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Mandelstam's NE bootstrap of the p, AI, and x trajectories, employing finite-energy sum rules, is gen-
«alized to unequal-mass kinematics. Various problems associated with the unequal-mass kinematics are
discussed: the explicit form of the crossing matrix, the unequal-mass invariant amplitudes, the mass de-
pendence of the Regge residues, and the kinematic constraints. A bootstrap is described for slightly unequal
masses to obtain the stability of the bootstrap against broken-mass asymmetry. It is found to be com-
paratively stable against mass splittings.

I. INTRODUCTION

HERE have been a number of bootstrap models
introduced in elementary-particle physics which

have predicted the masses and coupling constants of
sets of particles. In general, these were reasonably suc-
cessful in their mass predictions in single-channel cal-
culations or for small groups of particles. Except for the
technique of considering large numbers of particles as
small numbers of multiplets of degenerate-mass par-
ticles with their coupling constants given group-theo-
retically, the application of these bootstraps to large
sets of particles has not been too successful.

Following the work of de Alfaro et al. ' on supercon-
vergence relations, several people ~~ derived the finite-
energy sum rules (FESR) for scattering amplitudes.
Mandelstam, Gross, 6 Freund, v Schmid, Igi,9 and Desai
et al."have used the FKSR's as a method for obtaining
bootstrap equations for Regge parameters in various
reactions. All of these models have considered a few
particles or a few degenerate multiplets of particles and
have reasonable results (note, however, some of the
considerations of Desai et al.). Since the method is
easily generalized, in principle, to the bootstrap of many
independent particles, it is interesting to consider
whether in this case its predictions are still reasonable.
We have chosen to generalize Mandelstam's bootstrap.
He considered the "elastic" scattering of degenerate
nucleon-antinucleon octets via three degenerate meson
nonets (p, A&, and ~). We have generalized this to
unequal-mass nucleon and meson multiplets (although
we require the coupling constants to retain their de-
generate values) as a test of the further applicability of
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the FESR bootstraps and because some of the details
of this implementation are particularly interesting. One
of these is the dose relationship among the equal-mass
and unequal-mass constraints and conspiracies and has
been treated elsewhere by Stack" and by us.~

First we present, in Sec. II, a review of Mandelstam's
method of applying the FESR's to obtain the equal-
mass EK bootstrap. In Sec. III, we Gnd the explicit
form of the unequal-mass EN-+EN crossing matrix
between regularized helicity amplitudes. %e use as a
starting point the general prescriptions of many
authors"' for the helicity crossing matrix. Section IV
contains a discussion of the contributions in the f chan-
nel to the FESR's; in the small-t region, over which the
integral of the FESR's is evaluated, the contributions
are taken to be resonances (or bound states). The eval-
uation of these contributions is facilitated by the intro-
duction of the unequal-mass invariant amplitudes. "
s-channel Regge contributions are discussed in Sec. V.
Kinematic constraints must be imposed on the s-chan-
nel amplitudes because the FESR's are evaluated at
s= 0. It is not necessary to impose the constraints on the
t-channel amplitudes, because the constraints are auto-
matically satisfied when t-channel amplitudes are
crossed into the s-channel by the crossing matrix. Sec-
tion VI contains the group theory used. The results of
the unequal-mass bootstrap are presented in Sec. VII.

II. EQUAL-MASS FESR BOOTSTRAP

Superconvergence relations' for amplitudes with
Regge asymptotic contributions subtracted have been
used by various authors'~ to derive FESR's:

1 w ~ (g)+ar(e) xm-
dh ~" Im f,„(s,t) =P (2.1)E"+' ' n, (s) —)„+m+1

"J.D. Stack Phys. Rev. 173, 1644 (1968).~ M. A. Jacobs and M. H. Vaughn, University of California at
San Diego Report No. UCSD-10P10-51 (unpublished}."T.L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964); I. J. Muzinich, J. Math. Phys. 5, 1486 (1964).

'4 G. Cohen-Tannoudji, A. Morel, and H. Wavelet, Ann. Phys.(¹Y.) 46, 239 (1968).
"The invariant amplitudes for unequal-mass N177 scattering

have been considered recently by 3. H. Kellett I Nuovo Cimento
56A, 1003 (1968)j, whose results agree with ours.
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where f~„is the reduced amplitude, X =max(~ l'(, (u~),
and y„(s) is related to the Regge residue.

