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The cross section can therefore be written helicities gives
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The relation between the angles is obtained by com-
paring Fig. 4 of I with Fig. 14:
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If only the electron is detected, one must integrate over
the final pion direction, and using the orthogonality of
the 2) functions the interference terms in (C26) go
out. Finally, summing and averaging over nucleon

where the eigenstates of parity have been introduced.
The resulting cross section for detection of only the
electron is that given in Eq. (3.31) of I. The resonant
amplitudes for producing the I~X) channel in the
coupled-channel calculations are obtained by multiply-
ing Eq. (5.31) by cose.
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Anomalous Ward Identities in Spinor Field Theories
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W'e consider the model of a spinor Geld with arbitrary internal degrees of freedom having arbitrary
nonderjvative coupling to external scalar, pseudoscalar, vector, and axial-vector fields. By carefully de6ning
the S matrix in the interaction picture, the vector and axial-vector currents associated with the external
vector and axial-vector Acids are found to satisfy anomalous Ward identities. H we require that the vector
currents satisfy the usual Ward identities, the divergence of the axial-vector current contains well-dered
anomalous terms. These terms are explicitly calculated.

I. INTRODUCTION

HE presence of anomalous terms in the %ard
identities for currents dered in a number of

spinor field theories has been noted by several
authors. ' ' The existence of these terms may be traced
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ibid. 82, 664 (1951).

S. L. Adler, Phys. Rev. 177, 2426 {1969).

to the local products of field operators which are so
singular as to prohibit the naive use of the field equa-
tions. In a version of the 0. model, the anomalous terms
in the %'ard identity for the neutral isospin current
have led to a low-energy theorem for the decay x' —+ pp. '

In this paper, we consider a theory of a spinor field
with an arbitrary number of internal degrees of freedom
coupled to external scalar, pseudoscalar, vector, and

3 C. R. Hagen, Phys. Rev. 176, 2622 (1969); R. Jackie andK. Johnson, ibid. 182, 1457 (1969); R. Brandt, ibid. 180, 1490
(1969); K. Wilson, ibid. 181, 1909 {1969);J.S.Bell and R. Jackiw,Nuovo Cimento 60, 47 (1969).
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axial-vector fields. In the interaction picture, the S
matrix is carefully defined using a symmetric ~ separa-
tion on the spinor loops. The terms which would be
singular in the limit as e goes to zero are isolated. The
currents are defined by variation of the 5 matrix with

respect to the external vector and axial-vector fields.

By examining the Ward identities for these currents,
anomalous terms are found to arise from the smaller

loops which are, at least, linearly divergent.
A renormalized 5 matrix for the loops is defined by

the subtraction of contact terms which remove the
divergent terms and many of the anomalous terms
in the %ard identities. However, not all of the
anomalous terms can be removed in this way. In par-
ticular, the choice of counter term which preserves the
usual Ward identities for the vector currents provides
well-defined anomalous terms in the axial-vector current
Ward identities. The result of Adler' is obtained for the
neutral isospin current coupled to external photons.
When charged currents are present, additional terms
are found.

Ke indicate the following plan for this paper. In
Sec. II, we define the theory and discuss some of its
general properties. The terms which are singular in the
limit as e goes to zero are found in Sec. III. In Sec. IV,
the Ward identities are examined and the anomalous
terms isolated. The renormalized S matrix is defined
in Sec. V, where the resultant anomalous terms in the
Ward identities are also discussed.

II. DEFINITIONS

We propose to consider a theory consisting of a
quantized spinor field with arbitrary internal degrees
of freedom having arbitrary nonderivative couplings
to external scalar, pseudoscalar, vector, and axial-
vector fields. This theory is described by the Lagrangian
density

~()=~()L'v ~+r()j~(),
where

v'=v"~p
& 7~ =vs.

The field g(z) is a Dirac spinor field and is a column
vector in the internal space. The function I'(z) is given
by

r(z) = —G~,(z)+~„V, (z),
where

P+(z) =F+Z(z)+iysil(z),
V (z)=V (z)+& a"(z).

