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We construct a bootstrap description of the lowest-mass states with baryon number one. A fundamental
consideration in this approach is the selection of the most important two-particle channels coupled to these
ground-state baryons. Ke suggest that 5- and P-wave couplings to meson-baryon composites dominate, and
that existing evidence from decays of resonant states supports our idea. A theoretical description which fits
in naturally with this observation is the SU(6}-multiplet classification of baryon states first formulated by
Capps and by Belinfante and Cutkosky. This symmetry of 5- and P-wave baryon-interaction vertices may
be viewed as an extension of the original Chew-Low static interaction. The dynamical basis for our model i~

a set of bootstrap equations implied by the Bethe-Salpeter equation. We assign positive- and negative-parity
baryons to 56+ and 70, respectively, and determine the 70 —56+ mass difference, as well as the 56+56+35,
70~ 70 35, and 70~ 70 35 P-wave and the 70 56 35 5-wave coupling constants. We calculate a 70 —56+
mass difference of 230 MeV, and a 70 F/0 ratio of —1.1.The relation of the model to p-universality and
also to the parity-doublet conjecture for barpons is discussed.

I. INTRODUCTION

IGH-ENERGY scattering reactions so far have
~ - - ~ failed to reveal fundamental particles with exotic
properties such as noninteger barvon number of non-

integer hypercharge. This fact, coupled with the exis-

tence of a large spectrum of hadrons, has strongly
influenced many attempts to gain a theoretical under-

standing of the strong interactions. It is natural to
suspect that the observed hadrons are bound states or
resonances of virtual-particle constituents which inter-
act with single-particle-exchange (Yukawa) forces.
This collective or "bootstrap" approach has given many
successful insights into the spectroscopy of mesons and

baryons, both with the classification of particles into
multiplets' and with the existence and structure of ex-
cited states. ' A conventional assumption in such calcu-
lations entails the use of the particles themselves as
basic hadron coordinates. To make this kind of model
practical, one must truncate the number of channels
coupled to a given particle. Physically, one is assuming
that the properties of a hadron are qualitatively de-
termined by a certain subset of two-particle composites,
the selection of which depends upon dynamical and
kinematical considerations such as spin, mass, isospin,
etc. This 'local" point of view, in which the entire
hadron spectrum is built up piece by piece, has the
grave disadvantage of being very complex. Indeed, the
over-all difhculty of the problem has caused many to
question the wisdom of using particles themselves as
the fundamental hadron variables. Rather, it is pos-
sible that the underlying laws of hadron dynamics are
most elegantly described in terms of a I.ie algebra
generated by commutation relations of a suitably
defined field theory, e.g. , current algebra, ' or in terms

* Supported in part by the National Science Foundation.
' For instance, see A. W. Martin and K. C. %'ali, Phys. Rev.

130, 2455 (1963}.
~ P. A. Carruthers, Phys. Rev. 133, 8497 (1964};E. Golowich,

ibid. 168, 1745 (1968).
' M. Gell-Mann, Physics 1, 63 {1964).

of some simple global property of the S matrix. Just
how far this direction of thought will proceed remains to
be seen, but it raises the interesting question of whether
different formulations of the problem lead to equivalent
predictions in areas of overlap. In particular, it has
recently been suggested' that baryon Regge trajectories
obey the approximate relations ReJ~S'2, where J
gives the angular momentum value of the trajectory
evaluated at center-of-mass energy 8'. This relation,
augmented by the MacDowell symmetry, implies that
baryons occur in nature as parity doublets unless
certain of the residue functions vanish at integer values
of J. Such a property seems surprising from the view-
point of conventional bootstrap theory, in which
positive- and negative-parity baryons have been pre-
dicted in various model calculations to have entirely
distinct properties. '