Equation (2.1) is strictly true only if the sun& on the
right-hand side is interpreted as a generalized sum over
the background integral and all cuts and poles to the
right of the background contour. If only the highest
Regge poles are kept in the sum, Eq. (2.1) is still ap-
proximately true only for large E and only if cuts can
be neglected. It has been hypothesized by Dolen, Horn,
and Schmid " that the dominant Regge poles at high
energy represent an average of the amplitude at all
energies or, equivalently, that Eq. (2.1), with the sum
over high-lying trajectories only, is approximately true
to low values of the cutoG for a smoothed-out function
Im f~„. Since any smoothing out will affect the higher
t-moments more, it is expected that the lower-moment
equations will retain this approximate validity to
smaller E.

If we assume, for low energies, that the amplitude is
given by the sum of the contributions of direct- (t-)
channel resonances and that the resonances lie on
Regge trajectories, and if we choose a reaction for
which the trajectories summed over in Eq. (2.1) (s and
u channels) are the same as the resonance trajectories,
then Eq. (2.1) can be used to obtain consistency condi-
tions on the Regge parameters. Mandelstams has used
the FKSR's at s=O with low cuto6 in an equal-mass
EX~EN bootstrap calculation. The EX—+ EX re-
action is not strictly crossing-identical, since the I
channel (IVY ~ PE) is not the same as the s and
I, channels. However, since there is no strong binding
in the I channel, its contributions to the FKSR's may
be ignored.

There are five independent amplitudes for the equal-
mass EX scattering process. At s=O and for equal
masses, the half-angle factors reduce the high-t be-
havior; hence high spin-Rip amplitudes will more readily
satisfy superconvergence relations and we might expect
the FKSR's derived from them to retain their validity
to lower cutofts. Since the lower-moment sum rules are
expected to be better approximations, Mandelstam uses
the zeroth moment of the higher spin-Qip amplitudes
to obtain his bootstrap. For unequal-mass EN scatter-
ing (where there are eight independent amplitudes), the
cosine of the scattering angle remains 6nite as t~~
(s,=1). Nevertheless, it has been shown by Jacobs
and Vaughn'~ that the eGect of daughter and conspirator
trajectories is to restore the expected t dependence at
high t. Since the FKSR's are to be evaluated at s=O,
s-channel conspiracies are important. There is an equal-
mass conspiracy, which Mandelstam uses, in which the
pion is usually assumed to be involved. It has been
shown by Stack" and by Jacobs and Vaughn" that the
equal-mass limit of unequal-mass conspiracies and
kinematic constraints exists and is smooth, and that

"R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968)."M. A. Jacobs and M. H. Vaughn, Phys. Rev. 172) 1677 (1968}.

the regularized helicity amplitudes are smooth func-
tions of the mass differences. We expect, therefore, that
the unequal-mass bootstrap should provide correlations
between the meson and baryon mass asymmetries.

In Mandelstam's bootstrap, one trajectory is in-
cluded for each type of intermediate particle (p, Az, and
~). The scale of energy is taken to correspond to 3Ehgpypn

=1, and the slopes of all trajectories are taken phe-
nomenologically to be 1/M'. Since there are only three
equal-mass equations, he chose a single mass parameter
m =m =my —0.5M (compared with m~2 —m
~0.38M2 and m~ —m, ' 0.58M' and two coupling-
constant ratios. The equality of the p, ~ multiplet
masses is suggested by certain SU(6)zz bootstrap
schemes. With these three trajectories included in the
model, the hrst omitted trajectory is the p daughter, so
that the resonance contributions to Imf~„are known
up to ~ m '+1.0M' A convenient place for the cutoff
E is at the mass of the A~. Consistent with the smooth-
ing requirement, only one-half the contribution to
Im f~„ from the A~ is included.

One uses the kinematic and group-theoretic crossing
matrices to relate the s-channel Regge contributions to
the t-channel resonance contributions. The kinematic
crossing matrix for the equal-mass case has been given
explicitly by Goldberger, Grisaru, MacDowell, and
Wong" (GGMW) and, ™plicitly,for general masses by
various other people. " '4 The SU(3) crossing matrix for
{8)8{8)- {8)8{8)has been given by DeSwart. "An
interesting aspect of the group crossing matrix is that
it has an eigenvector with eigenvalue +1which involves
only octets and singlets of intermediate (meson) states.
Although this eigenvector does not satisfy factorization
(it should for any single Regge-trajectory contribution),
nevertheless the advantage of considering only nonet
mesons warrants its use.