F is a constant matrix in the internal space and serves
to give the spinor fields arbitrary masses. The fields
Z(z), II(z), VI'(z), and A&(z) are all matrices in the in-
ternal space and may be written

Z (z) = Xz Z (z), II(z) = Xn II,(z),
V (z)=),v V.(z), A (z)=X A.(z).

(4)

The fields Z (z), II (z), V (z), and A, (z) are the ex-

Pro. 1.Feynman diagram for
the external fields coupling to
an external spinor line.

&n &n-i Pl PP

ternal scalar, pseudoscalar, vector, and axial-vector
fields, respectively, and Xz, X&, P z, and P& are their
respective coupling matrices.

We will discuss this theory in the interaction picture
where the free Lagrangian density is given by

&o()=A)(. ~ —~ox()
and the interaction Lagrangian density is given by

z,(.) =y(,)r (,)y(.) . (6)

S=T exp i dz Zr(z) (7)

where T is the time-ordering operator. There are two
types of Feynman diagrams for this 8 matrix. The
diagram where the external fields couple to a free spinor
line is shown in Fig. 1. These diagrams are perfectly
well defined by the S matrix in Eq. (7). The external
fields may also couple to a spinor loop, as shown in
Fig. 2. These diagrams are not all well defined, since the
loops with four or fewer internal spinor lines have formal
divergences.

To define the loops, we use a symmetric e separation
at the vertices, which is effected by the replacement of
«(z) by

f
&'(z) =&I z+—«z)& z—

I

2n 2n)

where e is a spacelike four-vector, and n is the number
of external lines on the loop. In addition, a symmetric
average of e over the spacelike directions is to be per-
formed after the loop is calculated. The loop is then
defined by the limit as e' —& 0, if it exists. For the loops
which are singular in the limit as e' goes to zero, we
must first isolate and remove the singular terms before

Fro. 2. Feynman diagram for
the external fields coupling to
a spinor loop.

2

k;

4 S. G. Gasiorowicz, Elementary Particle Physics Qohn %iley R
Sons, Inc., New York, 1966).

The mass term Mo in the free Lagrangian is chosen to
be proportional to the unit matrix in the internal space,
and r(z) is defined by

r(.) = r(.)+m, .
In addition to the external fields, r(z) contains the mass-
splitting counter term M0 —GP'.

Using the conventional transformation to the inter-
action picture, 4 the S matrix is formally given by
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(b) m=3:

D.'(A+, F)=—

(c) n=2:
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D, '(A+, F)=0.
%e now consider the Ward identity satisfied by the sum of all single loop diagrams. Using the S matrix defined

in Eq. (18) and noting that
s, (& BA„F)=s, (iM, (A —A,), F)=D, (A„F)=0,

we Gnd

S,(~ BA„f)=P S,.(~ aA, F)= P fS,-(iM, (A —A,), F)+S,.-'(FiA, —iA F, F)+D,.(A„F)}
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D,(A„r)= P D..(A+, F)=Z D,.(A„F).

(29)

(30)

The first term on the right-hand side of Eq. (29) corresponds to the usual operator divergence, while the second
term, gives the anomalous divergence for the loops as defined in Sec. II. The anomalous divergence D, is given by
the sum of the contributions in Eq. (28): We obtain the result

D.(A+,f) = p D."(A+,F) = i dz tr((1/36)a A+(s)y„f'(s)y„f(s)y"F(z)+(I/36)a A (z)y, F(z)y„f(z)y"f (z)
a-z (2s)4

+(1/36) B~A,(z)q„F(s)~ I (z)~„r(s)+-,'iA (z)~ BF(z)~ aF(s) —&iA (s)B.f (z)~„a f (z)„„
—(I/72)B„~.F(s)a ~ LF(s)iA (s) —iA (z) F(s) —~ BA,(z)]

+(I/72)V ar(s)V BEF(z)iA,(z) —iA (z)F(z) —~ aA, (s)]}

+ M,i dz tr( ——„F(z)i~ BLF(s)iA,(s) —iA (z)F(s) —q BA,(z)]
(2s.)'

