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Two-Photon Exchange in Electron-Proton Scattering*
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An investigation is made of the two-photon exchange contribution to e-P scattering. The contribution is
calculated in second Born approximation using potentials representing the charge and magnetic moment
distributions of the proton. A fit to proton Compton scattering data is made and used to ca1culate the reso-
nance contribution to e-P scattering. At high energies, the resonant and nonresonant contributions to the
two-photon exchange effect tend to cancel one another.

I. INTRODUCTION

HE validity of the form-factor analysis of electron-
proton scattering' is based on the assumption that

the contribution of the two-photon exchange amplitude
(Fig. 1) is negligibly small. Experimentally, the real
part of this amplitude is obtained by comparing
electron-proton and positron-proton scattering at the
same energy and angle. ' The cross sections are observed
to be equal, to within 1 or 2 standard deviations, up to
incident laboratory energies of 10 GeV and squared
momentum transfers of 5 (GeV/c)'.

The theoretical analyses of the two-photon amplitude
can be separated into two classes. In the case of un-
excited intermediate proton states, the calculations
are done using static-charge distributions. "When
compared with lowest order, these calculations are of
the order of the fine-structure constant o., never exceed-
ing a few percent. In the case of excited intermediate
proton states, results have been obtained for the con-
tribution if the A(1236) resonance in the s channel~s
and for J =1++ and 2++' meson exchange in the
s channel. These results never exceed a few percent of
the lowest-order cross section.

In this paper, we look again at the problem of pre-
dicting the two-photon exchange effect in e-P scattering.
The two-photon e8ect is largest in the backward
direction where the scattering is dominated by the
magnetic moment distribution. In Sec. II, the magnetic
moment distribution is introduced into the static-
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potential calculation in order to improve the estimate of
the two-photon exchange effect for scattering into
backward angles. In Sec. III a phenomenological fit to
proton Compton scattering data is made and used in
Sec. IV to calculate s-channel resonance contributions
to e-p scattering. The results are compared with those
obtained previously by other authors. Finally, in Sec. V,
the contributions to the two-photon exchange effect
are summarized and compared with the experimental
data.

P,+Pg ia„„Q"
=N(Pr) P~(Q')+ ~(Q') ~(P')f, (2 1)

2M 2M

where P; and P~ are the initial and Anal momenta of
the proton, f~: is the anomalous magnetic moment, F~,
F2, and G~ are the usual proton form factors, and

Q=Px —P' (2.2)

FIG. 1. Two-photon exchange in e-P scattering.

"We use A=c=i and the notation of J. D. Bjorken and S. D.
Drell, Relativistic Quantum Mechanics (McGraw-Hill Book Co.,New York, 1964).

i860

II. UNEXCITED INTERMEDIATE
PROTON STATES

The potentials necessary for a static calculation of
the two-photon exchange effect are obtained from the
lowest-order proton current"

N(Pr) I'„N(P;)
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To order 1/M, Eq. (2.1) is given by

N(&x) I'~(& )=F~(Q') v i'v',

In the forward and backward directions, (2.6) agrees
with the correct lowest-order c.m. cross section with
recoil

(F+~ )'
44(Ff)I'N(F;)— F~(Q') prt p;

M

2

(1+~)4'"(~~)4QaF (Q') (2 3b)
2M

do-('" Qn
F 2(Q2) + ~2F~2(Q2)

4M2
2

+ G44'(Q') tan'(-'8) (2.7)25'
where

F-(Q') =G~(Q')/(1+~)

W —E+(E2+~2) I/2 (2.4)

is the total c.m. energy. The result is that the following
momentum-space potentials shall be used:

&a= LFi(Q')/Q']el'v;, (2.5a)

(i/2W) (1+—K) 4&1„(o„)~&'F (Q')/Q' (2.5b)

without proton recoil, with the provision that the
energies and angles be identified as c.m. quantities. The
static calculations are valid only for c.m. energies less
than the proton mass. However, we will show results
at somewhat higher energies to indicate the expected
trend.

