vt, (p,q)T, E (q,p'; s)+Z

(q2+ 1)1/2 s q'+ie—
which satisfies the relativistic form of two-particle
elastic unitarity with p(s) = Ps/(s+1) j'". To be
specific, we shall proceed under the assumption that
p(s) has either the LS or the BS form.

II. DISPERSIOÃ RELATIONS

Ke have assumed that the T-matrix element
T«(p,p'; s) approaches a constant as sp &~. The
Sugawara-Kanazawa theorem, ' coupled with our
analyticity assumption, then tells us that T«. (p,p'; s)
approaches a constant as ~s~

—+av in any direction in
the complex s plane. Let us consider a state of total
angular momentum J in which there are M bound
states at energies s= —s . Then, using the unitarity
relation (1),we may write the following once-subtracted
dispersion relation for the full o8-energy-shell T-matrix
element:

T«(P P" s)
s„,(p)s, . (p')( s —s.

)=Tt&'(p p" s )+P
tn~l S+S~ —

Swiss
—Se

p(E)—(s—s,) d," Z T;(p,e"; e)
p (g—s)(P—s,) p-~

&&Tpi *(812p' k), (2)
~ M. Sugawara and A. Kanazawa, Phys. Rev. 133, 1895 (1961);

G. Barton, Introduction to Dispersion Techniques in Field Theory
(W. A. Bcnjam&n, Inc., ¹wYork, 1965).
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~ a-i(p)a-i (P')
=T«(p,p'; ")+E

S+ Swiss

p(k)

0

N

XZ Ti(PP" E)T '(8"p'5) (4)

where T«(p,p'; ~) is real by assumption.
Now, let us consider the possibility of making the

subtraction at the position of a bound state or reso-
nance pole at s=sg. Using the fact that the residue at
this pole will factor in the form gRi(p) gRi (p'), where
gRi(p) denotes the bound-state or resonance form
factor, the resulting once-subtracted dispersion relation
1s

Ti,.(p,p', s)
s«-i(p)a-i (P')

=&gRi(P)gRl'(P )/(s sR)+ g
s+sm

(
S—SR t (&)

X
~

—(s—sR)
S~ SR) (~- )(~-")

XZ Ti, (p, &'"; &)T'*(8"p' () (5)

The plus sign in the first term holds if s~ is chosen as a
bound-state pole, in which case the sum in the second
term is over the remaining bound-state poles. The minus
sign in the first term is appropriate if sg is chosen as a
resonance pole. The sign difference between the bound-

where the subtraction has been made at s=s, on the
physical sheet of the complex-energy Riemann surface.
We have used the fact that the residue of the mth
bound-state pole can be factored as a i(p)a i (p'),
where the bound-state form factor satisfies a i(p)
= —(s +p')ip i(p) and |P i(p) is the l component of
the bound-state wave function in momentum space.

If we make the subtraction at s,=o, we find

T«(P P" s)
sr a„i(p)a p(p') —s

=T«(PP';0)+Z
s+s~ s~

t (()—s d( P T„(PF» P)
$($—s) ~-'

XT; *(e»p'8. (3)

With the forms we are considering for p($), the off-shell
unitarity relation (1) tells us that the subtraction con-
stant in Eq. (3) is real provided the half-off-shell ampli-
tude Tii. (p,k; s)= Tip(p, s'~s; s) is finite for all p when
s= 0.

If, ho~ever, we assume that ImTii (p,p'; s) ~ 0 as
s ~~ along the real axis, we can make the subtraction
in Eq. (2) ats, = ~ and obtain

Tll'(ppp j s)

state and resonance cases arises because the bound-
state and resonance poles are, respectively, inside and
outside the large circular contour (indented to exclude
the right-hand unitarity cut) on the physical sheet of
the complex-energy Riemann surface which was used
to derive the dispersion relations (2) and (5). This is
because the resonance poles lie on the second sheet of
the complex-energy Riemann surface, just below the
physical region which is reached by approaching the
real s axis from above in the first, or physical, sheet.