—,', LF(s)'A+(s) iA (s)f'(s) —yaA (s)]—y af'(z)}

7r2

+ C (E')+2Mp Cg(r)+ Mp 'L ds tr(| „'r BA+(z)r&F(s)},
4 (2s.)' (31)

where we have replaced F by I'+MD and used integrations by parts in z to combine some of the terms.
This completes the discussion of the %'ard identities for the loops defined with symmetric e separation. As was

noted jn the beginning of this section, the Nard identities for the currents attached to external spinor lines contain
np anomalous terms. Since these two types of diagrams are the only ones present in this theory, we may use the
result in Eq. (29) to evaluate the divergences of the operator currents defined in Eq. (10). The anomalous terms
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will be given in terms of D„using relations of the form given in Eq. (23). In the interaction picture, we find

8~1„(x)=8~ y(x)y, ) v~(x) exp i ds ~r(z)

P(x)P,r,iF(xgP(x)+i D, (lt+, I') exp i ds Zz(z)
bii. (x)

8"Jg„(x)=8" P(x)y„yqXgQ(x) exp i ds Zr(z)

(32)

f(x)(Xg y5, if—(x)}P(x)+i D, (A+,F) exp i ds Zr(z)
bAg (x)

The equivalent form for the divergence equations,
written in the "Heisenberg picture, "would be

8 J (x)=8 (g(x)y„Xv Q(x)},
= (q(x)P.,;ir(x)]g(x)},

+i/8/bA (x)]D,(~,F),
8~J,„.(x)= 8~(q(x)q„qg, .g(x) },

= ( q(x) (7,.v„- 'F(x) }q(x)},
+i [b/ibA5 (x)]D,(~,F),

where Q(x) are the Heisenberg spinor field operators,
and the local product of the spinor fields is defined to
correspond to symmetric e separation in the interaction
picture.

In this section, we have shown how anomalous terms
arise in the Ward identities and divergence equations
for the currents in a theory defined by symmetric e

separation. These terms arose from the singular nature
of the smaller loop diagrams, Because of the way we
have defined the loops, the anomalous divergence
contains many terms and may be seen in Eq. (31).
In Sec. V, ere will redefine the loops in order to de-
termine a "minimal" anomalous divergence.

U. RENORMALIZATION

The definition for the spinor loops given in Sec. II
is not the only one we could have used. The absorptive
parts of the loops are unaffected by the addition of
local polynomials in the external fields and their deriva-
tives. In this section we define renormalized loops by
the addition of counterterms to the single-loop S

=Sa(I'i&—ih I', I')+Da(&, f'), (35)

where

D„(b,f') =R(f'ih ih f y8—~, )F—+D,(h, f'). (36)

Da(h+, F) gives the anomalous divergence for the loops
defined by the subtraction of the counterterm R(1').

In order that the loops be finite in the limit as e2 goes
to zero, we must include counterterms which remove
the singular terms given in Eq. (19).We define

matrix given in Kq. (18). The counterterms will serve
two purposes. They should remove the terms, isolated
in Sec. III, which were singular in the limit as e goes
to zero. In addition, the counterterms will be chosen
to remove many of the anomalous terms in Ward
identities found in Sec. IV.

The renormalized single-loop S matrix is given by

S,(1')= S,(F)—R(F), (34)

where S,(I') is defined in Eq. (18) to be the sum of all
single-loop diagrams with symmetric e separation, and
R(I') is a local polynomial in the external fields and their
derivatives. The renormalized S matrix satisfies the
following Ward identity, corresponding to the one
satisfied by the e-separated S matrix in Eq. (29):

S (y 8~,F)
=S,(y 8~,P) R(y 8~,F)—
=S,(f'i~ —iaaf', 1')+D,(~,f') —R(q 8~,I')
=S,(I' ~—~I', I')+R(I' b —~I' —v 8~, I')

+ D,(~„r)

Ã2

Ri(P) =- Cz(e)+bfo Ci(e)+ M,' i dz tr(y„F(z)y&F(z)} Ci(e)i —ds tr((1/48)y„f(z)yi'F(z)y„F(z)y"F(z)
8 (2s)'

+(I/96)y„F(z)y„f'(z)r F(z)y"F(z) ——„7„F(z)y I (z)iy. 8f'(z)

—(I/24)y„8, F(z)y"8"F(z)—~ try 8F(z)y 8f(z)}. (37)

By comparing Eq. (37) with Kq. (19),we see that Sa,(F)=S,(I') —Ri(I') is finite in the limit as e goes to zero. The
contribution of Ri to the anomalous divergence may be calculated using Eq. (36). The second term in Eq. (37)
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does not contribute, while the first term gives

~2
R,(f'i«+ —i« I' —y 8«+, I')= —— C2(e)+MD Ci('E)+ Mo' i dztr{&„p 8«+(s)p"f'(s)}.