To lowest order, the potentials (2.5) give the following
cross section:

do' 2—=044 FF(Q')+ G4I'(Q')
dQ 48"

where

+ -"~'(Q') tan'(k8) ~ (2 6)28"

041=a' cos'(-,'8)/4E' sin'(-', 8)

Q' =4E' sin'P8) .
"H. Grotch and D. R. Yennie, Z. Physik 202, 425 (1967).

(0'n)&= V'f &&P4~

the q functions being the two-component Pauli spinors
for the proton.

It is known from the work on the effective-potential
approach to the electron-proton interaction~ that, in
the case of charge distribution scattering, where the
potential is obtained from (2.3a), a static calculation
of the cross section without proton recoil gives the cor-
rect c.m. result with recoil to order E/IV, where E is
the energy, if the static-frame energy and scattering
angle are identified as c.m. quantities. This is not true
for magnetic moment distribution scattering which
arises from the second term on the right-hand side of
(2.3b). In this case, in order to relate the static calcu-
lation to c.m. scattering with recoil, a factor M/W
must be included, where

obtained from (2.1). In all comparisons with lowest
order, we shall use (2.7).

To order n', the e-p scattering cross section can be
written

do. do-t'" do &'~

+Z
dQ dQ dQ, g,

(2.8)

and obtain the following results for the o.' contribution
to (2.8) in second Born approximation:

(
do&") n EQ'

-F (Q') (ReI....),dpi, ... ~& P&

(P'+2P q) F~(lq —pll')
I8, ge d

q' —E'—i4 Iq peal~

Fi(l» —p;I')
X ; (2.9)

lq —p'I'

(
d(r&'&) n EQ' Q'

=044— (1+44)'F (Q')(ReI, s.),an) &, ' P' 2@2

Ia, ac =
4Q2

F.(l q —pr I')

q~ E~ i.—Iq——p, l~

(at least one of a,b,c=m);

F~(lq —p;I')
X (2.10)

I» —p'I'

P..-=LF (Q')/F-(Q')]LP' —4P'(». P) —8E'(» P)
+8P'q'+4(q. P)' —8q'(q P)],

P —P —4E2(}2+Q4+ 4(q, (})2+4»2Q2

—16E'(q Q) —4Q'(» Q),
p, „=I (1+x)/EW]L —2E'P'Q' —12E'Q'q'

+10E'Q'(q P)+2Q'q'(q P) —Q'(q P)'
+8E'(».Q)'+Q'(» Q)']

Defining a+ (0 ) to be differential positron (electron)

where (de&'&/dD), q, arises from the cross term between
the first- and second-order Born-approximation ampli-
tudes. If p; and pf are the initial and final momenta of
the electron, we then define

Q=p4 ps~ P= n'+of,
Q'=4E' sin'(-'8) P'=4E' cos'(-'8)
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scattering cross section, then

0+——i= —2

where

Fi'(Q') (~+/~- —1).+(&'/2&')G~'(Q') tan'(28) (~+/~- —1)-
(2.11)

Fi2(QI)+(Q2/4ilII2(g2F 2(Q2)+(Q2/2gT2)G 2(Q2) tan2(1II)

o+ 2n E(}' 1
(Re I,, „),s' P' Fi(Q')

(
0+ 2n i——1 — F-—— [Re (I.,„+I,.+I,, +I, „)j.
0 ~' F (Q')

For simplicity, (2.9)—(2.11) are evaluated using
Yukawa form factors
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FIG. 2. Second Born approximation at E=850 MeV.
(a) ( /0 —1),; (b) (cr / —1); {c) y /
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with a=600 MeV corresponding to an rms radius of
0.8 F. Using a partial fraction decomposition, the
resulting integrals are similar to those evaluated in

Ref. 3. The details are given elsewhere. "The results
for a c.m. energy of 850 MeV, corresponding to an
incident laboratory energy of 1.9 GeV, are shown in
Fig. 2, where 8 is the c.m. scattering angle. The result
in Fig. 2(a) corresponds to the calculation of Lewis'
where only the proton charge distribution is taken into
account. It is seen in Fig. 2(c) that including the mag-
netic moment distribution decreases the size of the
two-photon exchange effect in the backward direction.
Results for ~+/o 1are s—hown for various c.m.
energies in Fig. 3 and the variation of the effect at
8=180' is shown in Fig. 4. At fixed Q', the second
Born approximation for o+/0. —1 goes as 1/E for large
energies.

