1848 PRITCHETT,

The cross section can therefore be written

dy, o? cos?(36)myq
dedDudQ 4 L2 sin4(%o)}W{ (B/E9] 3]
+[k2/2k%24 (W2 /m?) tan(36) 1(| 372+ 37 [%)
+ (k?/2k*%)2 Re(JH)* (394 (k2/%*)
XL(W?/m?) tan?(36)+k2/k*]2V2

XImJH(SHA3-D)).  (C26)

Now from I,

S(MMM = (4k*9)—”2 EJ: (2]+1) ZDM—M.MJ(—d’p - 0p¢p)*

XN TV (W R MMy, (C27)
(Sehan= (k*/ ko) (4k*q) ™1 ; (27+1)
XDapn” (=@ —0,65) (o TV (W %) [M0). (C28)

The relation between the angles is obtained by com-
paring Fig. 4 of I with Fig. 14:

Gp=27T—Piq. (C29)

If only the electron is detected, one must integrate over
the final pion direction, and using the orthogonality of
the © functions the interference terms in (C26) go
out. Finally, summing and averaging over nucleon

01’= ekq ’
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helicities gives

a0t
( (8( C) A2\ | 2
4r

tDIPN

Al Az

=1y (gf (4k*q)! ;(2] +1)

Al A2 0

X[ (| T7 (W %) | 1,0) |2

=§U+%)|C&|2, (C30)
9"
%XZ)Z . CI3hant 24 | S 2]
=3 4:: 4?.‘. (4k*q)* §(2J+1)[| 2| TV (W k) | M) 2
] TV (W 22 [\ —1)]2]
(C31)

=§. (J+DL| Taot* |24 | T1jet*]7],

where the eigenstates of parity have been introduced.
The resulting cross section for detection of only the
electron is that given in Eq. (3.31) of I. The resonant
amplitudes for producing the |#NV) channel in the
coupled-channel calculations are obtained by multiply-
ing Eq. (5.31) by cose.
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Anomalous Ward Identities in Spinor Field Theories
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We consider the model of a spinor field with arbitrary internal degrees of freedom having arbitrary
nonderivative coupling to external scalar, pseudoscalar, vector, and axial-vector fields. By carefully defining
the S matrix in the interaction picture, the vector and axial-vector currents associated with the external
vector and axial-vector fields are found to satisfy anomalous Ward identities. If we require that the vector
currents satisfy the usual Ward identities, the divergence of the axial-vector current contains well-defined
anomalous terms. These terms are explicitly calculated.

L. INTRODUCTION

HE presence of anomalous terms in the Ward
identities for currents defined in a number of
spinor field theories has been noted by several
authors.’=® The existence of these terms may be traced
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to the local products of field operators which are so
singular as to prohibit the naive use of the field equa-
tions. In a version of the ¢ model, the anomalous terms
in the Ward identity for the neutral isospin current
haveled to a low-energy theorem for the decay 10 — 5.2

In this paper, we consider a theory of a spinor field
with an arbitrary number of internal degrees of freedom
coupled to external scalar, pseudoscalar, vector, and
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axial-vector fields. In the interaction picture, the §
matrix is carefully defined using a symmetric e separa-
tion on the spinor loops. The terms which would be
singular in the limit as e goes to zero are isolated. The
currents are defined by variation of the .S matrix with
respect to the external vector and axial-vector fields.
By examining the Ward identities for these currents,
anomalous terms are found to arise from the smaller
loops which are, at least, linearly divergent.

A renormalized S matrix for the loops is defined by
the subtraction of contact terms which remove the
divergent terms and many of the anomalous terms
in the Ward identities. However, not all of the
anomalous terms can be removed in this way. In par-
ticular, the choice of counter term which preserves the
usual Ward identities for the vector currents provides
well-defined anomalous terms in the axial-vector current
Ward identities. The result of Adler? is obtained for the
neutral isospin current coupled to external photons.
When charged currents are present, additional terms
are found.

We indicate the following plan for this paper. In
Sec. II, we define the theory and discuss some of its
general properties. The terms which are singular in the
limit as e goes to zero are found in Sec. III. In Sec. IV,
the Ward identities are examined and the anomalous
terms isolated. The renormalized S matrix is defined
in Sec. V, where the resultant anomalous terms in the
Ward identities are also discussed.

II. DEFINITIONS

We propose to consider a theory consisting of a
quantized spinor field with arbitrary internal degrees
of freedom having arbitrary nonderivative couplings
to external scalar, pseudoscalar, vector, and axial-
vector fields. This theory is described by the Lagrangian

densit
- £(@) =¥ 0+T(E) (), ¢Y)

where
v 9=7v"3,, Ys'=7s.

The field ¥(z) is a Dirac spinor field and is a column
vector in the internal space. The function I'(z) is given
by

[(z)= —GoP+(@)+ 7. V() , (2)

Pi(@)=F+Z@)+ivsl1(),
Vi#(z)=Ve(z)+ysA4(2).
F is a constant matrix in the internal space and serves
to give the spinor fields arbitrary masses. The fields
2(2), I(z), V#(z), and A#(z) are all matrices in the in-
ternal space and may be written
Z(@)=A:Za(2), II(z)=AnIl.(z), 1
Ve@) =MV o(2), A*()=r1%4.(2). @

The fields Z.(z), a(2), Va(2), and A.(z) are the ex-

where
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Fic. 1. Feynman diagram for
the external fields coupling to
an external spinor line.

Pn Pn-y Py Po

n n 2 1

ternal scalar, pseudoscalar, vector, and axial-vector
fields, respectively, and Az%, An% Ay, and A4* are their
respective coupling matrices.