4 (2')'
(38)

This contribution exactly cancels the third term in the expression for the anomalous divergence D, in Eq. (31).
We now consider additional counterterms which will be used to remove some of the terms remaining in the

anomalous divergence Da, . We define the counterterm R2(I') by

1 x2 1
R,(f') =—— Moi ds tr{I'(s)iy af'(z)}+ i dz tr{y„a,r(s)y"8"I'(s) y—a r(s)y af'(s)

24 (2m)4 144 (2n.)4

1 Ã2

+— Goi dz tr{y V (s)P+(s)y V (z)P+(z)+2y U. (s)y V+(s)P (z)P+(s)}
12 (27r) 4

1 x'
ds tr{2 V „(z)V+ (z) V „(s)V+"(z)+ V+„(s)V+„(s)V+ (z) V+"(s)}, (39)

72 (2x)4

where P+(s) and V+&(s) are given in terms of I'(s) in Eq. (2). The contribution of these counterterms to the anom-
alous divergence may be calculated using Eq. (36). For the S matrix defined by

s„+,(r) =s,(r) -R,(f)-R,(r),
we find the associated anomalous divergence for the loops has the form

D„+„,(«„r)=R,(fv« i«r —~ 8—«„r)+R,(r i« —i«r —~ 8«„r)+D,(«„f)
1

i dsie„...try5{2i«+(s)8&V+"(s)a'V~'(z) —8&«+(z)V+"(s)U+ (s)V+'(s)},
6 (27r)4

(40)

(41)

where e„„,is the totally antisyi~~etric tensor, with
&oz23= 1.

The loops, as defined in Kq. (40), have a number of
interesting properties. They are all finite in the limit as
e' goes to zero; therefore, we may pass to this limit. The
additional, finite counterterm R2 allows the anomalous
divergence to take on the particularly simple form
given in Eq. (41).We note that all of the terms contain-
ing scalar and pseudoscalar fields have been removed
from the anomalous divergence. In a theory with scalar
and pseudoscalar external fields, only "matrix elements"
or three or more currents are affected by the anomalous
divergence. In addition, we note that the anomalous
divergence is proportional to the pseudotensor e„„., so

that only matrix elements having an abnormal parity
relation are affected.

We briefly mention the construction of the full S
matrix and the operator divergence equations with the
loops defined by Eq. (40). In the interaction picture,
the full S matrix is given by

Sz,+ii,= T exp i ds Zr(s) exp) —Ri(r) —R~(r)j.
(42)

The currents are obtained from the S matrix in Eq.
(42) by variation with respect to the external vector
and axial-vector fields, as done in Kq. (10). We obtain

fII

J„(x)= P(x)y„Xv+(x)+i t R (y 8«+, r)+Rs(y 8«+, I")j exp i ds Zr(z)
88~«(x)

&&exp) —Ri(I') —Rq(r) j
={g(x)y„X& i'(x) }&,+»,

J,„(x)= tt (x)y„X~&(x)+i- — (Ri(y 8«+,r)+R2(y 8~,I')j exp i ds Zr(s)
88~«p(x)

Xexp/ —Ri(F)—R2(I')j

(43)
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The divergence equations, corresponding to those in Eq. (33), are given by

a&J„(x)= a&{itt(x)y„kv Q(x)}s,+s,
= {g(x)Llw. ,ir(x)$$(x) }„, ,jiLa/ah. (x)jD, „,(~,r)
= {g(x) Ll~v, ir(x) jQ(x) }s,+R,——,'Lz'/(2s)'$ie„„. , tr {2ihv y, a" V+( x) a' V+'(x)