A calculation of the two-photon exchange effect
using the potentials in (2.5) has been done" using the
distorted-wave approximation. '4 Ke do not give the
details here but remark that the results agree well
with those obtained above using the second Born
approximation. This indicates that the physical picture
associated with the distorted-wave method is a good
approximation to the physical processes underlying the
higher-order corrections to the Born approximation.
This physical picture is as follows: The electron wave
function, initially a plane wave, is gradually distorted
by a succession of small momentum transfers from the

.PI-

-.0(

O
p

+.
O

I

-.02

-.C 2
I.P l.5

c.m. energy in GeV

I

2.0 2.5 3.0

Oa
I ~ I i I i I

40 80' I 20' l60 e
FIG. 4. Second Born approximation at 180'.

Fro. 3. Second Born approximation at various c.m. energies.
{a)E=200 MeV, (b) E=500 MeV, {c)E= 1000 MeV, (d) E=2000
MeV.

"G. K. Greenhut, Ph.D. thesis, Cornell University, 1968
(unpublished).

'4 D. R. Yennie, F. L. Boos, and D. G. Ravenhall, Phys. Rev.
137, B882 (1965).
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target. The electron then receives one large transfer of
momentum in the vicinity of the target, giving rise to
the main scattering. The scattered wave continues to
be distorted by another succession of small momentum
transfers.

%e can use the distorted-wave picture to understand
the general shape of the curves in Figs. 2 and 3. The
electron v ave function is focused toward the center of
the potential, decreasing its effective impact parameter.
The reverse occurs for positrons. For low momentum
transfers, at a given energy and angle, electron scatter-
ing dominates positron scattering. At high momentum
transfers, the fact that the proton charge and magnetic
moment distributions are extended becomes important.
Since the electron wave function is focused toward the
center of the distributions, the electron experiences less
effective charge than the positron and therefore at high
mom enturn transfers, positron scattering dominates
electron scattering. From the point of view of momen-
tum space, the wave distortion causes the wave number
of the electron to be enhanced. The form factor is there-
fore evaluated at a larger momentum transfer for elec-
trons than for positrons.

It should be pointed out that contributions to the
scattering amplitude of order n' and R(Ã are also
present in the radiative corrections, the dominant
portion coming from the infrared-divergent parts. These
contributions have presumably been included in the
analysis of the experimental data.

III. PROTON COMPTON SCATTERING

In order to calculate the resonance contnbution to
the two-photon exchange effect, the proton Compton
scattering amplitude for off-mass-shell photons is
needed. A previous calculation of the resonance con-
tribution' used the model of Gourdin and Salin" to
obtain the contribution of the D(1236) to the two-

photon e6ect. In this work, we use a simplified version
of the proton Compton scattering amplitude" consisting
of the proton Born terms with the correct low-energy

limit, " x and g pole terms, and crossing-symmetric
Breit-signer resonance terms representing the proton
s-channel resonances. The diagrams corresponding to
the Born and pole terms are shown in Fig. 5. The experi-
mental values are used for the m and q couplings.
One free-coupling parameter is used in each of the
Breit-%igner terms. The values of these parameters
are determined by a fit to the proton Compton scattering
data.