We will discuss this theory in the interaction picture
where the free Lagrangian density is given by

Lo(2) =) (iy-0—M WY (2), )
and the interaction Lagrangian density is given by
L1(z) =¥ (T @¥(). (6)

The mass term M, in the free Lagrangian is chosen to
be proportional to the unit matrix in the internal space,
and I'(z) is defined by

()= T'(2)+Mo.

In addition to the external fields, I'(z) contains the mass-
splitting counter term Mo—G,F.

Using the conventional transformation to the inter-
action picture,* the S matrix is formally given by

S=T exp[i/dz £1(z)], )

where T is the time-ordering operator. There are two
types of Feynman diagrams for this S matrix. The
diagram where the external fields couple to a free spinor
line is shown in Fig. 1. These diagrams are perfectly
well defined by the .S matrix in Eq. (7). The external
fields may also couple to a spinor loop, as shown in
Fig. 2. These diagrams are not all well defined, since the
loops with four or fewer internal spinor lines have formal
divergences.

To define the loops, we use a symmetric e separation
at the vertices, which is effected by the replacement of

£1(2) by
szf(z>=¢(z+i)r<z)¢(z—zin) . ®

where € is a spacelike four-vector, and # is the number
of external lines on the loop. In addition, a symmetric
average of e over the spacelike directions is to be per-
formed after the loop is calculated. The loop is then
defined by the limit as €2 — 0, if it exists. For the loops
which are singular in the limit as €? goes to zero, we
must first isolate and remove the singular terms before

Fi1G. 2. Feynman diagram for
the external fields coupling to
a spinor loop.

2 T ney

4 S. G. Gasiorowicz, Elementary Particle Physics (John Wiley &
Sons, Inc., New York, 1966).
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passing to the limit. The procedure used to isolate the
singular terms is given in Sec. III. This prescription
serves to define all of the loops. The expression for the
loop in Fig. 2 is given by

1
o =(—1)-(G)" 100 dn_’l:21l'—4"
Sen(T)=( 1)n() /dz /Z[ (2m)~]

x/-dkle—ikr (zg—21) . . -/dk,.e‘”‘"' (21—2n) gie: (K1t kn) In

Xtr{(Mo—ka)"'T'(z5)- - - (Mo—k)'T(z1)}. (9)

The use of 1/z in the definition of the e separation is
necessary so that loops with different numbers of ver-
tices may be simply related, as needed for the Ward
identities.

This definition of the loops is not the only one pos-
sible, but it has the advantage of preserving the explicit
symmetry of the loops. This property will be useful in
our discussions in Secs. IIT and IV. However, this
definition of the loops will give rise to many anomalous
terms in the Ward identities, as will be seen in Sec. IV.
Hence, it will be necessary to redefine the loops in order
to preserve as many of the Ward identities as possible.
In Sec. V, this redefinition of the loops is performed
through the additions of explicit counterterms.

The vector and axial-vector currents are defined by
the variation of the S matrix with respect to the ex-
ternal vector and axial-vector fields:

A. BARDEEN
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Ju(x)= -—-i[&/&V,,"(x)]{S}

=T [J(x)'y,,kv“d/(x) exp[i / dz 31(2):“(,

(10)
Jou®(x) = —i[8/04 o#(2) { S}

~r{demancte) ool [as 26|

As above, when the current couples into a loop, the
current vertex in Eq. (10) must be replaced by the e-
separated vertex as given in Eq. (8).

In this section, we have defined, in the interaction
picture, a theory of a quantized spinor field interacting
with arbitrary external fields. In Sec. III, we isolate
the terms which remain e-dependent in the limit as e
goes to zero.

III. DIVERGENCES

In Sec. II, the loops were defined by a symmetric
average on ¢ and by then taking the limit as €? goes to
zero. For loops with more than four vertices, this limit
exists and may be taken inside the loop integral. This
limit does not exist for the smaller loops which contain
terms which remain e-dependent. In this section, we
isolate the divergent terms in the four-, three-, two-,
and one-vertex loops.

A. Four-Vertex Loop

The four-vertex loop is logarithmically divergent.
From Eq. (9), we write the e-separated loop as

SHI)=(—1)3()* [ dn f dz / dzs f da[ —i(2r)—s / dyeihr G f sty =2 / gt (=zs)

X / dhygiks rm20gie: Gthrtkstko 14 tr{ (M g— k)T (24) (M o— ks)™'T'(25) (M o— ko) ~'T (25) (M o—k)"T'(z)}. (11)

We introduce the loop integration variable P=%(k1+ky+ks+k,) and make the change of variables

ki=P+q, ky=P+q, ks=P-+gqs, ky=P+q,. (12)

The momenta g1, g2, ¢, and ¢4 in the trace are expanded in a Taylor series keeping only those terms which would
be singular in the limit as € goes to zero. As we are to perform a symmetric average on €, we may also perform a
symmetric average on the loop momentum P. Using these transformations, the singular part of the four-vertex
loop becomes

S¢4(I‘)=(—1)}(2«)‘IG/dzlfdzzfdzade4/dP eiP"/dqle‘iql'(”—“)/dq?e“i‘"' (’3"2)/dqse*i‘13' (z4—23)

X/dQ4e-'iq4~ (21—24)5<w>
4

Xtr{ (Mo—P—q4)'lr(z4)(Mo—P—qa)_lF(Zs)(Mo—P-42)_1I‘(Zz)(MO—P—Ql)"IF(Zx)}

=(—1)%(27r)—16/d21' . '/dZ4/dP eiP"/dQIff—iql' (z2—z21). . '/dQ4e_iq"(z1_")6<M>
4

X (M02—P2)_4 tr{PI‘(z.;)PP(za)PI‘(xg)PI‘(zl)}
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= (—1)%(2#)—4/dz/dP e'T (M2 —P2)—4(P?)?
X {75 tryu L@y T (@), T(2)y'T(2)+(1/24) try, T(2)v. [ (@)v*I'(2)y'T(2)}
= —iCl(e)/dz{(1/48) try D@y T (2)7. T (@)y' T ()4 (1/96) try L' (@) v T @v*T'(@)y' ()},

where we define the following e-dependent functions:

Ci(e)= —i(21r)‘4/dP eP e (M2—P2)~2, Coe)= —i(21r)‘4/dP eire(M32—PHL,

B. Three-Vertex Loops

1851

(13)

(14)

Using transformations similar to those for four-vertex loop and taking advantage of the cyclic permutation sym-

metry in the indices, the linearly divergent three-vertex loop may be written as

SH ) =(—1)3iG)? [ dn f dz / das[ —i(2m) = / dhyeib G20 / et (s—e) f dhseit (129

X ete kitkatks) /3 tr{ (Mo—ka)_lr(23)(Mo—kz)—lr(22)(Mo—kl)*lr(zl)}

=(—=1)302m)12 / dz / dz, / dz; / dP e'P-e / dg et (a2 / dgoe—iar (za—22) / dgae—ie (z1—23)

1+¢2+¢s
xa(q——qg—i)[s(mz—mrs tr{PT(z5)PT (2) Mo (21)}
+3(Mo?— P2 tr{PgsPT () PT(2)PT(s1)} ]
—iCy(9 f 453 try, D@y T Mol @)+ try, LEV T E)iv-3T@)}

where -
A9,B=A(3,B)—(9,4)B.

C. Two-Vertex Loops

The singular part of the quadratically divergent two-vertex loop is determined to be

Sez(I‘)=(—-1)%(i)2/dz1/dz2[—-i(21r)*4]2/dk,e—“"'(’PZI)/dkge‘ik2' (z1—22) gie- (k1tke) /2
Xtr{(Mo—ks)'T(20) (M o—k1)T'(22) }

+
=(—1)%(27)—8/d21fd22[dP el‘P-z/dqle—iqr(zrzx)/dq2e—iqz-(zl-zz)é(ql Q2)
2

X [(MQZ—P2)_2 tr{PI‘(22)PI‘(z1) +MOF(22)MOP(Zx)}
+2(M02—P2)_3 tr{PQQPP(Zz)MoP(Zl) +quMor(Zz)PP(Zl) +MoQQPP(Z2)PP(Zl)}
‘{'(11102"'1)2)_4 tr{2PQ2PQ2PF(22)PP(Zl) +PQQPP(22)PQ1PP(21)}]

=13[Ca(e) —M02C1(e):]/dz{ try,I'(2)y*T(2)} —iCi(e) /dzI}Mo2 trI'(z)T'(2)

+1Mo trT(5)iy- 9T (s) — 7 try- 9T (2)y- 9T (3)+(1/24) try,9,I'(z)y*8"I'(z) ].

D. One-Vertex Loop
The one-vertex loop is given by

SJ(I‘)=(—1)i/dz[—1'(21r)"ﬂ/dk ek tr(Mo—k)"'T'(z)= —iMoC2(e)/dz trI'(z).

(15)

(16)

17
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By directly evaluating the singular part of the smaller loops, we have isolated the terms which remain e-depen-
dent in the limit as e goes to zero. We define the sum of all single loop diagrams by

S(T)=S(T—Mo)=3" S(T).

(18)

n=1

The e-dependent part of S.(T) is given by the sum of the contributions from Eqgs. (13) and (15)-(17). The sum of
these terms is given in Eq. (19), where we have, for convenience, replaced I'(z) by I'+ M, in these expressions. We

have

Se(T) =3[Ca(e)+M*Ci(e) )i / dz tr{y, L' (@)v*T(2)} —C1(e)i / dz[(1/48) tr{v,T(@v*T (). T(2)v'T ()}

+(1/96) tr{. L@ L@ TEY TE) — 15 tr{v D@y T )iy 9T ()

—(1/24) tr{v,0,T'(5) v+ T'(2)} —1% tr{y- 9T (z)y-T'(2)} ] + finite terms.

IV. WARD IDENTITIES

In this section, we examine the Ward identities for
the theory defined in Sec. II. As noted in the Intro-
duction, we expect the existence of additional terms in
the Ward identities for the loops because of the singular
nature of the smaller loops. The additional terms which
do arise are, of course, dependent upon the precise
definition of the singular loops. We will calculate the
anomalous terms in the Ward identities for currents
attached to the loops defined by symmetric e separation.
We need not consider the Ward identities for currents
attached to a free spinor line, since these can contain
no abnormal terms.®

The vector and axial-vector currents were defined in
Eq. (10) by variation of the .S matrix with respect to
the external vector and axial-vector fields, respectively.
For the currents attached to the single-loop diagrams
[see Fig. 2 and Eq. (9)], it is convenient to make the

(19)
substitution
Vik(x) — Vir(x)+ oA (x),
where
Ai(x) = )\V“A“(x)i)\A“75A5“(x) . (20)
The S matrix for the n-vertex loop becomes
ST+ 041) =SH(T)+Sen(v- 044, I)+0(A42).  (21)
The currents are given by
Ju(@)= —i[8/60#A(x) ]S (T4 0A4) | 4 ,=0
= —i[8/60*A*(x) ]Sen(y - 0A4,T), (22)
Jsu(x) = —i[8/80#A;(x) ]S (v 0A4,T).
The divergences of the currents are given by
0#J (%) = i §/6A(x) 1S (v- 0A4,T) (23)

6“]5,‘(x) = i[&/aAs"(x)]S,"(y- 0A,T).