Mandelstam solved the resulting equations and ob-
tained reasonable values for m ', g '/gv~', and g"'/gv~'.
We present in the following sections a generalization of
this model in which FKSR's are used to obtain condi-
tions on the SU(3) mass breaking of the meson multi-
plets as a function of small baryon splittings.

IIL UNEQUAL-MASS NN &NN-
CROSSING MATRIX

In the unequal EX—+ EN reaction, "there are eight
linearly independent amplitudes (assuming parity). We
use the Jacob-Wick" phase conventions for the helicity
amplitudes f~.~~, ~,~, for the reaction a+b —+ c+d The.

"M. L. Goldberger, M. T. Grisaru, S. K. MacDowell, and D.
Y. Kong, Phys. Rev. 120, 2250 (1960}."J.J. DeSwart, Nuovo Cimento 31, 420 (1964}.~ The authors would like to express their appreciation to Dr. M.
Levine for the use of his symbol manipulation program AsHMEDAI,
which was used in the preliminary algebraic analyses of this
section.

"M. Jacob and G. C. Kick, Ann. Phys. (N. Y.}7, 404 (1959}.
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crossing matrix for helicity amplitudes" "is

fb.)„,b.b, (s,t) = —(—1)" "
X Q (—1)" ' "'db. 'b."'(X.)dbb'b, '/P(xb)

)e' )Ib', )tc' ) d'

Sdb, 'b„""(X.)d)„'),.'"(Xs)fb. 'b. ', b„'bb'(s, t),

where

(3.1)

where
g —(t ~ 2)1/2(t ~ 2)1/2

p —(t ~ 2))/2(t ~ p)l/2

Using parity, fb, b„,b.bb=( —1)" &f b, b„,b. b„and
the definitions of f, it is easy to obtain the regularized
helicity crossing matrix in terms of the quantities V"&,

6'f, V„(P„z„zt,and

cos+, =—(s+a' —b') (t+a' —c')+2a'~

S„bT„
CS,= cos-', (X,+PXb+yx, +Pyxd),

Sp, ——sin ,'(x,-+Pxb+yx, +Pyxd), P y=~1.

COS+b =
(s+b' a')(-t—+b' d') ——2b'6

)

SabTbd

We shall obtain explicit forms for the eight quantities
Cp~, Sp~. Consider, for example, the crossing matrix
element

(s+c' —d') (t+c' —a') —2c"-~
cosXc

S,d T„ Xg,6=
gp(] sp)1/2

sin-,'(X,+X,+X,+Xd)
2tl/2

COSXd =—(s+d2 a2)(t+d2 b2)+2dp~ (P,= (QC)—sinp (X,+Xb+X,+Xq).
~t

Sill+~ =
SabTac

SlIlX, b =
Sab~bd

sinX. =— S10Xd=—

a'+b'+v'—

(s ~, p))/p(s ~ p))/2

(t ~,2)1/P(t &, .2))/2

1 (1+co X)'i' —(1—cocc)oc)
d'/'(x) =-

92 (1—cosx)'" (1+cosx)'/'

~ I'. Kibble, Phys. Rev. 117, 1159 (1959).

C(s, t) is the Kibble function, ~ and the cut in QC is
taken along the positive C axis. The cuts in S,b, etc. , are
taken from the pseudothresholds to the thresholds, with
s evaluated at s+i) p ~, t at t i

~
p~, and I—real.

