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The double spectral functions in the Mandelstam representation are approximated by a zero-width
approximation that reproduces elastic crossed-channel resonances. The partial-wave potential generated
by this double-spectral function has a right-hand cut which, for pion scattering, must correspond to in-
elastic scattering in the direct channel. The Frye-Warnock modi6cation of the ED ' method for inelasticity
can then be used. The potential is convergent enough that no cutoG is required. Self-consistency in a boot-
strap calculation is achieved by attaining proper threshold behavior rather than using the zero-width
approximation in the direct channel.

I. INTRODUCTION

HERE have been a great number of dynamical
S-matrix calculations based on the Mandelstam

representation. ' At the heart of this representation are
double integrals over "double spectral functions" that
contain all the dynamical information. Yet in their
approach, many authors forget about the double spec-
tral functions at an early stage and often forget about
the branch points which they imply for the scattering
amplitudes. There have been attempts2 to deal with
the double spectral functions by the iteration scheme
6rst suggested by Mandelstam, but this technique has
proved to be unwieldy and particularly difFicult to
apply to a bootstrap calculation.

In this paper, we deal directly with the double spec-
tral functions and choose a zero-width approximation
for them that reproduces crossed-channel resonances.
Then, by partial-wave projection of the Mandelstam
integral over the double spectral function, a generalized
partial-wave potential is generated that has a right-hand
cut due to the double spectral function. Ke then use the
well-known property that double spectral functions can
contribute to elastic scattering of pions in only one
channel. That is, if a double spectral function contrib-
utes to an elastic resonance in a crossed channel, it can
only contribute to inelastic scattering in the direct
channel. This is because of the pseudoscalar nature of
the pion and the fact that conservation of parity in
strong interactions forbids a strong three-pion vertex
which would be required for a doubly elastic process.
This means that the right-hand cut of the potential
must correspond to inelastic scattering and we can use
the Frye-Warnock' inelastic modification of the X/D
method4 ' to solve for the scattering amplitude. We note
also that it is inconsistent to do a calculation based on
the Mandelstam representation using purely elastic
unitarity. The right-hand cut of the potential defined by
the double spectral approximation corresponds to the

' S. Mandelstam, Phys. Rev. 112, 1344 (1958).'
¹ F. Bali, Phys. Rev. 150, 1358 (1966).' G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963);

see also P. W. Coulter, A. Scotti, and G. L. Shaw, ibid. 136, B1399
(1964).

4 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).' J. L. Uretsky, Phys. Rev. 123, 1459 (1961).

minimum inelasticity required for consistency within
the Mandelstam representation.

The double spectral approximation could be applied
to any scattering process involving pions (or any pseu-
doscalar particle). We outline the method for p-wave
pion-pion scattering (the p bootstrap) but only minor
changes would be required to do pion-nucleon or pion-
omega scattering.

II. DOUBLE SPECTRAL APPROXIMATION

The Mandelstam representation for the I= j pion-
pion scattering amplitude can be written'

1 "dt'A, '(t', s)
A'(s, t) =P cir'—

7r 4 t' —t

(—1)' "du'A s'(u', s))
(1)

4 u —u )
with the absorptive part A &r(t,s) given by

1 ds'pi, r(t, s') 1 du'p~ s(t,u')
A, '(t, s) =— +— (2)

S —S

and, similarly, for A „r(u,s). Here s, t, and u are the usual
Mandelstam variables with u=4 —s—t, and p&,r(t,s')
and p,„r(t,u') are double spectral functions for isospinI in the t channel. The coefficients crr' (with cn ——s)
form the pion-pion (s-t) crossing matrix. The limits of
integration in Eq. (2) are defined by the boundaries of
the double spectral functions. As it stands, Eq. (1) de-
6nes the full amplitude. If we restrict ourselves to the
elastic absorptive parts A~ '"(t',s) and A &'"(u',s) in
the crossed channel [given by integrals over p„r'" (t',s'),
etc.], then the right-hand side of Eq. (1) defines a
generalized potential since it cannot include the direct-
channel elastic unitarity cut. This cut can then by put
in by the X/D method, after partial-wave projection.
The amplitude dehned by this procedure will not include
any double spectral contributions that are inelastic in
both direct and crossed channels simultaneously. We
assume that these are negligible since they must be
quite far away from the physical region in both channels.
A large part of their eGect would be included in the sub-
1873