It is our purpose in this paper to investigate a model
of the ground-state baryons (a "ground-state" baryon
ls olle llRvlllg tile lowest mass ln lts pRI'tlclllal' cllallnel)
using standard bootstrap assumptions. However, con-
centrating on a possible conQict between such an
approach and the baryon parity-doublet scheme, we
pay particular attention to the truncation approxi-
mation and try to include as many important coupled
channels as possible. In particular, Sec. II contains a
phenomenological analysis of baryon decays, from
which we infer the most important couplings of two-
particle composites to a given baryon. The empirical
evidence indicates the dominance of those composites
having 5- and P-wave orbital angular momentum. This
result is shown to be consistent with the over-all
structure of the baryon spectrum. Given this 5- and
P-wave dominance, in Sec. III we consider a mathe-
matical model, the SU(6) symmetry of Capps, and of
Belinfante and Cutkosky, which describes large multi-

4 V. Barger and D. Cline, Phys. Letters 268, 85 {1967).'For instance, L. F. Cook and B. Lee, Phys. Rev. 127, 283
(1962); P. Auvil and J. J. Brehm, ibid. 145, 1152 {1966);P.
Carruthers and M. M. Nieto, ibid. 163, 1646 {1967);R. H. Capps,
ibid. 158, 1343 (1967).
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plets of particles interacting with 5- and I"-wave

vertices. ' As explained there, we may interpret the
symmetry most simply as an extension of the static
Chew-Low interaction. ~ We stress that our use of this
symmetry is dynamical in the sense that we examine the
magnitudes of masses and coupling constants that SU(6)
multiplets must have in order to interact with particle-
exchange forces. In particular, our model determines
whether assignment of positive-parity ground-state
baryons to 56 and negative-parity ground-state baryons
to 70 is consistent with bootstrap dynamics. The paper
concludes with a discussion of results in Sec. IV. In
the Appendix we discuss certain group-theoretic details,
including a formula based on a factorization property of
crossing coeKcients for higher symmetries which facili-
tates their calculation.

correctly, although it ignores hadron structure. '4 We
describe transitions in terms of Geld-theoretic inter-
action Lagrangians using the free field operators. '~

For couplings of a baryon of spin S, parity Ps (with
field operator X» """-', n=S+s) to a a+baryon —0
meson composite (with field operators t/ and dt, respec-
tively), we write

&=(gl»'" ")kx" "" "'~ ~ d (1)

if (—)"Ps=+1, and we include a factor ys if ( )"Ps-
= —1. The former corresponds to transitions &, +2+,

~ ~ ~ ~-'+130, the latter to ~+, ~
—'+ ~ ~ ~

st+0 . The arbitrary mass )t in Eq. (1) serves to make
the coupling constant g dimensionless. A standard
calculation'4 then yields the following relation between
width F and coupling constant g:

II. BARYON SPECTROSCOPY —ANALYSIS
OF COUPLING CONSTANTS

gs n (2n) t 3f ttst~ —&t

r,
4tr 2" (n t) E~nt qs"

(2)

Strictly speaking, a given hadron is coupled to an
infinite number of channels. It appears likely that the
coupling to two-particle composites predominates, as
is implied, for example, in production processes where
multiparticle Gnal states typically cluster into a few
resonant states. This still leaves the problem of choosing
which subset of the two-particle channels, if any, ap-
approximately determines the physics of a hadron. We
consider in the rest of this section experimental and
theoretical approaches to answering this question.

We begin with an analysis of the experimental in-
formation in the resonance region derived from measure-
ments of decay widths. The experimental data are very
rich in content, especially for baryon decays, where
transitions of the type (see Fig. 1)

3-~ 1—@0-
5k ~ 9+(30-
5-~ 3-g0-

have been measured. These data have been widely
examined (see, for example, Refs. 9-13), especially
with regard to extraction of coupling constants from
the decay widths. As stressed in Refs. 9, 10, and 12,
the extraction procedure is beset with difhculties, and
no single method appears usable without ambiguity.
In this paper, we consider an approach which is
Lorentz-invariant and treats the high-spin kinematics

6 R. H. Capps, Phys. Rev. Letters 14, 31 (1965};J. G. Belin-
fante and R. E. Cutkosky, ibid. 14, 33 (1965).

~ J. G. Belinfante and G. H. Renninger, Phys. Rev. 148, 15'l3
(1966).

8
¹ Barash-Schmidt et a/. , Rev. Mod. Phys. 41, 109 (1969).' P. Carruthers and J. Shapiro, Phys. Rev. 159 1465 (196'/).