(44)
+Xv y5(a&V~"(x) V~ (x) V+'(x') —V+"(x)a"V+'(x) V+'(x)+ V+&(x)V~"(x)a V~'(*)j},

a"J5„(x)= a"{g(x)y„y5Xg g(x) }s,+s,
= {itt(x) {X„7„.-, i I'(—x) }Q(x)}a,+a,+i)8/aA; (x)jDs,+s,(+, I')
= {hatt(x){Xi y.-, i r—(x) }Q(x) }a,+s, ', (—s'-/(2s)'joe„„„ tr{2ih~ a&V~"(x)a V+'(x)

+~~ t a"V+"(x) V+ (x) V+'(x) —V+"(x)a"V+'(*)V+'(x)+ V+"(x) V+"(*)a'V+'(x) j}.
In the derivation of the renormalized loops in Eq. (40), we have treated the vector and axial-vector fields sym-

metrically. Therefore, both the vector and axial-vector currents contain anomalous divergences. In some theories,
such as electrodynamics or the gluon model, it would be useful to define the loops so that the vector currents obey
the usual divergence equations, while the axial-vector currents have the only anomalous divergences. We are able
to do this by again redefining the loops by the addition of the following counter term'.

1
Ra(r) =— i dz ir.„„„tr{ i V "(z)V—~"(z)ia'V+'(z)y.-

6 (2s-)4 —V-"()V "()V+'()V+'() .-+lV+"()V-"()V+()V+'()»} (43)
The loops are then defined by

s&„&„„(r)=s,(r) —z,(r) —z, (r) —z,(r),
and the associated anomalous divergence is given by

(46)

Ds,+R~s, (it+, r) =Ez(riA+ —iA I' —y aA+, r)+Da,+s,(h+, I')

1
dzz„„., trrit;(z){ ,'Fvt'"(z)Fv"-(z)+ ,',Fg~"(z)Fg—"(z)+-,'iA"(z)A "(z)Fv"(z)+-,'iFv""()A (z)A'(z)

4m'

+', iA "(z)Fv-"'(z)A'(z) (8/3)A "—(z)A" (z)A~(z)A'(z)} (47)
where trr means the trace only over the internal degrees of freedom. The field-strength tensors Fv""(z) and Fz&"(z)
are of the Yang-Mills type and are invariant under vector and axial-vector gauge transformations. They are
given by

Fv~" (z) = a~V"(z) a"V~(—z) i[V~(—z), V"(z)j i[A~(—z), A "(z)j,
F&~"(z)= a~A "(z)—a"A~(z) —i LV( )z, A(z) j—iLA~(z), V"(z)]. (48)

a"J„(x)= a"{&(x)y„Xv&(x)}ii,+z~s,
= {&(x)Ll~, 'r(x)]&(x)}, ,+ t b/bA (x))D„„,,(il, r)
= {4(x)o~v ir(x) jC(x)}a,+a,+a. ,

a"J~. (*)= a"{4(x)v.v~v~ C(x)}s,+a~a,
= {g(*){X-V„—r( )}g(x)}„„,„,+iLa/u. ,-(x)jD„„„,,(~,r)
= {Q(x){X~ys, ir(x)}Q(x—)}s,+z,+s,+(I/4n')e„„„ trrLl~~ {'Fv""(x)Fv '(x)+ ,'~Fa~"-(x)Fg '(x)—
+zzi A "(x)A"(x)Fv"(x)+ z2iF vt'"(x) A (x)A '(x)+-', iAI'(x) Fv" (x)A '(x) —(8/3) A "(x)A "(x)A'(x) A '(x) }].