The S matrix for Compton scattering in the c.m.
system is given by

5=ie'(27r)45'(0+P, O' Pf)(—M jc—o8)Te,

where k and k' are the initial and final photon momenta
with energy component td, and I', and I'f are the initial
and final proton momenta with energy component
8. In the c.m. frame

R' R4
Tc=Ri(e e')+—[(kXe) (k'Xe')]+iR3[e (e Xe')]+i (—e [(k'Xe')X(kXe)]}

2

R5 R6
+i—((e' k)[k' (e'Xe)]—(e k')[k. (eXe')]}+i—(e( k')[k' (e'Xe)]—(e k)[k (eXe')]}, (3.l)

Cd id

do. 0.23' 2

-= -- [l(1+x')(IR~I'+ lR~ f')+l(3 —x')( fR& f'+
f R4 f')+(1+3x')(IR~I'+ IR I')

dQt. V2

+2(1+x') «(R4Rg*+RSRg*)+2x «(RgR2*+RSR4*+2RsRg*+2R4R6*)+2x(3+x') «(R5R,*)], (3.2)

FIG. 5. One-particle intermedi-
ate states in proton Compton
scattering. {a)and {b) Born terms,
(c) m' pole term, {d) g' pole term.

lo) (c)

"M. Gourdin and P. Salin, Nuovo Cimento 27, 193 (1963); 27, 309 (1963)."Y.Nagashima, Progr. Theoret. Phys. (Kyoto) 33, 828 (1965)."M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433 (1954); F. E. Low, ibid. 96, 1428 (1954).
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R;=R ++R.i+R;", (3.3)

where R;~ is the proton Born-term contribution, R;~
is the combined contribution of the xo and g pole terms,
and R;" is the combined contribution of the proton
s-channel resonance terms.

The Born-term contributions are"

6+M —(h —M)x
R$ (A g+xA r)

2M(1 —x')

(6+M) (V —M)+(h —M) (V+M) x
(A 4+xA g),

4M'(1 —x')

R2a= —Rp (with Ay~Ay, A4~A2),

5—M V+M
(3.4)

R4a= —Rp (with Ag ~Ay, A2~ A4),

8—3f V+M—Al+ A4
2M(1 —x')

—Ag—
V+M co V

A2 X
2M 8M'(1+x)

4M(1 —x)

R6a= Rfa (with Ay~A—g, A4&-+A2, A6~ —A6),

where

A g
= —2ME1/(M' —s)+ 1/(M' —u) ]

A, = —2M L1/(M' —s) —1/(M' —u)]
Ag ———L1 —(1+a)']/M,
A 4= 2M(1+e)'L1/(M' —s) —1/(M' —u) ],
A, = —4M(1+x) t 1/(M' —s)+1/(M' —u)]—2x'/M

A 6——2M(1+x)L2/(M' —s)+ 1/(M' —u) ]
+L(1+a)'—1]/M

t = —2~'(1—x), u= 2M' —V'+2cu'(1 —x) .
For the pole-term contribution, the standard m.-S
coupling is used at the proton vertex and the following
coupling is used at the photon vertex:

fe&" ~b (k+k')„e ep'—,

where e and e' are the polarization four-vectors of the

'8 A. P. Contogouris, Nuovo Cimento 25, 104 (1962).

where x= cos8*, 8* being the c.m. scattering angle, and
V is the total c.m. energy

V =co+ (M'+(a') 'J2= (o+b.

The scalar functions in (3.1) are decomposed as follows:

incoming and outgoing photons, b is the momentum
carried by the intermediate particle Las in Figs. 5(c)
and 5(d)], and

f'/4n-= 4/m'(mr),

where m is the mass of the exchanged meson and g its
lifetime for decay into two photons. The contribution of
w' and q' exchange to (3.1) can then be written"'

Rg~ =R2~ =R3~=R4~ =0,
g

2 j/2

R~= ——
5

nM 4X m m V 'f21 —X+m ' 2CO2

g
2 1/2

+ —' (3.5)
4n. m (m r )'" 1—x+m, '/2(v'

R &=-R ~

The constants in (3.5) are given in Table I."
%e now turn to the proton s-channel resonances.

We shall consider only those resonances with masses
less than 1700 Mev, since above this energy the data'0
begin to show a rapid decrease with increasing energy.
This behavior cannot be easily fitted with Born terms,
t-channel exchange terms, and Breit-%igner resonance
terms. We also restrict our attention to resonances
with elasticities into the x-X channel of greater than
50%. This reduces the number of resonances of interest
to four: the A(1236), 1V(1400), E(1525), and cV(1688).
The masses (M;*), widths (Fo;), orbital angular mo-
momenta (I-), spins (J), parities (P), and isotropic
spina (I) of these resonances are given in Table II.