"M. Goldberg et o/. , Nuovo Cimento 45, 169 1966).
n R. D. Tripp et a/. , Nucl. Phys. $3, 10 (1967).» N. Masuda and S. Mikamo Phys. Rev. 162, 151'1 (1961').
» E. Golowich, Phys. Rev. 1 7, 2295 (1969).

g' n (2n)! 3f'

2e (n t)2 qse—3

2(n—2)

X , (4)
((2n 1)j(n ——1)$(E~nt)+(2q /3nt )(E~2nt)

where we follow the notation of Eq. (2) except that
+(—) is now chosen for ( )"+'Ptt =+1—(—1),
respectively.

Presumably, from examination of the phenomenologi-
cal coupling constants of Eqs. (2) and (4), one can
determine with which of the baryon states the ground-
state particles interact most strongly. However, the
situation is not altogether straightforward, because
the set of baryons ~~, ~+, ~, and ~+, ~, ~, are not
treated equivalently in Eqs. (1) and (3). We illustrate
this with a simple example. The nucleon X(938) and

"J. G. Rushbrooke, Phys. Rev. 143, 1345 {1966).
'~ P. Carruthers /Phys. Rev. 152, 1345 (1966)j uses a different

approach which yields equivalent results.

where one takes the +(—) for ( )"Ps=—+1 (—1),
respectively. In Eq. (2), 3II is the mass of the spin-5
baryon, E and ns are the ~~+ baryon energy and mass, and

q is the decay momentum evaluated in the rest frame of
the decay baryon. A similar relation holds for the
transition of a spin-5 baryon to a ~~+ baryon~-meson
composite (we use the Rarita-Schwinger 6eld operator

to describe the —,'+ baryon). If (—)"+'Ps=+1,
corresponding to transitions ~~+, +2, ~+, ~ ~ ~, ~ ~+130,
then

~=(alt " ')6 &""' - ""-'d ~ d (3)

where we restrict ourselves to the coupling involving
the smallest number of derivatives on the meson field.
If (—)"+'Ps= —1, corresponding to s, —,'+, —', ,
-',+80, we must insert a factor y5 between the baryon
field operators. The relation between coupling constant
and width for this interaction is
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3-3 resonance ~(1236) dominate the low-energy strange-
ness-zero channel. It is generally believed that these
particles are dynamically equivalent (neither more
fundamental than the other) and that their couplings
to the ~N channel are roughly comparable (as is the
case in the Chew-Low static model" ).However, Eq. (2),
which reduces in this case to (we suppress isospin
notation)

'=gx+A'7r4'4+(f~~~/n)4'Xw'"~, (5)

implies g'(N¹')/4a 14—San. d f'(~Nx')/Sr=0. 24.
Clearly, the relative size of these numbers is not indic-
ative of the true relative importance of the xX
channel to N and h. A more meaningful classification
for the %Ex coupling is the pseudovector vertex

'=(f~N. /n)OAA'''"'' (6)

where f'(NN~')/kr =0.08, or extracting out the SU(2)
Clebsch-Gordan coeflicients of spin and isospin,
fs(NN~)/4n=0 24 We. g.eneralize this procedure to
arbitrary spin by making the transformation y5 —+

(1/n)757„8" in Lagrangians were a 7s occurs. It ls not
diflicult to relate the new coupling constant f with the
old coupling constants g of Eqs. (2) and (4). In momen-
tum space, i8&@—+ k& is the meson four-momentum,
which is related to the baryon four-momenta by the
conservation law k" =p"—p&' for the transition baryon
(p") ~baryon (p&')+meson (k"). Using the baryon
wave equations" and the anticommutativity of p5 with

y„, we immediately find that

f=[@/(M+m)]g,

where M and rfI, are the parent and decay baryon masses.
To summarize, we determine phenomenological coupling
constants f by applying Eqs. (2) and (4) to experimental
data, except when a factor of 75 appears in Eq. (1) or
(3). In that case, we use the redefinition Eq. (7), which
supplies a set of coupling constants suitable for com-
parison. Numerical results for various transitions are
presented in Table I. Since the size of any given coupling
depends on internal symmetries such as SU(3) in ad-
dition to spin kinematics, we exhibit only the largest
couplings characteristically seen for a given value of I.,
the orbital angular momentum of the decay particles.
We see in Table I that S- and I'-wave transitions domi-
nate the higher partial waves. ' That is, the conplings
are strongest in the lowest L states consistent with parity
comserm, fiorl, .
Thus, our study of the resonance region implies an