(49)

The full S matrix and the operator currents are defined by the addition of Ei(r) to the expressions in Eqs. (42)
and (43), respectively. The operator divergence equations for the vector and axial-vector currents corresponding
to those in Eq. (44) may be determined using the expression for the anomalous divergence in Eq. (47). We obtain
the result

The divergence equations given in Eq. (49) represent
the end product of our entire calculation. The anomalous
term in the divergence of axial-vector current is,
indeed, the minimal anomalous divergence. The ad-
dition of further counterterms would either destroy
the normal divergence of the vector current or give

' C. N. Yang and R. L. Mills, Phys. Rev. 96, 19i {1959).

additional terms in the axial-vector-current divergence
equations. To see this fact, we examine the possible
counterterms that could be added to the S matrix in
Eq. (46). In order to preserve the vector-current diver-
gence equation, the vector 6elds can only enter the
counterterm through the field-strength ten sors in
Eq. (48). To have any eifect on the a,nomalous diver-
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gence in Eq. (49), the counterterm must be proportional
to the pseudotensor ~„„„'therefore, the product of the
fields must be odd under parity and even under charge
conjugation. Under these operations, the fields trans-
form according to

P: V~ V, 3 —+—A, Fv —+Fv, Fg —+—Fg,
C V —+ —V~ A —+ A~ Fv —& —Fv~ F~ ~ F~~, (50)

where V~ means the transpose of the matrix indices in

the internal space.
The possible counterterms are given by

R,(V,A) ~f d„E...[R t (F."'(z)F; (s)(

+R42 trr{Fr""(z)}trr{F~"(s)}
+iR4, trr{Fg""(z)A (z)A'(z) }

+244 trr{FQ""(z)A'(s)} trrA'(z)]

+terms that are higher order in the
fields or their derivatives. (51)

The first two terms in Eq. (51) may be present, but
they do not give any contribution to the anomalous
divergence. The third term can be eliminated, since it
is odd under charge conjugation. Note that we have not
included terms in Eq. (51) which would violate parity.
The fourth term may be present and can contribute
terms to the anomalous divergence. However, this term
does not have the coupling structure of a spinor loop
and cannot be used to cancel completely any of the
anomalous terms in Eq. (49). For completeness, we
give the form of the contribution that this counterterm
would give to the anomalous axial-vector-current
divergence:

Dr(,(it,-, V,A)

=&,(fA,ix,),(V,i2.j a~., V,A—)-
=844' dg e„„,„2trl iAg s 3 z,Fv"" s

'Xtrr{A '(z)}+2 trr{iitz(z)} trr{Fv""(z)A (s)A '(z) }
—-', trr{A5(z)} trr{F~ "(z)Fg"(z)}J. (52)

The terms which are higher order in the fields or their
derivatives in Eq. (51) will not give contributions to the
anomalous divergence of the form given in Eq. (49)
and would simply add higher-order terms to the anoma-
lous divergence.

We should note that all of the counterterms that we
have used to define the loops are consistent with
Weinberg's theorem' for the asymptotic behavior of the

~ S. steinberg, Phys. Rev. 118, 838 {1960).The asymptotic be-
haviors of the n-point functions as determined by steinberg are
that the two-point function may be quadratically divergent, the
three-point function may be linearly divergent, and the four-point
function may be logarithmically divergent. The counter terms
R&, R&, and Rs in Eqs. (37), (39),and (45) do obey these asymptotic
bounds.

vertex functions. Therefore, if these definitions of the
loops were used in an otherwise renormalizable, inter-
acting field theory, the addition of these counterterms
would not destroy the renormalizability.

The result that we have obtained for the anomalous
axial-vector current in Kq. (49) may be directly related
to the recent result of Adler' concerning the anomalous
divergence of the neutral axial-vector isospin current.
In these theories, the external axial-vector field is not
present, and the external vector field is the photon
field. The anomalous divergence is given in Eq. (49)
by making the following substitutions:

F&&"(x) = eg 'F,""(x), A "(x)= 0, (53)

where X& is the charge matrix for the spinor field. The
anomalous divergence becomes

B&J5„'(x)=JP(x)+ (1/4z. )no

)&tr Xr„9.9.~~„„.,F„~"(x)F,"(x), (54)

where X~' is the coupling matrix for the neutral axial-
vector isospin current to the spinor field, and ao ——e02/47r.

This is the result quoted by Adler.