A partial-wave decomposition of the Compton scat-
tering amplitude in the c.m. system gives the following
result for the scalar functions in (3.1) ":
R =Z (L(f+1)f "+If a' ](P~'+»~")

1=I

[(&+1)fsru'++—Ifsrsr' ]P~"},
R2 =Rr (with 8~M),

(fsrsr'+ fsr Je'—)Pi"+f—zu' L(f 1)P~' xP~"]- —
+(fsra' fsra'+)»"+ fa—u'+P(&+2)Pi'X»i")),

TABS l. Parameters for the m' and q amplitudes.

g'/4n-

14
8

(MeV)

135
549

(sec)

0.89X10 '6

0.54X10 '8

"%'e use the p-p coupling determined by J. S. Ball )Phys. Rev.
149, 1191 (1966)j and the g lifetime from the experiment of C.
Bemporad et al. /Phys. Letters 2SB, 380 (196'?)g.

'0 M. Deutsch et al. , in Proceedings of the 1967 International
SymPosium on Electron and Photon Interactions at Higk Energies
(Stanford Linear Accelerator Center, Stanford, Calif. , 1968),
p. 619.

R,=g ((fag'+ fag'-) 1 —P(' —3xP/" +(1 x')—P("']—
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TAaLE II. Parameters associated with the proton resonances.

Resonance

~(1236)
X(1400)
N(1525)
E(1688)

M;*
(MeV)

1236
1400
1525
1688

I'Os

(MeV)

120
200
105
110

L~z, ~zp

~43
~11
D13
p ~+

Dominant
partial-wave

amplitude (MeV)

262
386
474
584

(MeV)

346
578
771

1050

h;
(MeV)

231
367
460
5/3

C;

0.46
0.35
0.55
0.10

R4=R4 (with P ~M),

R'. =& ((f«'+ f«—' )
l=I

+(2P4"+P}'") (fv—}r'+ .f}r~—' )P}"'

+ ', fz44' [-(l 4)P}"—2xP},'"—j
+ ', f~z' [-2(1 -l)P, '+—(4 l)xP,"—+(1+x2)P,"'j

r2f}rz'+—[2(l+2)P}'+(1+5)P}"+(x'+1)P'"')
+2fz44'+[(l+5)P}"+2xP&"'j}, (3.6)

R4 ——R„. (with P. 4+DE), -

where P}'"}=(d/dx) "P}(x), P} being the lth-order
Legendre polynomial, and fzz'+ is the partial-wave
amplitude for the transition.

~
j=1&—', , P, l) ~

~j 1&2=, P., l) and similarly for f}r}}r'+, fz}}r'+, and
f44z'+ E' and J. I denote an electric and a magnetic
multipole state, respectively. We shall retain only the
dominant partial-wave amplitude for each resonance.
These are given in Table II. Decomposing the resonance
contribution to the scalar amplitudes as follows:

We have distinguished between the amplitudes as-
sociated with R} and R2 and with R4—R4 in (3.8), the
latter having a caret, because of their difI'erent behavior
under crossing.

Redefining the partial-wave amplitudes

and similarly for the careted amplitudes, the ampli-
tudes are given the following crossing-symmetric
Breit-Wigner form:

C; 1
f* g

I'.'— +
b}—4d, +i(-,'I';) b}+b};—i(-,'I'4)

where
cd;= [(M;*)'—kP j/2M;~

are the c.m. photon resonance energies given in Table
II along with the laboratory photon resonance energies

R;"=R;(')+R;(')+R;(')+R;('),

and using (3.6), we obtain

for A(1236):

R (')=R (')=R (')=R,(')=0,
R2" '= 2f~ v'+ R4"}= f~~'+-

for E(1400):

(3.7) b} "b= (}M';*/M)CO;.