1874 J F RROLD F RANKLIN

traction constant required for s waves. The subtraction
does not appear for I= 1 and we have left it out of Eq.
(1). This breakup of the double spectral functions de-
fines a generalization of the strip concept although no
strip width or cutoff need be introduced. The two double
spectral functions p, '&'"(t s) and p, r&e" (s,t), in fact,
overlap but they are easily distinguishable. ~

We approximate the elastic double spectral func-
tion by

p~,
r &'~ (t,s) = sryb(t m) (—s —4m2)'& 8(s—4m2) br&, (3)

with m being the input p mass and y being related to the
input p width. This form leads to a zero-width approxi-
mation to the p in the t channel. In the s channel, it
leads to a cut starting at s=4m' corresponding to in-
elastic scattering. We take the e6ective inelastic thresh-
old to be 4m2 corresponding to the p-p threshold. This is
the lowest threshold associated with the 6rst elastic
unitarity correction of a p-exchange potential in the
crossed channel. The particular diagram that corre-
sponds to this double spectral function is shown in Fig.
1. There mill also be higher inelastic thresholds corre-
sponding to more iterations of the potential in the
crossed channel, but these branch points will not make
much of a difference since they will be quite high in
energy. The contribution of these higher inelastic states
is included, since y is chosen to give the correct p
width. It is just the exact locations of the higher inelastic
thresholds that are changed to all coincide at 4m', which
already is quite high in energy. The factor (s—4m2)«'
provides the proper threshold behavior for p-p produc-
tion. This factor also happens, fortuitously, to give the
potential a good asymptotic behavior that corresponds
to the observed s '" behavior for p exchange in the
forward direction.

In an exact calculation, this (s—4m')"' dependence
would arise from the shape of the double spectral bound-

FIG. 1, Diagram for double spectral contribution to elastic uni-
tarity in the t channel for a p-exchange, t-channel potential.

G. F. Chem and S. C. Frautschi, Phys. Rev. Letters 123, 1478
(1961).

'This approach is similar to that of N. Masuda, Phys. Rev.
175, 2087 (1968). Masuda assumed Regge-pole behavior instead
of approximating the double spectral functions.

ary curve rather than being put in as a factor. Also,
the sharp p peak would arise, most likely, as a result of
the slow convergence of the integral over the double
spectral function in the p region rather than from the b

function that we have put in explicitly. This means that
the double spectral function that we have chosen does
not look very much like the exact double spectral func-
tion. But this need not be an important consideration
since the double spectral function is only nonvanishing
far from the physical region, and we are concerned only
with its giving a reasonable approximation when inte-
grated over. We emphasize that after approximating the
crossed-channel double spectral function by Kq. (3) we
make no further approximations and the unitarization
of the amplitude (including appropriate inelastic uni-
tarity) is exact.

We now look at the absorptive part of the amplitude
in the t channel. Using Eq. (3) for the double spectral
function in Eq. (2) and using the crossing property of
the double spectral functions, we 6nd

A, '&"'(t,s) =yb(t m') (t 4)z——
ds'(s' —4m')"'

4„* (s' —s) (s'+s+t —4)
(4)

where z, = (s—I)/(t —4), is the cosine of the t-channel
scattering angle. Since the physical range of s (for
t= m') is 4—m2&s&0, the magnitude of physical s in
Eq. (4) is much smaller than 4m2 and we could neglect
the s dependence of the integral in Eq. (4) as long as we
stayed in the physical t-channel region. This would
leave a pure p-wave dependence for A&«"~(t,s) corre-
sponding to the p-resonance angular state. We see, then,
in the derivation of Eq. (4) that any double spectral
function (without correlated oscillations) will produce
p-wave behavior in z& provided its s-channel threshold is
considerably higher than the value of t being considered.
We note that the asymptotic behavior in s does not enter
at all, provided only that the integral in Eq. (4)
converge.

We can see this more exactly by doing the integral in
Kq. (4), resulting in

2 '&' (t s) =~b(t m)L(s—+5m 4)'t —(4ms ——s)&&2].