The eight regularized helicity amplitudes (all kine-
matic poles, zeros, and branch cuts removed) for the EE
reaction may be defined as

fl (f++++ f++——)
f~'= (f++++'+f++ ')«——

f Lb(1+«) 'f+ + ' (1 «) 'f+--+'—5t« —', --
f '=L(1+ ) 'f+ + '+(1— ) 'f+-—-'5t~ ',
f =(f++~ 'y f++ +')(1 «') '/t)/'r ' (3.2)—
fp'= (f+++ ' f++ +')(1 s1') -"p—t"+1 -', —
f' '= (f. -' f. ')(1 -') -"t'"—«---
f'p'= (f~ ++'+f~ ') (1 z') '/Pt"'+, —-

The following properties of S++ may be obtained from
Eqs. (3.1) and (3.2): (1) S++ contains a factor QC,
since each sinX, b .. .s contains QC, and (2) its de-
nominator is 5',6'&V, 7f. Combining these, we have that
X~,p is proportional to 4/E)P(PP', . Because of the an-
alyticity of X&,6, the proportionality must be a poly-
nomial in s, t, a, b, c, and d multiplied by V,(P,. lt is a
polynomial of dimension (mass)+' and can be written
pba+ppb+pbc+p4d. It is easy to obtain the ratios
Pj.P2.'P3'. P4 by considering the terms of highest power
in s and t in sin(x, +Xb+X,+Xq)~(a b+c d)— —
L
—(s+t)/st5"'. The factor a b+c d—cannot —occur

in C++, since it would imply a proportionality between
QC and (P.E/ (for a b+c d—=0) in—S++, which does
not occur. Therefore, the polynomial in X~,6 is g++')
(a—b+c—d). In an analogous fashion, we obtain

sin-', (X,+Pxb+yX, +PyX„)

=vs."(a Pb+vc Pvd—)(V'~)/—

t s (a pb)'5—'"ps—(c pd)'5—'"—
~Lt —( +vc)'5'"Et —(b+vd)'5"", (3.3)

where the dimensionless constants gp~&'& will be de-
termined later. cos-', (X,+Xb+X.+Xq) must be of the
form 1V/(Pc«, where 1V is a polynomial of dimension
(mass)b in order not to violate Eq. (3.3) and the kine-
matic structure of the crossing matrix element X~,2= —C++(P,/2«. The most general polynomial of that
degree is hpL(s+sp)(t tp)+rp5, where h p, sp, tp, r p are
polynomials in a, b, c, and d of degree 0, 2, 2, and 4,
respectively. ho= &1 because

lim C++ =ho, lim S++——0.
g=g~cc g=g-+aa

We can find sp, t p and by considering the limits (t —+",
s=const) and (s~~, t=const), respectively, for S++
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and L+4., and obtain so= (a b—) (c d—) and to= (a+c) where

(b+d) A.bit of elementary algebra then yields ro= 2soto

+ (a'—b' —c'+d') (ad b—c) Th. e corresponding formulas
for the other cosines are

h =(),)&,)&s)&o},

cos2 (Xo+PX2+AX4+P7Xs)

(s+Vso) (t pto)—+W'ro
{c)

Ls —(a—Pb)')'"Es —(c—Pd)'7"

g (3.4)
Et-(a+vc)')"'Et-(b+~d)')"'

0 gr')

—0' 0)
(tl/2 ~ )I/O (tl/2 g )I/2

~tl/4 (tl/2+a )I/2 (tl/2+g )I/2

where

o= ( -Pb)( -Pd),
to= (a+pc) (b+yd),
ro 2soto+ (a'——b' c—'+d—') (ad bc), —
(c)—~f

(tl/2 a )I/2(tl/2 g )I/2&

~tl/4 (tl/2+a )I/2 (tl/2+ g )I/2

(tl/2+~ )I/2 (tl/2 g )I/2

S)(„= Rx),„
~2ti/4 2)) (tl/2 a )I/2(tl/2+P )I/2

The product gp~{'&gp " can be determined from
sin(X~+pXo+&X.+p&Xs) by comparing the highest
powers of s and t, and is —1. gp~{' can then be de-
termined within the phase conventions for crossing-
matrix angles of Cohen-Tannoudji et al.14 (Secs. Il 8
and IV). Evaluating X; in the limit s = t 4~, we obtain
)/e2"=Py. The SX unequal-mass crossing matrix is
given explicitly in Table I.

IY. RESONANCE CONTRIBUTIONS

The contributions to the resonance side of the FESR's
are from the lowest multiplet on the p, A ~, and x tra-
jectories. As the simplest approximation, we assume
that the invariant amplitudes, which contain the dy-
namics, are constants. The mass dependence of the p,
A ~, and 7r contributions is then given by the matrix ele-
ments of the operators (between initial and final states)
associated with the invariant amplitudes.