We wish to stress that these dispersion relations
provide a representation of Tii (p, p'; s) that is exact for
a/l values of the energy s on the physical sheet, includ-
ing the bound-state region (s real and negative) and
the physical scattering region (s=k'+ie, where ks and e

are real and positive). Thus, if these representations are
used in three-body scattering calculations, the fact that
values of the parametric energy s from some real,
positive value to —~ are required will cause no
difhculty. '

Furthermore, these dispersion representations show
that the full oG-energy-shell two-body elastic T-matrix
element Tii (p,p; s) is determined, to within a sub-
traction constant, at all energies by the half-o6-shell
T-matrix elements in the scattering region (s real and
positive) and the bound-state form factors. This con-
clusion is based only on the assumptions we made about
unitarity, analyticity, time reversal, and asymptotic
behavior, and is independent of any specific dynamical
assumptions.

If we assume that we are operating within the
dynamical framework of the LS or BS equations, we
see that

T«(p,p'; )- I «(P,p'),

which is constant as a function of s, when s —+~. In
other words, the Born approximation becomes exact as
we go to very high energies. Furthermore, when we deal
with a real potential, we have ImTii (p,p'; s) -+ 0 as
s ~~, T«(p, p'; ~)= V«(p, p'), and we may use Eq.
(4). We have therefore recovered the result that Noyes'
derived from the Low equation, which may be written
symbolically in the form T= V+ VGV.

Finally, we believe it is possible to obtain similar
dispersion relations for inelastic T-matrix elements,
using inelastic unitarity extended o6 the energy shell.

III. HALF-OFF-SHELL AMPLITUDES

Since we have shown that the full-oG-shell T-matrix
elements are largely determined by the half-o8-shell
T-matrix elements in the scattering region, we shall
digress to discuss the half-o6-shell amplitudes.

We begin with the uncoupled wave case ()V= 1) and
reproduce a well-known result. We assume that the

' H. P. Noyes, paper presented at the International Colloquium
on Polarized Targets and Beams, C.E.N. Saclay, France, Decem-
ber, 1N6 (unpublished).
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ol
Hi(p, s) —=Ti(p,k; s)/Ti(s), (6)

Ti(P,k; s)=H, (P—,s)T, (s). (&)

Now, the off-shell unitarity relation (1) for the half-
olf-shell amplitude Ti(p, k; s) reads

mT&(p~k~ s) +p(s)T&(p&ki s)Tl (s) ~

or, using relation (7),

ImH&(ps)Ti(s)= &p(s)Hi(ps)I Ti(s)I' (g)

The on-shell unitarity relation satisfied by the on-shell
amplitude is a special case of relation (1) and can be
written

(9)ImTi(s) = —s p(s) I Ti(s) I
'.

If we insert Eq. (9) into Kq. (8), we fin

ImHi(p, s)Ti(s) =Hi(p, s) ImTi(s),

and this relation can only be satisfied if Hi(p, s) is a
rea/ function. We have thus reproduced the familiar
result, attributed to Sobel, 4 that, based on time-reversal
invariance and unitarity alone, the half-off-shell transi-
tion amplitude can be written as a real function times
the on-shell amplitude. That is,

Ti(p,k; s) = —Hi(p, s)(2/~s'~ )e*o'i'i sinai(s),

and T&(p,k; s) is completely determined by the real
function Hi(p, s) and the experimentally measurable
scattering phase shifts bi(s).