(5)
The partial-wave expansion of Eq. (5) is

1/2

A, '&e&~ (t,s) =2 yb(txm')— Z &&(z~)(—h)'
yg2 —4 oadl

h(l+1)
X 9m' —4—(m' —4) — + (6)

h(2t —1) (2t+3)

with the constant h given by

h = (m2 —4)/L9m —4+4m(5m —4)' j. (7)
The convergence of Eq. (6) is extremely rapid because
jht &1/18 for physical m values (m')4). For any
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P, (s,) (—1/18)' —'
xp

2l —1oddl
(6')

which shows how closely the double spectral approxIma-
tion to A, ' &6»(

&, s) approximates a p-wave resonance.
To define the generalized potential, we substitute t e

t-channel absorptive part given by Eq. (4) (keeping the
full s dependence) into Kq. (1) and project out the
direct-channel p-wave part. In doing so, wewe note that
the u-channel contribution t the second integral in Eq.
(1)) has the same direct-channel P-wave projection as
the t-channel contribution and can be included by
simply doubling the t-channel contribution. The result is

V(s)=ye(s)t (s+5m' 4)»—' (4m—'—s)&i'), (8)
with

(1+ ) ln(1+ )
—2

To use the Frye-Karnock method, we require the right-
hand discontinuity of V(s), considered as the inelastic
unitarity contribution. This discontinuity follows from
inspection of Eq. (8):

L V (s)]a= 2y&& (s) (s—4m') '&'e(s —4m2) (10a)

) &, (10b

where»(s) is the inelasticity function to be used m the
Frye Warnock -method. Then»(s) is given by

»(s) = (I 4yv(s—)f(s 4m') (—s—4)/s)"'8(s —4m'))'".
(11)

The p-wave amplitude is given by

A (s) = U (s)+ V (s), (12)
where U(s) is the contribution of those double spectral
functions that represent elastic unitarity in the s chan-
nel. We can write U(s) in terms of integrals over its
right- and left-hand cuts:

U(s) = L&a(s)+ Ul. (s), (13)
with

1 "ds'L(s' —4)/s']"'~A (s') ~'
Ua (s) =— — (14R)

m'))4 (we note that m„' 30), it is a very good approx&-
mation to set k=1/18. This leads to the approximate
form

~y (m' —4) i&(t —m'}
g &&el& () s)

342m

1 '- ' ds'[U(s')]r,
Ul. (s) =—

—00

(141 )

From Eqs. (13)—(16) we see that the double spectral
approximation for UI. (s) leads to

Ur. (s)= U(s) —Ua (s) = LU(s) —U(m')]/(m' —s) . (17)
We note that the pole due to the zero-width approxima-
tion in U(s) has been removed and that Ur. (s) as
smooth behavior near s= m~, which it clearly Drom Eq.
(141 )) must have.

The combination V(s)+ Ur, (s) now includes the
p-wave projection of the full Mandelstam representa-
tion t Eq. (1))except for the right-hand elastic unitarity
cut LEq. (14R)).This cut will be put in using the Frye-
Warnock iV/D method. For completeness, we list these
equations here':

We have used elastic unitarity for t e jntegral over the
right-hand cut. The integral over the left-hand cut must

l b
'

rtant because it is required to cancel the
elastic unitarity integral exactly at thres o . is is

nd therefore vanish at threshold. ' There-
fore, from Eq. (12), U(s) must also vanish at threshold.
This is frequently done, in the absence of a better pro-
cedure by assuming Ur. (s) to be a constant. en a
threshold subtraction applied to Kq. wou
in an explicit factor of (s—4) for U(s). The factor (s—4)
could then be divided out of A(s), V(s), and U(s). »
our case, however, we can use the ouble s ectral ap-
proximation to identify the left-hand discontinuity of
U(s) and calculate Ur, (s).

We use the form given by Kq. (3) (with the inter-
change s ~ f) for p '&"&(s,f) in Eqs. (1) and (2), and
then partial-wave project. This gives the representation

U(s) = U(s)/(m' —s), (15)
where

2t
U(s) =— &&&/ 1+—

s —4 4, s —4

&&L(t+5m' —4)'~' —(4m' —~)'&'3

327m'
16m'+5 (s —4)

15(s —4)'

1+ (16m' —s+4) . (16)
4m'

2 (s) = 7(s)/D(s) =
I »(s)e"' &'& 13/2ig(s—4)/s)'"—,

s "L(s' —4)/s')'"2 ReA'(s')ds'
D(s) =1——

)s'(s' —s)L1+» (s'})

2»(s) ReX(s) 1 " Ls'B(s') —sB(s))t (s' —4)/s']'"2 ReV(s')ds'=B(s)+
1+»(s) &r, s'(s' —s)L1+» (s')]