The constants C; are assumed to be real and are ob-
tained from a fit to the proton Compton scattering
data. Unitarity requires that C;&0. The resonance
widths are given by

(3.10)

R, ( )=R, (~) —R, (2) —R, (&)—0
R2"}=f}~', R4"'= f~~';

for cV(1525):

Ri"}= 2fzz'+, R4"}= fzz'+, —
R, (3)—R (3)—R (3)—R (3)—0.

for lY(1688):

R}"'=18fzz'+, Rg"'= 9fzz'+, R4&4}= —12fzz'+, —
R4(4}= 3fzz&+ R (4}—6f 2+ R (4}—0

Crossing symmetry requires that the following relations
hold at x= —1:

R}(b})—R2(b})=R}(—co) —Rg( —b}),

R4(b})—R4(4d) —2R4(cu)+ 2R4(b})
= —[R4(—4d) —R4( —b})—2R4( —b})+2R4( —ca)j.

where L is the orbital angular momentum of the ith
resonance and

sg& }=[gr, '(g)+e~'(g) j-'
jL, and n& being the spherical Bessel and Xeumann
functions of order I., respectively. The erlergy co& is the
threshold photon energy in the c.m. system for pion
production and is equal to 131 MeV (151 MeV in the
laboratory). The factor h is the c.m. pion momentum

h = ([V+(35+m. )][V—(M+ m )][V+(M —m )]
&&[V—3E—m )])'12/2V (3.11)

and h; is given by (3.11) with V replaced by M;*. The
values of h; for the four resonances are given in Table
II. The use of the pion momentum in (3.10) ensures
smooth behavior of the amplitude at the pion threshold
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cop. Finally, the factor d is a measure of the interaction
radius of the resonance. From fits to photoproduction
data in the region of the A(1236),2i d is found to be
1.2 F=(160 Mev) '. We use this value for all four
resonances.

The above results are combined using (3.7) and (3.3),
and the proton Compton scattering cross section is com-
puted using (3.2). The constants C; are obtained by
fitting the cross section to the experimental results at
8*=65'" and 8*=90'."The fits are shown in Fig. 6
and the resulting values of C; are given in Table II.The
fit in the region of the X(1400) is slightly improved in
Fig. 8(a) when C2 is increased. However, because of the
large width of this resonance, there is substantial inter-
ference with the higher mass resonances, causing larger
values of C to decrease the quality of the fit at higher
energies.

IV. EXCITED INTERMEDIATE PROTON STATES

We now proceed to calculate the s-channel resonance
contribution to the two-photon exchange effect. We
use the resonance portion of the Compton amplitude
(3.1). Since the photons in Fig. 1 are now off their mass
shell, the amplitude is generalized by allowing &dW

I
k I.

Tc in (3.1) has been obtained for the scattering of

I=-,'Cj
dM 1

q' (E —cd)' —ie

F(l q

pal�'

~') F(l q p~'I ie')X—
q pal' ~' Iq p~'I'

1 1
x ,'ir, (~-)

Gl —M +—IF' M+(dy ——lI
~

~ ~

transverse photons. It has been found in pion electro-
production experiments in the region of the 6(1236) 2'

that the amplitudes for longitudinal photons contribute
of the order of 10% to the entire amplitude, so that the
use of (3.1) is at least good as a first approximation.

The lowest-order amplitudes will again be those
obtained from (2.5). As in Sec. II, however, we shall
compare our results with the correct lowest-order
c.m. cross section (2.7). We calculate using only the
6(1236) contribution to (3.1). The contribution of the
X(1400) has been obtained elsewhere" and is found to
be negligibly small.

The further contribution to the right-hand side of
(2.8) due to the 6(1236) is given by

do&2i) n 3f Q'
I
=~~——F(Q')(ReI),

dQ j, m'w P'

I2-

b~ 4-
D

0
0 200 4GO 600

(0)

I

800 IOOO

~ ~
~
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Fio. 6. Fits to the proton Compton scattering data. (a) 8*=90'
(data from Ref. 22), (b) 8*=65 (data from Ref. 20).