S- and I'-wave dominance of baryon dynamics. Clearly,
the omission of higher partial waves puts a limitation
on the accuracy of our description of ground state
baryons and, in fact, must ultimately be included if we

'6 G. F. Chew, Phys. Rev. Letters 9, 233 {1962).
'7 C. Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958).' The sole exception is the Fp*(1520)~ NE D-wave coupling.

It is possible that a good model for this state must include the
D-wave channels.

TAaLF. I. Phenomenological baryon coupling constants. All
coupling constants are determined from Eqs. (2) and (4) unless
a y5 factor is required in the interaction Lagrangian. Then the
modihcation in Eq. (7) is made. Data are taken from Ref. 8.

Initial Final

Baryon Orbital
spin-parity angular
quantum momen-
numbers F (MeV) turn g/(47r)"

N*(' 1550)
N*($,1550)
Fp*{g',1405)
Ng($ —1525)

g{$+1236)
Y *('+,1385)
N*{g+,1470)
F. ( -',1~)
F1*{g,1767)
Y,*(;—,1520)
Yp*(-,'-,1690)
N'(; —,1525)
F *{),1660)
F,*(-,'-,1767)
F'"( -',1830)
N*{j',1680)
YI*(-,',1767)
N*{-;+,1668)
Yp*(25+,1815)
N*(2+,1930)
F ~(-,',2100)

N71.

Z7I.

N7r

A7I

N~
Fo*(1450)
Yp (1520)7r

NE
NK
N7l

NE
NE
Z7I

N7f.

FI(1385)7r

Nm.

NK
Nm.

NE

1—~ 1+

1—~1+
2 2
3—~ 3+

2
4+~ 1+
2
3+~ 1+

2

k+~ k+
3—~1—
5—~3—

~4+
3—~ 4+
2 2

5 —~1+
2 2

5—~ 3+
2

5+~ 1+
2
5+~ g+
2 2
7+~ g+
2 27-~ 1+
2

39
91
50
46

120
32.8

135
18.5
14.3
7.2
9.0

63.3
9.0

43.7
33.6
68
13.3
84.5
52.5
88
42

S
S
S
S
P
p
P
P
p
D
D
D

D
D
D
D
p

G

0.25
0.59
0.44
0.35
0.60
0.36
0.13
0.30
0.26
0.25
0.064
0.041
0.064
0.058
0.044
0.05
0.069
0.010
0.036
0.090
0.003

IG. BOOTSTRAP MODEL OF BARYON
GROUND STATE

We have argued that the data imply a dominance of
S- and I-wave couplings of a baryon to two-particle

"J.Harte and R. C. Brouwer, Phys. Rev. 1H, 1841 (1967).

are to have a full understanding of excited states. How-
ever, as a starting point, our approach is consistent
with the data. Actually, there are reasons for believing
that the S- and I'-wave dominance approximation
hoMs for the entire spectrum of baryons, excited as
well as ground states. Existing Chew-Frautschi plots
imply a baryon mass-spin relation M'tx J. In the con-
ventional single-particle-exchange dynamics for had-
rons, the range of a force does not get much larger than
the pion-Compton wavelength. Now consider the
relation l—kr which gives angular momentum states l,
reached by a two-particle composite of momentum k
with relative separation r. If l M' whereas 0 M, as is
indicated for the baryon spectrum, it is impossible to
generate the high-spin states observed in nature with
forces of fixed range and high orbital angular momen-
tum. That is, even high-spin states apparently couple
most strongly to low-orbital-angular-momentum com-
posites. In fact, it is possible to construct a bootstrap
model with just this property as a basis for understand-
ing excited states. ' This point of view appears to be
also demanded in the Regge-pole description of
baryons. "
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composites. Having limited ourselves to these channels,
we want to include as many of them as possible in the
calculation while keeping the problem from becoming
prohibitively diflicult. To satisfy these dual constraints,
we shall use group theory to provide relations among
the many channels we consider. A natural-symmetry
scheme to use is the SU(6) of Capps' and Belinfante
and Cutkosky. ' The baryon couplings described by this
theory may be viewed as an extension of the Chew-Low
static model interaction as follows. The isospin-invari-
ant LSU(2)-invariant) vertex describing the mAE
coupling is

ff(+ED)/y Qao+~ Vm, (8)

where p, is the pion mass and where we have suppressed
the source form factor. For SU(3), we generalize this to