J. Franklin, Phys. Rev. 139, 8912 (1965).

(18)

(20)
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The Frye-Karnock e6'ective potential is given bye

B(s)=Re Uz(s)+Re Vr, (s)

I' " [1—g(s')]ds'
+—,(21)

2m 4„~ (s' —s)[(s'—4)/s']' '

where Vz(s) is the left-hand cut contribution to V(s)
and is given by

1 " [V(s')]~ds'
Vr. (s) =V(s)—

2X' 4rrt& S —S
(22)

Then, using Kq. (10b) for [V(s)]g, our final form for
the effective potential is

J3(s) =Re UL, (s)+Re V(s)

I' " [1—g (s')]'ds'
(23)

4z 4 ~ (s' —s)[(s'—4)/s'Ji'

with Uz, (s) given by Kq. (17), V(s) by Eq. (8), and q(s)
by Kq. (11).After the integral equation (20) is solved
for ReN(s), this can be used in Eq. (19) to find D(s)
and then the phase shift is given by

tanb (s)= —ImD (s)/ReD (s)
= [(s—4)/s]'I'2 ReX(s)/

([1+~(~)]ReD(~)) (24)

H the zero-width approximation to the X/D solution
were used to evaluate Ua(4) and the calculation were
self-consistent (input p mass and width equal to output
p mass and width), we would necessarily get the result
Uz(4)+ Uz, (4)=0 [this follows directly from Eqs. (13),
(15), and (16) for U(s)], and the p-wave amplitude
would have the proper threshold behavior. Instead of
using the zero-width approximation in the direct chan-
nel, however, we can use the fact that A (s) must vanish
at threshold, to determine self-consistency of input and
output. The procedure is the following.

(a) A trial ns ~ andy are picked to determine Vr, (s),
Uz(s), and g(s).

(b) The Frye Warnock X/D method-is used to deter-
mine $(4).

(c) y is varied until E(4)=0.
(d) m,„P is found from D(re,„P)=0.
(e) tn~, m is varied and steps (a)—(d) repeated un-

til m,„t'=m ', which determines the self-consistent
solution.

This procedure does not require determining the out-
put from I',„,= —1V(m )/D'(m2) which is a weak link of
many bootstrap calculations. The p,„t, determined by
this equation should not be vastly diferent from p;, if
the zero-width approximation is to be considered a good
one, but the procedure of steps (a)—(e) should be much
better than having to use the above estimate of F.

III. DISCUSSION

The method of double spectral approximation de-
scribed here has many advantages over previous boot-
strap calculations. The potential that we define does not
mutilate the Mandelstam representation and includes
the basic analytic properties of the Mandelstam ampli-
tude. It includes the inelasticity required for pions by
the Mandelstam representation and has a good asymp-
totic behavior that does not require a cuto6' or any
arbitrary parameter. Not all of the inelasticity is ac-
counted for. The details of inelastic resonances and
some final states (for instance, z-M in s.-s scattering")
are not included, but these can be added by doing a two-
channel ED ' matrix calculation. "The important left-
hand cut due to the direct-channel double spectral func-
tions is included correctly and this provides proper
threshold behavior and a good method for achieving
self-consistency.

As for calculation time, the double spectral approxi-
mation should not take appreciably longer on a com-
puter than purely elastic E/D bootstrap calculations.
The calculation of the effective potential [8(s)] for the
I'rye-Warnock method would take somewhat longer
than a simple no-spectral-function potential, but the
major time consumer on a computer is inverting the
matrix of the kernel in the integral equation for E,
which will be the same for any method. There is a minor
simplification in our only requiring E(4)=0 to deter-
mine a self-consistent y, rather than integrating over
E(s) to look for D(m, „g)=0.Of course, we will want
to find m, „~' once we have a self-consistent y.

9 F. Zachariasen, Phys. Rev. Letters 7, 112 (1961); 7, 268(E}
(1961).The width I' is related to our constant p by I'—t (m' —4)/
9m|y.

10 Conservation of G parity prevents the right-hand cut of the
equivalent potential from corresponding to ~~ intermediate states
in the same way that conservation of parity excluded ~-7f inter-
mediate states."J.D. Bjorken, Phys. Rev. Letters 4, 473 (1960); R. L. War-
nock, Phys. Rev. 146, 1109 (1966).