VI«CONCLUSION

In this paper, we have studied the theory of a quan-
tized spinor field with arbitrary internal degrees of free-
dom having arbitrary coupling to external scalar,
pseudoscalar, vector, and axial-vector fields. By go-
ing into the interaction picture, we were able to care-
fully define and make finite all S-matrix elements.
The vector and axial-vector currents were defined by
a variation of the S matrix with respect to the external
vector and axial-vector fields. Because of the singular
nature of the smaller spinor loops, the Ward identities
satisfied by these currents were found to contain anoma-
lous terms. By considering all possible S-matrix ele-
ments, we were able to write the divergence equations
for the operator currents defined in this theory, as
given in Eq. (33).

The anomalous terms in the divergence equations
for the currents could be cast in a particularly simple
from by a redefinition of the spinor loops. By treating
the vector and axial-vector currents symmetrically, the
currents were found to satisfy the divergence equations
in Eq. (44). If we required that the vector currents
have the normal divergences, the divergences of the
axial-vector currents contained the minimal anomalous
terms given in Kq. (49). These anomalous terms were
minimal in the sense that any further redefinition of the
S matrix would either destroy the normal vector-
current divergences or simply give additional terms in
the anomalous axial-vector-current divergences.

The result that we have obtained for the minimal
anomalous divergence of axial-vector current is not
actually dependent upon our original definition of the
S matrix. Any other definition which makes the S
matrix well defined and finite could be used as a starting
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point. The Ward identities could then be calculated,
and we would, in general, expect to find many anomalous
terms, as we did in the case of the 5 matrix defined by
symmetric e separation. However, by again adding the
appropriate counterterms, we would find the same
minimal anomalous divergence given in Eq. (49).
Therefore, while the form of counterterms Ei, E2,
and E3 does depend upon the original definition of the
5 matrix, the form of the minimal anomalous diver-
gence does not.

We wish to comment briefly on the form of the mini-
mal anomalous divergence obtained in Eq. (49). We
note that all of the anomalous terms dependent upon
the scalar and pseudoscalar fields have been removed.
Therefore, in a theory having only scalar and pseudo-
scalar external fields, the Ward identities for the matrix
elements of three or more currents are the only ones
affected by the presence of the anomalous terms. In
addition, the anomalous terms are all proportional to
the pseudotensor e„„„,and hence will affect only those
matrix elements of currents having an abnormal
parity relation.

Anomalous terms in the axial-vector-current Ward
identities can arise in two ways. In Fig. 3, we illustrate
the types of diagrams which were found to have anom-
alous Ward identities. The Ward identities for the
triangle and box diagrams involve terms which are
linearly, or more highly, divergent leading to the exis-
tence of anomalous terms when the loop integration
variable is translated. Anomalous terms may also
arise when the smaller loops are redefined to satisfy
the correct vector-current Ward identities. Therefore,
while the Ward identities for the pentagons contain no
anomalous terms arising directly from the linear
divergences, they do contain anomalous terms when the
box diagrams are defined to have the correct vector-
current Ward identities. The diagrams which do have
anomalous Ward identities may be seen by referring
to the expression for the anomalous divergence in Eq.
(49). For neutral currents, only the A VV and AAA
triangle diagrams will have anomalous Ward identities.
For charged currents, anomalous Ward identities also
arise for the VVVA and VAAA box diagrams and for

FK. 3. Loop diagrams which
may have anomalous Ward
identities.

the VVVVA, VVAAA, and AAAAA pentagon
diagrams.

The anomalous terms in the divergence of the axial-
vector current can contribute to low-energy theorems
for off-shell matrix elements of the naive divergence
operator. If these low-energy theorems are combined
with a smoothness assumption for matrix elements of
the naive divergence operator, the existence of the
anomalous terms may lead to physical consequences.
For these cases, we note that the full divergence oper-
ator will not be, in general, a smooth operator. "For
example, the anomalous terms in the Ward identity
for the A A A A A pentagon may add anomalous terms
to the low-energy theorems used in the (partially
conserved axial-vector current) calculation of five-
pion scattering. ' Adler' has shown that the anomalous
Ward identity for the A VV triangle yields a low-energy
theorem for the decay m' —+ pp in a truncated version
of the cr model. We note that this low-energy theorem
has been shown to be exact to any finite order in per-
turbation theory for the truncated o. model by Adler
and Bardeen. ' Using the results of this paper, the calcu-
lation may be extended to the full o. model which in-
cludes charged mesons.
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