We will evaluate S.”(y-0A4,T) using the expression
for the n-vertex loop as given in Eq. (9). We have

S;”(‘Y'aA_HP) = (-—1)(i)”/dz;- . /dzn[_i(zw)—éjn/dkle—ih' (z2—21). . ./dk”e_lkn' (21—2n)

Xete rtetkmin tr{ (Mo—Ra) ™"y - 0A4(20) (M o—Rn—1) '+ - - (Mo—R)"'T(21)} .

(24)

Using an integration by parts and a cyclic permutation of the indices, we obtain

S."(Y‘6A+,P)=(—1)(i)”fdzl’ . ./dz"[_i(zw)—4]n/dkle—ik1~(zz—zl). . ./dk"e—ikn-(ZI—Zn)eie~ (k1t--+kn)/n

Xtr{ (]l{[O'—kﬂ)_li(kn—l"kn)A+(zn)(]Mo-kn--l)_1 toe (Mﬂ—kl)—lr(zl)}

=(—1)i”fdzx' . ./dzﬂ[_i(z,r)—qn/dkleih-(zz—z:). . ./dkne—ikn- (z1—2n) gie: Gerke++kn) [n

OIOIX tr{ (M o—kn)'[iM oA—(5n) —iM oA ()] - - (Mo—k1) " T'(31)}

+(—1)i"/d21' . -/dzn[—i(2r)“4]"/dk1e_fkl'(zﬂ—m' . -/dk"e—”‘n'(ﬂ"ln)eiv(k1+---+kn~1)/(n—-1)

Xtr{ (Mo—kn2) T (zns) - - - (Mo—R) [T (21)iM 4 (20) —iA_(z) D (z) )

§V. Takahashi, Nuovo Cimento 6, 370 (1957).
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+(—1)i"/d21' . ./dzn[_i(zw)—4]n/dkle—ikx- (z2—z1). . ./dkne—iku- (21—2n)
X [eie- (kite++kn) In _ gie (b1t -+kn—1)/ (n—l)]
Xtr{ (Mo—k,._l)“ll‘(z,,_l) e (Mo—kl)“l[I‘(zl)iA_,.(z,.) —zA_(zl)I‘(z,.)]} . (25)
In the second term above, we perform the £, and z, integrations. In the third term, we make the following replace-
ments:

Ea=P, kw=P+gm, m=1,...,n—1

and use an integration by parts in P to replace ie: ¢ by —gdp. Equation (25) becomes
Se"('y-aA,I‘)=(—1)i"/dzy . -/dz,.[—i(Zvr)‘]"/dkle""‘l'(”‘")- . -fdk,.e‘“"" (21~2n) gie: Ckrt-++kn) /n
LIOIX tr{ (M o—ka)'[iM oA (20) —iM oA+ (20) ] - - (M o—k1)~'T'(z1)}
+(_1)in—l/dzl. . ./dzn_l[_i(z.n-)—‘i:lﬂ—l/dkle—“ﬂl' (z2—21). ./dkn_le—ikn—l' (21—2n-1)

LILIX ettt ka0 1= tr{ (Mo —Rn1) ™' T (2n1) - - (M o— k1) [T (31)iA+(21) —iA_(21) T'(21) ]}

+(—1)(2r)‘4"/dz1‘ . ./dzn/dqle—iqx-(zz—zn. . ./dqn_le—iQn—l- (zn——zn—l)/dp eiPe

DDx[e—(qx+w+Qn—1)-6pln — (a1t ++gn-1)-3P/ (n—l)]

LOXtr{(Mo—P—gn1)"'T(3n-1) " * - (Mo—P—q1)"'[T(21)iA+ (31) —iA_(21) T'(20) ]}
=Se"(lM0(A——A+)) P)+Seﬂ_l(FiA+—'iA—Fy F) +D€"(A+)I‘) . (26)

The first term on the right-hand side of Eq. (26) corresponds to the normal divergence in the interaction picture,
the second term corresponds to the normal equal-time commutator, while the third term gives the anomalous
divergence. From Eq. (26), the anomalous term in the #-vertex Ward identity is given by

Den(A_hI‘) =(—1)(27r)_4"/d21' .. /dznqule~iq1~ (e3—z1). .. /dqn_le—iqn-x- (zn—h.—x)/dp PAlal
X[e"(ﬂ‘f‘""l'dvu—l)'aP/ﬂ_e"(ql+"~+1n~l)'5P/(n—l)]

Xtr{(Mo—P—¢n1)7'T(zn) * - (Mo—P—q1) [T (21)ik1(3,) —iA_(z)T'(za) 1} . (27)

The expression for D.* in Eq. (27) may be evaluated by noting that the term in square brackets is of order .
Therefore, only those terms in the trace which are linearly, or more, divergent will survive in the limit as e goes to
zero. We calculate D" by first expanding the trace in a Taylor series in the momenta g, keeping only those terms
which would be at least linearly divergent. The derivatives are then allowed to act ; each derivative lowers the
degree of divergence by one power. We retain only those terms which would survive in the limit as e goes to zero.

For n>4, the loops are sufficiently convergent, and D," is zero in the limit. We make an explicit calculation of the
smaller loops and obtain

(a) n=4:

1 72
D&(A4,T) % W dz tr{9"A+(2)7, T ()7, T'(2)y"(2) +0“A +(2)7, T (2) v, T'(2) Y’ T'(2) + 941 (2)7, T (@)Y T2}y, ()} ;
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(b) n=3:
D&(A4,T)= —(7”7 / dz tr{3Med*A4 (2)7,T (2)T(2) +5M 00*A1 ()T (2) v, (2) +3M 09*A_(2) T (2) v T'(2)

+(1/24) M o[A_(2) A (2) IT(2)y- 8 T(2) +i0*A4 (2)v,T(2)y - 8(2) —1%idA+ ()Y’ T(2)7,0,T'(2)
—3X67%0"A4 (2)y, T (2)v'3,T'(2) +§ X 6~%0#A4 (2) v, ['(2)y - 9T (3) +3 X 67%04A 4 (2)y ' T (2)v,, I'(2)} 5 (28)
(c) n=2:

Da(hn,T) = —A[Cx(+MoCx(O)Ti f dz {00, (7, D )}

+ (; ] 45 EMATA) ~A- T 2000, s TE);
(d) n=1:

DMA4,T)=0.