We now consider the uncoupled-wave case where the
phase shift 8i(s), and thus the transition amplitude
Ti(s), has a zero at s= so. Then, for s =so, T~(s) is given
by

T (s) =T '(so) (s so) = ( 2or/so'")—&i'(—so) (s so), (—10)

where Ti'(s )isothe first derivative of the transition
amplitude and bi'(so) is the first derivative of the phase
shift at s=so. If we now insert Kq. (10) into Eq. (6),
we see that the half-olf-shell functoin Hi(p, s) has poles
at the values of s corresponding to the zeros of bi(s).
To handle this conveniently in a case where we have E,
zeros of the phase shift bi(s) Land therefore in the transi-
tion amplitude Ti(s)] at the energies s;, we simply write

Ãg po
H, (p, )=k (p, ) ri

on-shell transition amplitude

Ti(k,k; s) =Ti(s'" s'I' s)—= Ti(s)
= (—2/ns'")e'"" sinai(s),

has no zeros for s real and positive. That is, we assume
that the phase shift 8i(s) does not equal nor for s real
and positive. Then we de6ne the half-o6-shell function
Hi(P s) by We see that the half-ofI'-shell amplitude can again be

written as a real function times a quantity depending
only on the on-shell scattering data.

Now, consider the coupled-wave case, where E&1..
We assume that the on-shell T matrix Tip(s) has an
inverse for all values of s real and positive. This is true
unless there exist real, positive values of s such that
detTii (s) =0. For example, in the case of triplet
nucleon-nucleon scattering, if the T matrix is parame-
trized in terms of the Stapp nuclear-bar or Blatt-
Biedenharn phase parameters, the condition detTii. (s)
=0 requires all three of the phase parameters (two
phase shifts and a mixing parameter) to be zero at the
same energy. Since we regard this as an unlikely occur-
ence, we consider in this paper only the case where
T«(s) has an inverse. We define the half-off-shell
matrix Hii (p,s) by

H«(p, s) —= 2 Ti (P,k; s) T '; i (s),

where, by definition, H«(k, s) =—Hip(s''o, s) =I, where I
is the unit matrix, and we thus have

T«. (p,k; s) = p Hi, (p,s)T,i.(s).

If we write the off-shell unitarity relation (1) for the
half-off-shell T-matrix element Tji'(p, k; s), we find

N

ImT«(p, k; s) = —o.p(s) p To (p,k; s) T, i *(s),

or, using Eq. (11),
N N N

Im P Hi. (p,s)T.i (s) = —o-p(s) P P Hi. (p,s)
a 1 a=1 P=l

XT p(s)Tsi *(s). (12)

Now, the on-shell T-matrix element T~i (s) satisfies a
special case of the unitarity relation (1) which can be
written

ImTii (s}= —np(s) Q Ti, (s)T, i *(s). (13}

If we put Eq. (13) into Eq. (12), we find

Im g Hi (p,s)T i (s) = p H~ (p,s) ImT ~ (s),

must be such that hi(s'~', s) = 1. Then, the half-off-shell
amplitude can be written in the form (7), which, in
the vicinity of the mth zero of the phase shift (s=s ),
becomes

N, P2 —S-

T~(P,k; s) =k~(P, s) g I (—2s/s„' ')h, '(s„)].
s=l, sW~ S—S;

s—ss a 1 a 1

where, according to Kq. (6), the real function h&(p, s)
4 M. l. Sobel, Phys. Rev. 156, 1553 (1967).

which can only be satisfied if the H&~(p, s) are real.
This shows that Hip(p, s) is a real matrix. Thus, based
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only on the assumptions of time-reversal invariance and
oG-energy-shell unitarity, the half-oG-energy-shell T'

matrix can be written as the product of a rea/ matrix
Hiv(p, s) and the experimentally determined on-shell
T matrix. Therefore, the o6-energy-shell. behavior of
the half-o8-shell T matrix is completely contained in
the real matrix elements Hiv(p, s).

Based on the same assumptions of time-reversal in-
variance and unitarity, Sobe14 has presented a di6erent
parametrization of the half-off-shell T matrix in nucleon-
nucleon scattering. However, our approach is more
useful for our present purposes and it seems that it is
more easily extended to the case of E&2 coupled waves
than Sobel's approach.

Our relation (11) for the half-off-shell T-matrix
element Tii (p,k; s) lends itself readily to an approxi-
mation when p is not far off the energy shell (p'= k'= s).
In this case, since Hiv(k, s)=I, we m—ay write, for
P2 s

Tiv(p»; s) =Hil(p s)Tiv(s).