(1/pp)gaol f(BBP)F+d(BBP)9+a Vp, (9)

where P is the 0 -meson octet, p, ~ is its mass, and
f(BBP), d(BBP) are the antisymmetric and symmetric
couplings of two octets to a third octet. Our extension
to SU(6) is based on the static model vertex

ff(B'BM)/pea Ga a 4'aP, (10)

where B,B' are SU(6) baryon fields, P is an SU(6)
meson Geld with mass p, and G~ ~ is an appropriate
SU(6) operator. We assign the ground-state positive-
and negative-parity baryons to 56+ and 70, respectively
(superscript indicates parity). The SU(3) and SU(2)
content of these multiplets is 56+=8'10', 70—=8'
8410'1'. lt is natural to assign the SU(2) angular
momentum label to the baryon spies, e.g. , 56+ contains
~(1236)&104, 1V(939)QSs, etc., and 70 contains
$*(1525)QS', Ys*(1405)gl', etc. The mesons belong
to 35 (with content Ss8''f'ls), although their indi-
vidual SU(6) assignments depend on the way they
couple to the baryons. The assignments are based on
j-j coupling and thus depend on the relative intrinsic
parity of the two baryons. In a vertex, for instance,
coupling a spin-~ baryon to a pseudoscalar meson and
a spin-~~ baryon of opposite parity, conservation of
parity limits allowed angular momenta to l =0, 2, 4, .
However, conservation of angular momentum implies
l=0 or 1. Therefore, the meson occurs in an l =0 state,
and since for j-j coupling, j(meson) =1+s(meson), we
have j=s here. This is generally true in the same way
for all 70 —+ 56+35 couplings. Thus, this set of
couplings describes S-wave composites and since
j(meson) =s(meson), we make meson assignments
according to spin: vector-meson octet 8', pseudoscalar
octet 8', and vector singlet 1'. Similarly, we can show
baryons having the same parity must couple to P-wave
(l=i) mesons. However, assignments are not unique
here since we can form j= 1 states from l= 1, s =0 and
from l =1, s = i. For instance, we can form j= 1 states
from VP and V XV where Q and V are pseudoscalar and
vector-meson states, respectively. In general, we must
write 8'=os&a's+PsVX~s, where as'+Ps'=1, and

similarly for Is=n&v$4+P4~Xpz, with ol+t'1
The values of nl, a.s, pl, p~ are based on considerations
lying outside the model. Cutkosky and Jacobs" have
shown that an SU(6) Fermi-Yang model of the mesons
implies or=as=gs. We use these values here. In
summary, our model contains the following baryon
couplings: S-wave f(70,56+,35-) and P wave-

f(56+56+35 ), fp(70 70 3-5 ), and fa(70 70 35 ), the
latter two corresponding to the fact that the Clebsch-
Gordan series for 70 35 contains 70- twice. (See the
Appendix for further details. )

Were we to restrict ourselves to employing only
baryon-exchange forces, there would be no further
vertices entering the calculation. However, we feel that
since meson-exchange forces are important to the
physics of baryons, they should be included. (This point
has repeatedly been emphasized by Capps. 4). Thus, we
consider finally a 35 ~35 35 g vertex, " limiting
ourselves to the F-type vertex because of its adherence
to the constraints of Bose statistics. The size of the
coupling constant f(35 35 35 ) is not included as
output in our calculation because we make no statement
about internal meson dynamics. We determine this
number from experiment, e.g., from the pn-~-decay
width.