We now consider the Ward identity satisfied by the sum of all single loop diagrams. Using the .S matrix defined
in Eq. (18) and noting that
S (y-0A4,T)= S (M o(A-—A4), T)=DI(A,T)=0,
we find

Siy-08, D)= 3 So(y-004,T)= 3 (SAGMo(A——Ay), T)+SX(Tidy—iA_T, T)+D,(A4,T))

n=1 n=2

=3 (ST —=Me)iky—ih(T—Ms), T)+D (A, T))

ne=1
=S (TiA—iA_T, TY4+D.(A4,T), (29)
where
© 4
D(A4,T)= § D(A4,T) =Z_2 D(A4,T). (30)

The first term on the right-hand side of Eq. (29) corresponds to the usual operator divergence, while the second
term gives the anomalous divergence for the loops as defined in Sec. II. The anomalous divergence D, is given by
the sum of the contributions in Eq. (28): We obtain the result

4 2
D.(A4,T)= 2_2 Di(A4,T) = 6—)7 / dz tr{(1/36)9*A1.(2)7,u [ (&)1, T' @)y’ T (2) +(1/36)04A4 (2)v, T () v, L 2}y’ T (2)
CI0H+(1/36)04A+ ()%, () T () vul (2) +3iA+(2)y - 0T (2)y - 9T (3) —$iA_(2) 9T (2),0'T (2),
(= (1/72)3,v. L (2) 94y’ [ T (2)iA+ () —iA-(2) ['(2) —v - 9A4(2)]
O+ (1/72)y- 9T (2)y - AL T (2)iA+(s) —iA—(2) T () —- 9A+ ()]}

+(21r )4Mgi/dz tr{ —1% T (2)y- [ T'(2)iA4(z) —iA_(z)T(2) —v- 9A4(2) ]
— 15[ T'(2)iA1(2) —iA_(2)T'(2) —v- 0A () Jiv- OT'(2)}
1 w2
+Z[C2(€) +M02C1(€)+(2W)4M02:|i/dz tr{y,y - 0A(2)v*T'(2)}, (31)

where we have replaced I' by I'+ M and used integrations by parts in z to combine some of the terms.

This completes the discussion of the Ward identities for the loops defined with symmetric ¢ separation. As was
noted in the beginning of this section, the Ward identities for the currents attached to external spinor lines contain
no anomalous terms. Since these two types of diagrams are the only ones present in this theory, we may use the
result in Eq. (29) to evaluate the divergences of the operator currents defined in Eq. (10). The anomalous terms
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will be given in terms of D,, using relations of the form given in Eq. (23). In the interaction picture, we find

9T o (x) =0» 'J(x)'y,.)\v"‘%(x) exp[i f dz £ [(Z)]}

= {[,;(x)[xya,if(x)]w(xH

iaAf(x)De(m,f‘):l epr:i / dz £1(z):”>‘,

(32)

8T 5,2(x) =6“{x17(x)7n75>\4°‘1'(x) exp[i f 4 ‘9'@]},

~{[Fer0ere —itnsor i) e i 12210

The equivalent form for the divergence equations,
written in the “Heisenberg picture,” would be

947 u(%) = 9+{ f(x) v, Averk(2) )«
= { Y@ Dveil (@) W(x))
+i[6/6A*(x)]1D.(A+,T),
0T 5,2 (x) = a#{ ‘-I!(x)'YM'Yﬁ)\Aa'L'(x) Ye
= { (@) (M avs, —iT(x)} (=)}
+i[8/i8As*(x) ID(A+,T),

where {(x) are the Heisenberg spinor field operators,
and the local product of the spinor fields is defined to
correspond to symmetric e separation in the interaction
picture.

In this section, we have shown how anomalous terms
arise in the Ward identities and divergence equations
for the currents in a theory defined by symmetric e
separation. These terms arose from the singular nature
of the smaller loop diagrams. Because of the way we
have defined the loops, the anomalous divergence
contains many terms and may be seen in Eq. (31).
In Sec. V, we will redefine the loops in order to de-
termine a “minimal” anomalous divergence.

(33)

V. RENORMALIZATION

The definition for the spinor loops given in Sec. II
is not the only one we could have used. The absorptive
parts of the loops are unaffected by the addition of
local polynomials in the external fields and their deriva-
tives. In this section we define renormalized loops by
the addition of counterterms to the single-loop S

2

1
RI(F) =5|:C2(€)+Mo C1(€)+(2 )

matrix given in Eq. (18). The counterterms will serve
two purposes. They should remove the terms, isolated
in Sec. ITI, which were singular in the limit as € goes
to zero. In addition, the counterterms will be chosen
to remove many of the anomalous terms in Ward
identities found in Sec. IV.

The renormalized single-loop S matrix is given by

Sr(T)=S8(T)—R(T), (34

where S(T) is defined in Eq. (18) to be the sum of all
single-loop diagrams with symmetric e separation, and
R(T) is a local polynomial in the external fields and their
derivatives. The renormalized .S matrix satisfies the
following Ward identity, corresponding to the one
satisfied by the e-separated .S matrix in Eq. (29):

Sr(y-9A4,T)
=Se(y-0A4+,T) —R(y- 9A4,T)
=S(T'iA,—iA_T, T)+ D(Ay,T) —R(y- 9A,,T)
=Sgp(TiA,—iA T, f‘)-l—R(PiA.;.—iLP—’y- dA,, T)
+DG(A+)F)

=Sr(TiAy—iA_T, T)+ Dr(A4,T), (35)

where
Dr(A4,T)=R(T'iAy —iA_T'—v-3A,4, [)+D.(A4,T). (36)

Dg(A4,T) gives the anomalous divergence for the loops
defined by the subtraction of the counterterm R(T).