For equal-mass scattering, GGMK" and others have
shown that the five invariant amplitudes can be taken
to be 5, I', V, A, and T'. For the unequal-mass case, we
consider the following eight amplitudes (t channel)":

{t1/2+a )I/2 (tl/2 g )I/2

~Kg p~tl/4 2)(d(tl/2 ~o )I/2(tl/2+g )I/2

Oz~x 2~~%, 1

g e—Ij2iHgtrtI

The s direction has been taken in the direction of the
three-momentum of particle d, and the scattering has
occurred in the xs plane. Kith the convention XqtXq ——1,
the wave functions are normalized to &(22/2;)I/2. The
contributions to the eight regularized amplitudes are
given in Table II. For arbitrary mass assignments, it is
possible to show that the contributions of I{'& ~ ~ 1{8~
are linearly independent. The contributions also display
the proper t-kinematic structure and satisfy all con-
straints and conspiracies, They cannot be multiplied by
any function with t-singularities without violating these
conditions.

The I{4& amplitude is a sum of contributions from
two charge-conjugation quanrum numbers. Ke may
take A p,', A~', and that portion of Aq' with the proper
charge-conjugation quantum number to be unequal-

Tmzz II. Contributions of invariant amplitudes
to the regularized helicity amplitudes.

~a'= 2

~a'=-'

A y,
'=-'

A p,
4=-'

~a —8

~a'=-'
~a'=-'
222=22 (ug,

1 vI, H),4 1 u&„ I&"(s t),

v&, v))b 'Yo u), I (s,t)

vX)) v))&) 'yg) uX4 I ($)t))

roy v)))) v)4 yoygg F4 I (s)t))

Ey",y") VI.Vlo 5'.,y 7 u&4 I&'& (S,t),
'y" v)&~ vko (Pb„Pg))g)u14 I (s,t), —

(P „P.,) v),.v2, y" —
u&4 I&'&(s,t),

VS%" v1, 44 Vo(Po„Pa„)u) 4

u2,yo(Po„P,gv)—„v)„goy&u)„}—I&'& (s,t),

g)g= —(PgoIO&yt 1((P)2/ ~4—gg)~gt))44(P))I'42))I(4)+(Pg)I')2)I&4)

+I {++&—&—d') j~jLPPO~+{Pt&tst(& —~ ~)ps{ ~

fag = v')2I "&+2 1(1'g'a,ga44 —(pgt)2)g)ogg)44)I&4) —&pgp gz)I&'&

+~ 'P&P~ec~bdma++«Pc~ac(& —md) ji'"
+& P'6 ~ac~bd&ac++C &Pt4LE (~ &ac )jr

j' g — /I(4)gag, t&o I(4)—
egg tI(g& ~,~4I&4)

$4)=6 I ) a44I&4& —(t 6,)I(s)2—
Jog = o„I&4&+g)44I &'& (/ —no.')I&'&-
A'= —a44I"'+a I"'+(t—)244')I"
J'4'= ~4I"' ~M"'+ (4 m)I'"4—
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mass generalizations of the contributions of the 7r, p,
and .4~ when their trajectories pa, ss through a=O, 1,
and 1, respectively. Explicitly, in the narrow-resonance
approximation, the contributions to Imf' are obtained
from Table II by evaluation at s=O with the substitu-
tion of —-', (g, '/4ir) 7r5(t —m „,') for I -'" The.

(g, 2/4ir are constants which will be determined in
the bootstrap. We retain the distinction between the
electric and magnetic couplings of the vector meson by
using gva2, gra,~2, and gvsr2 in the amplitudes f~',
f6.//, and f4, which contain the electric-electric, electric-
magnetic, and magnetic-magnetic vertices, respectively.