~' S. L. Adler and F. J. Gilman, Phys. Rev. 152, 1460 (1966).
~2 D. R. Rust eI al. , Phys. Rev. Letters 15, 738 (1965).

We use Yukawa form factors as in (2.12) with an rms
radius of 0.8 F.'4 The details of the integration of (4.1)
are given in Ref. 13. The results are shown for three
c.m. energies in Fig. 7 in terms of the positron-to-
electron differential cross-section ratio defined as in
(2.11).The variation of the resonance contribution to
the ratio at 180' is shown in Fig. 8. These results com-
pare well with the qualitative results of Drell and
Fubini' and the more detailed results of Campbell'
in magnitude, sign, and angular variation.

From the results of this calculation we can conclude
that although the resonance contributions to proton
Compton scattering are large, their effect in e-p scatter-
ing is never greater than a few percent. This observa-
tion has been explained previously' ' by indicating that

"D. Imrie, C. Mistretta, and R. %ilson, Phys. Rev. Letters
20, 1074 (1968).

'4 K. W. Ash e1 a/. , Phys. Letters 24$, 165 (1967); C. Mistretta
et a/. , Phys. Rev. Letters 20, 1070 (1968).
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Fio. 8. The 4(1236) contribution at 180'.

since it is the real part of the amplitude that is needed
in the e-p scattering cross section, it is therefore the
dispersive part of the resonance amplitude that con-
tributes. It is argued that since this part changes sign
in the region of the resonance, it contributes very little
to the energy integration. However, both the absorptive
and dispersive parts of the resonance amplitude con-
tribute in (4.1), since the d q integration has both a
real and an imaginary part. The over-all eEect is small
because of the factor o. and because the resonance
couplings appear only to erst order in e-p scattering,
down by one order from the proton Compton scattering
cross section.

V. DISCUSSION AND CONCLUSION

By comparing the results in Figs. 3 and 7, it is seen
that the second Born approximation and the resonance

contributions tend to cancel one another for c.m. ener-

gies above 500 MeV. The diherence in behavior between
the two types of contributions is not surprising. The
A(1236) contribution involves mainly transverse pho-
tons which undergo a p-state interaction with the
proton. The proton Born-term interaction involves
both transverse and longitudinal photon components
with no restriction on the orbital angular momentum
in the interaction.

The results given for energies above 1000 MeV are
not completely justified because of the use of the static
approximation. They are useful, however, as an indi-
cation of the trend to be expected for the two-photon
contribution at high energies. The inclusion of the
factor M/W in the magnetic moment potential (2.5a)
certainly introduces some of the necessary high-energy
kinematic corrections to the static model. Furthermore,
despite the increase in the Born-term contribution to
proton Compton scattering at high energies, the data"
show a rapid decrease above an incident photon labora-
tory energy of 1100 MeV. Thus, the intermediate
channels at these energies tend to cancel the efFect of
the Born terms and are therefore not expected to make
large contributions to the two-photon exchange effect.

It should be pointed out that since we did not start
from a complete expression and extract the various
contributions —static potential, radiative corrections,
and excited-state contributions —there may be some
double counting or some small contributions omitted.
However, the terms considered do seem do be physically
distinct and the most likely candidates for important
contributions. It should be stressed that, because of
the various approximations made, it is the smallness
of the over-all result that is most reliable and not the
details of Figs. 3 and 7.

%e can therefore conclude that because the resonant
and nonresonant contributions tend to cancel at high
energies, it is unlikely that the over-all contribution
of two-photon exchange to rr+/o 1will ex—ceed 2%,
at least for electron energies presently available. This
result is consistent with experimental data on the ratio
of positron to electron scattering from protons. ' It
implies that the Rosenbluth analysis of e-p scattering'
is valid to within a few percent, which is the accuracy
of present e-p scattering experiments. " There is no
compelling reason to improve this accuracy at this
time, since we still lack a complete theoretical under-
standing of the over-all behavior of the nucleon form
factors. "
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