In order that the loops be finite in the limit as €2 goes
to zero, we must include counterterms which remove
the singular terms given in Eq. (19). We define

10 | [ ds wtr T @) ~Cu9 [ ds (/49T LT T

+(1/96)7,. L @)y, T @y T @)y T (2) =57, L@y T (@)iv - 31 (z)

—(1/24)7,0,T(2)y*’T(s) =7 try- 8T (2)y- 0T (2)}.  (37)

By comparing Eq. (37) with Eq. (19), we see that Sg,(I') = S.(I) —R,(T) is finite in the limit as € goes to zero. The
contribution of R; to the anomalous divergence may be calculated using Eq. (36). The second term in Eq. (37)
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does not contribute, while the first term gives

I 1 2 m 2 |7 . B
Ri(TiA—iA_T'—v-0A,,T)= —;[Cz(é)‘f—Mo C1(6)+(2W)4Mo ]1/dz tr{vyy- 0A+()v*T'(2)} .
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2

(38)

This contribution exactly cancels the third term in the expression for the anomalous divergence D. in Eq. (31).
We now consider additional counterterms which will be used to remove some of the terms remaining in the
anomalous divergence Dg,. We define the counterterm R,(T') by

B 1 =
Re(D) _?4 (2m)*

1 =2

- 1 72
Moi/dz tr{T(z)iv- 9T (2)} +?4—4 W/dz tr{v.0,T(2)v*T(5) —v- a1'(2)v - 01 (2)

+———Go% / dz tr{y-V_(2)P1(2)y- V_(2) P+(2)+ 27 V- (2)v- Vi (2) P-(2)P+(2)}

12 (2m)*

1 =

—— | Ztr2Vn@ V@ Ve@ Ve G) V@) V@ Vit (@) Ve (@)},

72 (27)*

(39)

where P, (z) and V,#(z) are given in terms of I'(z) in Eq. (2). The contribution of these counterterms to the anom-
alous divergence may be calculated using Eq. (36). For the S matrix defined by

Syt ry(T) =Se(T) —Ry(T) — Ro(T),

(40)

we find the associated anomalous divergence for the loops has the form

Dryyro(A,T) =Ry(TiAy —iA_T'—v-0Ay, T)+Ry(TiA L —iA_T —y- 0A4, T)+D(A4,T)

1 72

== | dzieuwer trys{2iAi(2)0*V 2 (2)0°V 4 7(2) — A4 () V2 () Ve () Vi (2)}

6 (2r)4

where €,,,- is the totally antisymmetric tensor, with
€o123= 1.

The loops, as defined in Eq. (40), have a number of
interesting properties. They are all finite in the limit as
€? goes to zero; therefore, we may pass to this limit. The
additional, finite counterterm R, allows the anomalous
divergence to take on the particularly simple form
given in Eq. (41). We note that all of the terms contain-
ing scalar and pseudoscalar fields have been removed
from the anomalous divergence. In a theory with scalar
and pseudoscalar external fields, only “matrix elements”
or three or more currents are affected by the anomalous
divergence. In addition, we note that the anomalous
divergence is proportional to the pseudotensor €,,,, SO

)

(41

that only matrix elements having an abnormal parity
relation are affected.

We briefly mention the construction of the full S
matrix and the operator divergence equations with the
loops defined by Eq. (40). In the interaction picture,
the full S matrix is given by

Sesr= e [ a2 aez(z)]}‘exp[—Rl(r)—m(f)J .
(42)

The currents are obtained from the .S matrix in Eq.
(42) by variation with respect to the external vector
and axial-vector fields, as done in Eq. (10). We obtain

Jo(a)= [[ﬂx)ww&)w———ml(v-aA+, )+Raty-ana, )] | e [ 2 "G’(z)]}e

80#A(x)

={U(®) VA U(®)} Risra,

Xexp[ —Ri(T) —Ry(T)]

(43)

Tou(x) = [[';(x)wh“&l/(x)‘l-i——a—[lel(‘y “0A4,T)+Re(y- 3A+,I~‘)]J exp[i / dz 431(2)]]!

53“1\5“(36)

={U(@)y, v a®Y(*)} RitRs-

Xexp[ —Ri(T) —Ry(I) ]
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The divergence equations, corresponding to those in Eq. (33), are given by
oJ o (x)= a“_{ ‘_Q(x)'Yu)‘Va‘k(x)}Rﬁ-Rz _
= {‘U(x) [)\Va:if‘(x) ]‘k(x)} Rx+Rz+ i[a/éAa(x)]DRﬁRz(A*HP)
= (G A v T (@) J(®)) ror 2y — 5[/ (2m) Jieusar tr{20Nv =y 504V (x) 97V, 7(2)
FAreys[ 04V () Vi (x) Vi (%) = Vik() 0 Vi o () Vi "(x) + Vs (2) Vi () 07V, 7 (x) 1} (44)

0T 5,%(x) = 0*{ Y(*) Yy sha ()} rys py
= (F®) a3, =TI} ret ryHiL8/685%(6) 1Dyt my(As, T)
= {4 (N a5, =T @) }4(@)) Rt ry— 8L/ (2m) Jieuror tr{2iN 404V (x)8°V 4 7(x)
FAa [V (@) Vi (@) Vi 7(2) = Vit (1) 8 Vi (x) Vi () + V() Vi (2) 0V 7(2) T}
In the derivation of the renormalized loops in Eq. (40), we have treated the vector and axial-vector fields sym-
metrically. Therefore, both the vector and axial-vector currents contain anomalous divergences. In some theories,

such as electrodynamics or the gluon model, it would be useful to define the loops so that the vector currents obey
the usual divergence equations, while the axial-vector currents have the only anomalous divergences. We are able

to do this by again redefining the loops by the addition of the following counter term:

_ 1 =2
Ra(f)=¢ (2r)

The loops are then defined by

Srit R2+Ra(f) = St(f) -

and the associated anomalous divergence is given by

i / 2 ieger tr{ —iV_4(&) V2 (2)id" V1 7(2)ys

Dyt rarra(A4,T) =Ro(Tidy —iA_T'—y-0A4, T)+Dgyyro(As,T)

1

=———0 | d2 €wor trids(2) {TFv* (2)Fvo7(2) +12F a* (2)F 4°7(2) +2iA#(3) A*(2) Fy°7(2) +2iF () A7 (2) A 7(2)

472

=V 2@V @V @V @y +iVar @V @ Ve @) Var(z)ysh . (45)
Ry(F) —Ry(T) —Ry(T), (46)
+3i44(R)Fv(2)A7(2) — (8/3)44(2) 4" (2)A°(2)A"(2)}, (47)

where tr; means the trace only over the internal degrees of freedom. The field-strength tensors Fy#(z) and F 4#(3)
are of the Yang-Mills type® and are invariant under vector and axial-vector gauge transformations. They are

given by

Fyw(z)=04V"(2) —0"VH(z) =i V¥(2),V*(2) ] —i[ A#(2),4*(s) ],

Fq¥(z)= 0#4%(2) — 0" A4 (z) —i[ V¥(3),4*(2) ][ 44(2),V*(3) ].

(48)

The full § matrix and the operator currents are defined by the addition of R;(T') to the expressions in Eqgs. (42)
and (43), respectively. The operator divergence equations for the vector and axial-vector currents corresponding
to those in Eq. (44) may be determined using the expression for the anomalous divergence in Eq. (47). We obtain

the result
onJ o (x) = ax{ ‘E(x)'}’u)‘V“‘!{(x) } Ryt Ryt By

= {G®)Av2iT (@) J6(2)} Ryt myr e H108/6A%(%) 1D ot Ryt Ro(As, T

= { t.{-;(x)[)\v“,tf‘(x)]\k(x) } Ri+Ry+R3»
T 5,%(x) = 9¥{ ‘.E(x)yu‘y5'YAa‘I£(x)}Rl+RﬁRa

(49)

={ ;g(x) {Na*vs, —iL(0)}(®)} Ryt Ryt Ryt 1[8/0A5%(x) DRyt Rt Ry (A, T)
= { 4@ My, —1T(@)}(®)} Ryt Ror st (1/472) €sor tri[ A a {2 F v (2) Fyo7(x)+ 75 F 4 (2) F 4°7(x)
+3iAH (@) A" (x)Fyom(x)+FiF v (x) A7 (x) A7(x) + 314 (x) Fyo () A 7(x) — (8/3) A#(x) A*(x) A*(x) A 7(x)} ].

The divergence equations given in Eq. (49) represent
the end product of our entire calculation. The anomalous
term in the divergence of axial-vector current is,
indeed, the minimal anomalous divergence. The ad-
dition of further counterterms would either destroy
the normal divergence of the vector current or give

¢C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1959).

additional terms in the axial-vector-current divergence
equations. To see this fact, we examine the possible
counterterms that could be added to the .§ matrix in
Eq. (46). In order to preserve the vector-current diver-
gence equation, the vector fields can only enter the
counterterm through the field-strength tensors in
Eq. (48). To have any effect on the anomalous diver-
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gence in Eq. (49), the counterterm must be proportional
to the pseudotensor €,,.,; therefore, the product of the
fields must be odd under parity and even under charge
conjugation. Under these operations, the fields trans-
form according to

P: VoV, A—>—A Fy— Fy,Fq——F,,

C: Ve VT, A AT, Fy——FyT Fy— F 7, OO0

where V7T means the transpose of the matrix indices in
the internal space.
The possible counterterms are given by

Ry(V,A)=i / dz €uar[ Ruy tr{ Fy* (2)F 4°7(2)}

“+Ryo tI‘I{Fv“"<Z)} tr;{FA‘”(z)}
+iRus trr{Fa*(2)A°(2)A7(2)}

FRustri{F 4*(z)A°(2)} triA"(z)]

~+terms that are higher order in the
fields or their derivatives.

(1)

The first two terms in Eq. (51) may be present, but
they do not give any contribution to the anomalous
divergence. The third term can be eliminated, since it
is odd under charge conjugation. Note that we have not
included terms in Eq. (51) which would violate parity.
The fourth term may be present and can contribute
terms to the anomalous divergence. However, this term
does not have the coupling structure of a spinor loop
and cannot be used to cancel completely any of the
anomalous terms in Eq. (49). For completeness, we
give the form of the contribution that this counterterm
would give to the anomalous axial-vector-current
divergence:

Dr(As,V,A)
=R4([A,iA5],[V,iAs]—0A;5,V,A)

=R44ifdz ewar[ 2 trr{iAs(z)[A°(2),Fv*(2) ]}

Xtri{d(2)} +2 trr{iAs(z)} tri{Fv*(2)A°(2)A7(z)}
—% trl{A5(z)} tr[{FA“"(Z)FA'"(Z)}]. (52)

The terms which are higher order in the fields or their
derivatives in Eq. (51) will not give contributions to the
anomalous divergence of the form given in Eq. (49)
and would simply add higher-order terms to the anoma-
lous divergence.