Kowalski' and Amadzadeh and Chung' have shown
that, by performing a Fredholm reduction on the LS
or the BSequation in uncoupled waves, the half-oG-shell
function Hi(p, s) can be obtained as the solution of the
nonsingular integral equation

where the matrix elements G;i (p,s) are real, provided
that T 'ii (s) exists. Then, time-reversal invariance
demands that

and
Tii. (k,p; s) = T,, i(p, k; s)

T«(s)=Ti i(s) ~

whence we can show that

or
Gii (p,s) =H, i(p,s)

Gii (p,s) =H', i (p,s),
where H«(p, s) is the real matrix defined by Eq. (6),
and H~ is the transpose of H. Thus we have

N
Tii"(k,P; s) = Q Ti;*(s)Hr;i (P,s) . (15)

IV. FULL-OFF-SHELL AMPLITUDES FROM
ON-SHELL DATA AND HALF-OFF-SHELL

FACTORS

By the methods of Sec. III, we can show that the
half-off-shell amplitude Tii (k,p; s) can be written in
the form

N

T«(»p; )=2 T'()G' (p, ),

~(q)
H, (p,s) = Vi(p, k)/Vi(k, k)+ dq

s —
g

Vi(p, k) Vi(k, q)
X Vi(pq) — «(q»).

Vi(k, k)

We may now insert Eqs. (11) and (15) into the dis-
persion relations (2)—(5) set forth in Sec. II. To avoid
repetition, we shall display only the result for the case

(14) of subtraction at a bound-state or resonance pole.
Beginning with Eq. (5), we find

Here, w(q) =q' if the equation is derived from the LS
equation, w(q) =q'/$(q'+1)'I'] if the equation is
derived from the BS equation, and k'=s. To derive
Eq. (14), we must assume that both Ti(s) and Vi(k, k)
are nonzero. Thus, within the dynamical framework pro-
vided by the LS equation or the BS equation, Eq. (14)
provides a means of calculating the real half-o6-shell
function Hi(p, s). If we assume the existence of Tii '(s)
awd V 'ii (k,k), we can derive the coupled-wave analog
of Eq. (14) by performing a Fredholm reduction on the
coupled-wave LS or BS equations. The result is a set
of coupled nonsingular integral equations for the matrix
elements of the real half-off-shell matrix Hii (p,s),
which can be written

Hii (P,s)= P Vi (P,k)V ' v(k, k)

x u'(q)+ Q dq pVi (p q)
j& 0 S—

g

—p p V, (p,k)V '(k, k) Vs, (k,q) jH,;—(q,s).
a=1 P=l

' K. L. Kowalski, Phys. Rev. Letters 15, 798 (1965).
6 A. Amadzadeh and U. Chung, Phys. Rev. 161, 1602 (1967).

Tlv (pqp q s)

gai(p)giii (p') .iI a„i(p)u"v(p') s-s„)+~-
ma=I s+s —s —s+)s—sg

dip($) x w—(s—sa) Z 2 Z H. (p, ~)
0 ($—s)($—sa) ~-i s-i ~=i

XT.&(~)Ta,*(&)H', (p', r), («)
where the minus sign in the first term occurs if we sub-
tract at a resonance pole. If we subtract at a bound-state
pole, the ffrst term in Eq. (16) has a plus sign and the
sum in the second term is over the remaining bound-
state poles.

We may now insert a representation of Ti(s) in
terms of real phase parameters into Eq. (16). For
example, if we are considering the coupled waves in
nucleon-nucleon scattering, where X=2, we can write
Ti(s) in terms of the Stapp nuclear-bar or the Blatt-
Biedenharn phase shifts and mixing parameters and put
the resulting expression into Eq. (16).