V. REGGE GONTRIBUTIONS

The Regge contribution of a single (t-channel) tra-
jectory to an amplitude f/, '(s, t) is

E(s) defined by

4P. P. (')—""X X s L s
P/, '(s) =—

e I'(~(s)+2)

The factor (4p /, p.a) ""reproduces the correct thresh-
old behavior. 1/I'(n+~~) ensures that zeros of P/, will
occur at the negative half-odd-integers. (1/e) ""has
been included to ensure that P(s) is not exponential in s.
K(a) is the required sense-nonsense factor and is de-
termined by the dynamics. X(s) is the usual kinematic
factor of Wang, and other authors. "The function E(s)
is an entire function. It is also known that P/, '(s) is
factorizable. The choice of three-particle vertices
y;, "'", given below, reproduces the above analytic
structure for P/, '(s):

= (X,+P,„)s'"EEi,/, (s)a~(s)+E2 „(s)% ']

where P/, (t) is the residue of the pole in J at n(t) of the
partial-wave amplitude. In the narrow-resonance ap-
proximation, in which e/(t) has an imaginary part only
at a resonance, the usual partial-wave expansion can be
converted to the following expression for Imf/, ' ..

lmf/, '(s, t) =P (2J+1)m.h(J —n(t))t4(t)/I/, ,„(z,).

Since we have evaluated the contribution of the reso-
nances to the amplitudes, we can now relate P/, (t
=m, ') to the coupling constants and obtain

gx
2

P W(p 2) — =(p 2 g 2)i/2(~ 2 g 2)1/'i

16m.

El'(a. (s)+$)]' '

aA (s)

y;,,' = (/;+a, )E;,'(s)
(se) i/2

(~~+1)"'
X +(/, —X,)E;,"(s)

'p' El'( (s)+ )]'"
a I (8)—1 @) . . ~ I/2

X—
2(se)"-

(5.2)
El'( .(s)+l)]"'

~r p(~)

y;,,'=
J
X;+X,

) E;,' E(s)
(se) 1/2

(n +1)'"
X + i

A; —X, i L;,' "(s)
4'* El'(o. (s)+2)]'"

gZI
t3+ + '(/ ~') =-—

, -(/ ~' —~..')'"(/ ~-' —~od')"-",
24m

g pf/rI

/3+ .+ '(/, ') = — -(/i-, ' ~-')"-"( ,' tits/a')", (5—.1)
24~

2

P++,+ '(/, ') = (/ ~'— ~ ')"—(/' ~o')"'

gpZM
2

p p( 2) ( 2 g 2)1/2(~ 2 g 2)1/2

Since the trajectories in the s channel are the same as
those in the t channel, these may also be interpreted as
the residues for the s-channel trajectories, with the ap-
propriate renaming of the particles (a ~ /t).

It is known that the analytic structure of P/,
' is com-

plicated. It is more convenient to consider the function

( ) + . . ~ lj2

x
(se)"-' El'(o. (s)+l)]'"

~ Y. Hara, Phys. Rev. 136, BS07 (1964); L. L. C. Wang, ibid.
142, 1187 (1966); see also Ref. 14.~ W. R. Frazer, H. M. Lipinski, and D. R. Snider, Phys. Rev.
174, 1932 (1968).

~~ J. S. Ball, W. R. Frazer, and M. Jacob, Phys, Rev. Letters
20, 518 (1968}.

where 4';„= (s—D, s)'" 4,= (s 0')'/' —an. d the E;,'s
are entire functions. Ke have allowed two types of ver-
tices for the pion, representing 3f=1 and 3f=0 cou-
plings, respectively, as suggested by the model of Frazer,
I-ipinski, and Snider" which involves the crossing of an
3I=O and 35=i trajectory between s=0 and p '.
Phenomenologically, Ball, Frazer, and Jacob" have
shown that the cViV vertex is proportional to 1—X(s—p )/p 2, with a value of 0.4 for X obtained from photo-
production. The choice of y;,, in (5.2) will reproduce
this dependence of the pion's residue where X is given in
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terms of the E's by
~a.'; +R.'i

Ea; (1—5;s/ai. ')

j=4

j=6

(vector contribution):

0;
(vector contribution);

o,~e 4E ' »'
—

a (g„mf'). a .. . (5.3b)
8I'(2 —p, ') e

j=8 (vector contribution);

o.ae /4N~'
ASM eb,ca, ~

SI'(2—aaa') a, e

It is not consistent to neglect other contributions to
the amplitude j=4.At s=0 and equal masses, there is a
well-known conspiracy'a'a involving pi*, pa*, and j4'.
For the pion to be involved in this conspiracy (3E= 1) it
must contribute to I&~&. We can obtain the highest-t
behavior of its contribution to I&'& by comparing the
predictions if Eq. (5.2) and Table II at the pseudo-
thresholds:

2I(&):jV~ b P~'
er(a. (s)+4) e

We can then obtain the contribution of the pion con-
spirator to J'NImga'(O, t)dt;

j=4 (pion conspirator):

o,ao,a(1—X,a)(1—X,a) 4X
a(g-'). a," (5 3c)

4I'(1 —aa.') e

Equations (5.3) contain the highest t dependence of the
contributions to the amplitudes which we use in the
FESR's for j=3, 4, 6, 8.