We should note that all of the counterterms that we
have used to define the loops are consistent with
Weinberg’s theorem? for the asymptotic behavior of the

7S. Weinberg, Phys. Rev. 118, 838 (1960). The asymptotic be-
haviors of the #-point functions as determined by Weinberg are
that the two-point function may be quadratically divergent, the
three-point function may be linearly divergent, and the four-point
function may be logarithmically divergent. The counter terms

Ry, R, and R;in Egs. (37), (39), and (45) do obey these asymptotic
bounds.
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vertex functions. Therefore, if these definitions of the
loops were used in an otherwise renormalizable, inter-
acting field theory, the addition of these counterterms
would not destroy the renormalizability.

The result that we have obtained for the anomalous
axial-vector current in Eq. (49) may be directly related
to the recent result of Adler? concerning the anomalous
divergence of the neutral axial-vector isospin current.
In these theories, the external axial-vector field is not
present, and the external vector field is the photon
field. The anomalous divergence is given in Eq. (49)
by making the following substitutions:

FVW(x) = eo)\leyl“'(x) ) 4 #(x) =0 ) (53)

where A7 is the charge matrix for the spinor field. The
anomalous divergence becomes

01T 5,0(x) = J5*(x)+ (1/4m)ao

XrIAaNNepo F o () Fo07(x),  (54)

where A 4° is the coupling matrix for the neutral axial-
vector isospin current to the spinor field, and ap= e¢?/4.
This is the result quoted by Adler.

VI. CONCLUSION

In this paper, we have studied the theory of a quan-
tized spinor field with arbitrary internal degrees of free-
dom having arbitrary coupling to external scalar,
pseudoscalar, vector, and axial-vector fields. By go-
ing into the interaction picture, we were able to care-
fully define and make finite all S-matrix elements.
The vector and axial-vector currents were defined by
a variation of the S matrix with respect to the external
vector and axial-vector fields. Because of the singular
nature of the smaller spinor loops, the Ward identities
satisfied by these currents were found to contain anoma-
lous terms. By considering all possible S-matrix ele-
ments, we were able to write the divergence equations
for the operator currents defined in this theory, as
given in Eq. (33).

The anomalous terms in the divergence equations
for the currents could be cast in a particularly simple
from by a redefinition of the spinor loops. By treating
the vector and axial-vector currents symmetrically, the
currents were found to satisfy the divergence equations
in Eq. (44). If we required that the vector currents
have the normal divergences, the divergences of the
axial-vector currents contained the minimal anomalous
terms given in Eq. (49). These anomalous terms were
minimal in the sense that any further redefinition of the
S matrix would either destroy the normal vector-
current divergences or simply give additional terms in
the anomalous axial-vector-current divergences.

The result that we have obtained for the minimal
anomalous divergence of axial-vector current is not
actually dependent upon our original definition of the
S matrix. Any other definition which makes the .S
matrix well defined and finite could be used as a starting
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point. The Ward identities could then be calculated,
and we would, in general, expect to find many anomalous
terms, as we did in the case of the S matrix defined by
symmetric e separation. However, by again adding the
appropriate counterterms, we would find the same
minimal anomalous divergence given in Eq. (49).
Therefore, while the form of counterterms R;, R,
and R; does depend upon the original definition of the
S matrix, the form of the minimal anomalous diver-
gence does not.

We wish to comment briefly on the form of the mini-
mal anomalous divergence obtained in Eq. (49). We
note that all of the anomalous terms dependent upon
the scalar and pseudoscalar fields have been removed.
Therefore, in a theory having only scalar and pseudo-
scalar external fields, the Ward identities for the matrix
elements of three or more currents are the only ones
affected by the presence of the anomalous terms. In
addition, the anomalous terms are all proportional to
the pseudotensor e,,,,, and hence will affect only those
matrix elements of currents having an abnormal
parity relation.

Anomalous terms in the axial-vector-current Ward
identities can arise in two ways. In Fig. 3, we illustrate
the types of diagrams which were found to have anom-
alous Ward identities. The Ward identities for the
triangle and box diagrams involve terms which are
linearly, or more highly, divergent leading to the exis-
tence of anomalous terms when the loop integration
variable is translated. Anomalous terms may also
arise when the smaller loops are redefined to satisfy
the correct vector-current Ward identities. Therefore,
while the Ward identities for the pentagons contain no
anomalous terms arising directly from the linear
divergences, they do contain anomalous terms when the
box diagrams are defined to have the correct vector-
current Ward identities. The diagrams which do have
anomalous Ward identities may be seen by referring
to the expression for the anomalous divergence in Eq.
(49). For neutral currents, only the AVV and 444
triangle diagrams will have anomalous Ward identities.
For charged currents, anomalous Ward identities also
arise for the VVVA and VAAA box diagrams and for
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ANER®,

and 44444 pentagon

Fic. 3. Loop diagrams which
may have anomalous Ward
identities.

the VVVVA4,
diagrams.

The anomalous terms in the divergence of the axial-
vector current can contribute to low-energy theorems
for off-shell matrix elements of the naive divergence
operator. If these low-energy theorems are combined
with a smoothness assumption for matrix elements of
the naive divergence operator, the existence of the
anomalous terms may lead to physical consequences.
For these cases, we note that the full divergence oper-
ator will not be, in general, a smooth operator.? For
example, the anomalous terms in the Ward identity
for the A44A4A4 pentagon may add anomalous terms
to the low-energy theorems used in the (partially
conserved axial-vector current) calculation of five-
pion scattering.® Adler? has shown that the anomalous
Ward identity for the AVV triangle yields a low-energy
theorem for the decay #°— vy in a truncated version
of the ¢ model. We note that this low-energy theorem
has been shown to be exact to any finite order in per-
turbation theory for the truncated ¢ model by Adler
and Bardeen.® Using the results of this paper, the calcu-
lation may be extended to the full ¢ model which in-
cludes charged mesons.
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