We have shown in Eq. (16) that, if we write a dis-
persion relation subtracted at a bound-state or reso-
nance pole, the full ofI'-energy T-matrix element for all



THOM AS R. M ONGAN

V. UNCOUPLED WAVES

We now specialize to the case E= 1, where we deal
with uncoupled waves and the relations we have
presented take on an appealing simplicity. This case
serves as an example and a "laboratory" of considerable
practical importance, because off-shell amplitudes of
the form T~(p,p'; s) are a basic ingredient in the optical
model of pion-nucleus scattering as well as being im-
portant in the three-nucleon problem.

For uncoupled waves, Eq. (16) becomes

I ~ (P P' ~) =~as~ (P)g«(p')/(~ »)—
" & ~(p)& ~(p') ~(k)+P —(s—»)— df

m=1 J+sr' —S~—Sg p

H~(p, k) sin%~($)H~(p, '()
X (17)

(5—~) ((—»)
where b~(s) is the phase shift. We see again that the
bound-state and resonance form factors and the real
function H~(p») contains all the information about the
off-energy-shell behavior of T~(p,p'; s).

At this stage, we wish to mention an approximation,
which we call the single-wave-dominance model. This
model may be useful when we can assume that a single
partial wave dominates the scattering process, for ex-
ample, in x-X scattering, where the p wave dominates
scattering. Ke know that the total elastic cross section
0@(s) is the sum of the partial cross sections o~(s),

where

os(s) =P 0)(s),
g~l

0 i(s) = (21+1)(4r/s) sin'8~(s) .
If we assume that the L wave dominates scattering,
we can make the approximation

energies can be expressed in terms of the bound-state
and resonance form factors, the experimentally meas-
ured phase parameters and the real half-off-shell factors
H«(p»). We repeat that this result is based only on
the assumptions of time-reversal invariance, unitarity,
analyticity, and asymptotic behavior (which were an-
nounced in Sec. I), and is independent of any specific
dynamical assumptions.

Furthermore, if we have a separable representation or
approximation for H«(p») of the form

H«(p») =oi(p)Pi (~),

where n~ (p) and Pr (s) are real functions, Eq. (16) shows
that we then obtain a separable representation or ap-
proximation to the full off-energy-shell T-matrix
element.

K, P2 —s;Nz
H (P, )=ri 'Z

s 1$—S;y=l

G; ljg
Q& 1+

p++w. 2p)
G .2

Qi 1+—
S~ I+1+M~ 2$

meet the above requirements and afford the additional
advantage of generating a separable off-energy-shell
transition amplitude from Eq. (17). Here, Q& is the
Legendre function of the second kind, s; is the position
of the ith real, positive zero of the transition amplitude,
and Ez is the number of cuts in the parametrization
form.

Separable potentials' provide another means of ob-
taining a separable off-shell factor H~(p»). For partial
waves in which the experimental data can be adequately
represented by a single-term separable potential of the
form

If we insert this equation into Eq. (17), we have the
single-wave-dominance model of the off-energy-shell
scattering amplitude. This is more general than the
usual single-pole dominance model, wherein we assume
that a single bound-state or resonance pole in a single
partial wave dominates the scattering process. The
single-wave-dominance model has two other attractive
features. First, it may be used for processes for which
the experimental situation is insufficiently advanced to
permit a phase-shift analysis. Second, it overestimates
the contribution of the dominant partial wave in such
a way as to approximate the contributions of the other
partial waves to the reaction.

In an earlier paper, ' we denoted the half-off-shell
function H&(p») by f&(p,k), and compared the half-oB-
shell functions resulting from several potential models
of the nucleon-nucleon interaction. In particular, we
compared the half-off-shell functions resulting from
some separable-potential models of the nucleon-ncuelon
interaction with the half-off-shell functions generated
by local potential models. In the remainder of this sec-
tion, we shall discuss the half-o6'-shell functions H~(p»).
We pay particular attention to a separable representa-
tion or approximations for the half-off-shell functions,
because Eq. (17) shows that a separable representation
for H&(p») of the form H&(p»)=a&(p)p&(s) yields a
separable representation of the full-off-energy-shell
amplitude zvhich is valid aI, all energies.