VI. GROUP THEORY

As a first approximation, we take all of the E's of (5.2)
to be constants in s. The dependence of these constants
on the masses can be obtained from Eqs. (5.1), (5.2),
and P "(s)=pa. aa

.(s)pa, aa
".(s).

At s=0, we obtain for J N Imi (O,f)dt:

j=3 (the axial-vector contribution):

4E ' 1"~'

a(gaia). a." (5.3a)
SI'(2 —p&') e

where d b' are the Clebsch-Gordan coefFicients of
(8},(8}a~ {8); symmetric under a~b; f, a' are
antisymmetric under a~b; and C, b are Clebsch-
Gordan coeKcients of {8)o8(8}a—+ (1).The sum over
i is over the meson octet states. We do not allow an
admixture of the other eigenvectors of the crossing
matrix in either the equal- or unequal-mass problems in
order to retain the nonet assignments of the mesons
(the only other eigenvector involving only 8's and 1's
has —1 eigenvalue and so does not give a positive-
definite contribution) and to keep the calculation as
simple as possible. We assume that the mass operator is
diagonal in the usual SU(3) I, I., and I' labels and do
not consider y-co mixing.

The kinematic dependences of the contributions of
degenerate-mass mesons to equal-mass scattering are, of
course, equal and the group-theoretic crossing can be
accomplished separately from the kinematic crossing
(the eigenvalue is +1, so T,a, ga Taa, -)—. We param-
etrize the mass splitting in the baryon octet as a,y times
the symmetric octet splitting plus P& times the hyper-
charge. For mesons, charge conjugation eliminates the
second type of splitting and we allow one asymmetry
parameter each: &p &p and & The group and kine-
matic crossings are not separable in the unequal-mass
case.

VII. CALCULATIONS AND RESULTS

With the above mass splittings in the baryon octet,
there are 120 kinematically distinct EX—+ EiV reac-
tions. For each of these reactions there are four ampli-
tudes which we use in the FESR's. For equal masses,
the j.20 reactions and two of the four FESR's are identi-
cal. If we follow Mandelstam, there are three param-
eters which can be used to solve the equal-mass equa-
tions: m '=m, '=ma, ' 0 53'—, .g '/graa', and ga'/
g& ~'. %'e allow for the possibility of trajectory crossing
of the pion M=O, 1 trajectories and have the additional
parameter X (although the results of the calculation
show that only the value of g '/g&sa' is significantly
affected by X) defined in Sec. V. It is also possible to
take m, ' and m~I' to be independent parameters, as well
as gpss 'and gzz~'. Since we are concerned primarily
with the interdependences of the mass perturbations
within the model, we expect that the inclusion of these
as additional equal-mass parameters would not sig-
nificantly aGect the perturbation calculation. Following
Mandelstam, we take gi e'/ga. sa'=3/31 and gveaa'/
gi sa' ——6/31. The solution sof the three equal-mass equa-

TABLE III. Equal-mass solutions for various values of A, .
The eigenvector of the (8}8(8}~ (8)8(8) crossing

matrix which we use is

&ca,ca= 5daa'dna'+9' a'fca*+ I~ a&ca)

~'D. V. Volkov and V. M. Gribov, Zh. Kksperim. i Teor. Fiz.
44, 1068 (1963) I English transl. : Soviet Phys. —JETP 17, 720
(1963)j.

0.0
0.1
0.2
0.3
p4

~.~ (u )

0.559
0.559
0.559
0.559
0.559

g '/gvu'

0.793
P 979
1.239
1.619
2.204

gA /gVAt

0.260
0.260
0.260
0.2(!0
0.260
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TABLE Dt'. Components of the minimum-eigenvalue eigendirection, the minimum eigenvalue,
and next larger eigenvalue of various values of A, .