It is clear from the definition of H~(p») that
Hg(k»)=1, where k=s'~2. Furthermore, itis well known
that H~(p») behaves as p' as p ~ 0 and as k ' as k ~ 0,
and that Hg(p») has cuts for p'(0. Also, H~(p, s) has
poles at values of s where the transition amplitude is
zero, i.e., where the phase shift b~(s) = &«s

If there are E,zeros of the transition amplitude in the
partial wave /, parametrizations of the form

or
Os(s) =~r, (s)

sin'Bz(s) = Ls/4s (2K+1)jo.s(s) .
I'~(p P') = lbgi(p)C(p'),

7 T. R. Mongan, Phys. Rev. 180, 1514 (1969).
8 T. R. Mongan, Phys. Rev. 175, 1260 (1968);178, 1597 (1969).
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the off-shell factor H~(p, s) takes the form

H~(pp) =gi(p)/gi("")
In the case where a two-term separable potential is
needed to represent the experimental situation in a
given partial wave, the half-off-shell transition ampli-
tude has the form

Ti(p, k; s) =N((p, k; s)/Dg(s) .

Then, the half-oK-shell factor H~(p, s) has the form

H((p, s) =Ni(p, k; s)/Ni(k, k; s),

which can be written

H~(p, s) =a&(p)P&(s) —a2(p)p2(s).

A separable form for H~(p, s) of this type leads to a
separable representation for T&(p,p'; s) from Eq. (17),
but the number of separable terms increases over the
number of terms produced by a representation of the
form (18).

If we assume that the off-shell behavior of a given
transition amplitude is identical to the off-shell be-
havior arising from scattering mediated by a hard-core
potential with core radius a,' the off-shell factor will
take the form

H~(p, ~) =i ~(po)/i ~(""o)

where jg is the spherical Bessel function, This repre-
sentation of H&(p, s) is separable in p and s and may
serve as a useful starting point for approximations to the
off-shell amplitudes based on Eq. (17).

If we deal with amplitudes arising from a Vukawa
potential, the method of Choudhury' allows us to make
a separable approximation to the Yukawa potential
which results in a separable approximation to the off-
shell factor of the form (18).

Finally, in the 'So partial wave of nucleon-nucleon
scattering, Tabakin" has presented a single-term

' O. Brander, Arkiv I ysik 24, 439 (1963)."M. H. Choudhury, Nuovo Cimento 57, 601 (1968)."F.Tabakin, Phys. Rev. 164, 1208 (1968).

separable potential which 6ts the 'So phase-shift data.
As we have pointed out in an earlier paper, 7 the value
of using this potential to generate transition ampli-
tudes for scattering calculations is uncertain. However,
in the same paper, we point out that Tabakin's poten-
tial leads to the following representation for the half-
off-shell factor:

where k,=1.7 F ' a=4.05 F ' b=1.08548 F ' and
d=1.683 F '. Then, by comparing with the half-off-
shell factors generated by other potentials 6tted to the
'So partial wave, we have shown that Tabakin's form
provides a separable representation of the half-off-shell
factor which is in qualitative agreement with the
half-off-shell factors produced by other potential
models. This indicates that Tabakin's work does at
least provide a parametrization of the 'So half-off-shell
factor which is well suited for insertion into the dis-
persion relation (17).

Again, the advantage of a separable representation
of the half-oif-shell factor H~(p, s) is that it provides a
separable representation of T&(p,p'; s), by way of
Eq. (17), that is equally valid for all values of the
parametric energy s. This is especially important for
three-body scattering calculations, where one must
integrate over values of the two-body parametric
energy s extending down to —~.

VI. CONCLUSION

In this paper, we have not provided a theory which
enables us to calculate off-energy-shell transition-
matrix elements. We have simply set forth a representa-
tion which allows the maximum incorporation of ex-
perimental two-body scattering data into calculations
of multiparticle processes. Because we have not based
our development on dynamical equations, our results
are valid independent of any particular dynamical
assumptions.