~/M g /gVu gA/gVu

Direction

4p CA I

Eigen-
value

¹Xt
larger
eigen-
value

0.0
0.1
0.2
0.3
0.4

0.33226
0.27587
0.22244
0.17333
0.12942

0.93722
0.95700
0.97215
0.98311
0.99073

0.10592
0.08989
0.07377
0.05872
0.04128

0.00025
—0.00038

0.00011
0.00016
0.00014

0.00165
0.00235
0.00187
0.00146
0.00183

0.00000
—0.00056
—0.00062
—0.00001
—0.00017

0.00065
0.00096
0.00009
0.00028

—0.00014

—0.00061
—0.00037
—0.00055

0.00002
0.00063

0.061 6.0
0.049 5.8
0.031 5.7
0.021 5.6
0.016 5.6

tions are given in Table III. For X=0 (pure M = 1 pion),
we obtain

otherwise it would correspond to solving all 480 equa-
tions with only eight parameters. However, if our choice
of the parameters to describe the perturbations is good,
then there may be a direction in {X)space along which
F({X))remains small, and hence along which the boot-
strap is least stable against perturbations. Within this
model it is possible to determine only the direction of
instability and not the actual magnitude of the asym-
metry along this direction or even its sign. The direc-
tion, which corresponds to the minimum-eigenvalue
eigenvector of the matrix a;;, is given in Table IV
as a function of P, along with its eigenvalue. Moving in
this direction a distance d from {X,) introduces an
average error of 80(10 '6 in each of the 480 equations.
In any other direction, the corresponding error is 10—
500 times as large. Since this eigenvector consistently
involves only the equal-mass parameters, the model is
stable against unequal-mass perturbations. That is,
within this model the nucleon octet and each of the
meson nonets are required to be degenerate in mass.

Experimentally the mass asymmetries are

m '=0.5630, g '/gvsr'=0 79, gA'/gvor'=0 26~

which compare with Mandelstam's

0.29M2, 0.21, 0.18.

We differ from Mandelstam's values because we have
included the analytic structure of the regularized heli-
city amplitudes near thresholds as well as pseudothresh-
olds. We note that the solutions of the equal-mass
problem are critically dependent upon the exact form
of the equations. Thus, inclusion of corrections to the
model due to daughter trajectories, lower-lying leading
trajectories, Regge cuts, etc., may significantly affect
the results. Presumably, also, the effects of other mern-
bers of the {56) as well as non-Fermi-Yang contribu-
tions to the meson masses are important for the same
reason. Nevertheless, since both forms for the analytic
structure of the amplitudes when used in the FESR
bootstrap give reasonable values of the equal-mass pa-
rameters, we can ask what type of mass asymmetries
are consistent within the model.

Since there are 480 equations, it is possible, in princi-
ple, to have 480 parameters which describe the mass
splittings and coupling-constant perturbations to solve
the 480 equations. As a method of solution of these
equations with fewer parameters, we consider the single
function

0 045
P

O'P 0 025
P 6&I 0 067

a~ 0.009, P~ 0.165,

measured in units in which the nucleon octet average
mass is 1.Since it is impossible to determine the "shift"
of the equal-mass parameters from their "degenerate"
values, and since, in this model, the instability unfor-
tunately lies almost wholly in the direction of the equal-
mass parameters, we cannot determine the agreement of
the model with experimental data.

The fact that the solutions to the equal-mass boot-
strap equations obtained by Mandelstam and us seem
to be reasonable may be fortuitous. One would hope that
the solution of the bootstrap would not be particularly
sensitive to the p, ~ and A~, ~ mass differences. Never-
theless, for input values of these differences taken from
experiment, we find that no solution to the equations
exists. Further evidence to the sensitivity of the results
is, of course, the previously mentioned large change in
solution for a slightly different analytic structure.

F(m, g /gv~, gA /gvM, o, op, oAg, &%~PA)
2 2/ 2 2/ 2

About the value F(opooo, go oo,gAoo, 0,0,0,0,0) =0, the func-
tion is well approximated by F({X)) = (X;—X;)
(X,—X;)a;„where {X;)are the eight arguments of the
functions, {X,) are the equal-mass solutions, and a;,
=a;; were determined by a computer. It is obvious that
this function F({X))is zero only at {X)= {X),since

120 N N

I f dt X; 'Imf Ch)
—. (7.1)'

j~l. j 3,4,6,8