One of the motivations for our use of the SU(6)
symmetry is to include as many of the ground-state
baryons as possible in our calculation. Inclusion of the
56+ and 70 multiplets does a very good job in this
respect, the only notable omissions being the SU(3)
multiplets containing the Roper resonance X*(s+,1470),
the x,V D-wave E'(s, 1680), and the Ys"(1520) unitary
singlet. It is possible to extend our ideas to include these
particles, say, by including other multiplets like 20+
for the Roper resonance or by extending the symmetry
to SU(6)0(3) for the latter two particles. t-The
E*(ss,1680) trajectory would have a zero at JP=~s .)
However, we feel the model satisfies the criteria of
content and simplicity well enough to warrant study
on its own. Aside from particles with large negative
strangeness in 70, most of the states in 56+ and 70
have been seen experimentally. We now calculate the
empirical masses of these multiplets:

~44=(40/56)M(104)+(16/56)3f(8')
=1317 MeV, (11)

Mrs =(2/70)M(1')+(2Q/70)~(102)+(32/7Q)~(84)
+(16/70)M(8')

= 1700 MeV,

where we have estimated the mass of the 10' submulti-
plet of 70 as 1780 MeV from knowledge of its strange-
ness-zero member at 1640 MeV. Although the assign-
ment of rnesons depends on whether they appear in
S or P waves, the average mass of 35 is practically

"R. E. Cutkosky and M. Jacobs, Phys. Rev. 162, 1416 (1967)."R.H. Capps, Phys. Rev. 148, 1332 (1966).
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the same for each case:

4t =E 'Ip, (13)

where p is the 3S amplitude, X ' is a two-particle
Green's function, and I is the interaction kernel, we
limit ourselves to single-particle-exchange processes,
evaluated with static-model kinematics,

yb. =P
e,f,P

~as If' I'up'I'ca'4. p+ 2 (14)
c,P, y

The first and second. terms represent baryon- and meson-
exchange processes, respectively; I' are the vertex
functions, and h, A' are energy denominators. The
labeling describes baryon e as the bound state of
baryon b and meson o.. Our dynamical equations are
obtained by replacing the amplitudes P and vertex
functions 1' by coupling constants f and form factors
v. The latter correspond physically to hadron structure
and serve numerically to cut o6 the large momentum
virtual processes. In this way we generate a set of
vertex equations for coupling constants,

fb = Z ff fbP ffv D&b
~.f,P

+ 2 f-v'f 'fv P--
c,P, y

where D,a'f and E,a, are baryon- and meson-exchange
dynamical factors, respectively. They depend both on
the masses of the virtual particles and their quantum
numbers (and thus contain the relevant crossing coeK-
cients). One may think of these equations as producing
a set of solutions for the coupling constants f as a
function of the baryon-mass difference hM. Further
dynamical information comes from the normalization
condition"

fi 'fbi'fb ffv ~bf-
a, e,f,a, p

+ Z fb f p'fb. "f.v &..b, (16)
a~~isp~&

gg R. E. Cutkosky and M. Leon, Phys. Rev. 135, B1445 (1964};
138, B667 (1965); K. Y. Lin and R. E. Cutkosky, ibid. 140,
B205 (1965).

5 wave:

bz»z = (24/35) p'(8, 1 )+(8/35)p'(8, 0-)+(3/35) p,'(1,1 ),
p,35=776 MeV;

P wave:

~»'= (24/35)r'(gal )+(8/35)r'(8 0 )
+(2/35) p, '(l, 1 )+(1/35)p'(1,0-), (12)

p, 35=779 MeV.

Ke take an average of these, p,35=778 MeV.
%e now turn to the problem of baryon dynamics. A

convenient calculation scheme is given by an approxi-
mation to the Bethe-Salpeter (BS) equation as formu-
lated by Cutkosky and collaborators. " Starting with
a BS vertex equation

where the first and second terms again represent internal
baryon- and meson-exchange dynamics, respectively;
the replacement of vertex functions by coupling con-
stants and form factors has been made; and 5' and I'
are normalization dynamical factors, defined by

v(V)
ef

(2w )'" 4zr'

t-".a'f

kv'(k)dw v(q)
(18a)

I» (wb+~la)(wb+~ab) (2wq) ~

v(V)
ef

(2w, )'" 12zr'

k'v'(k)dw v(q)
(18b)

bb (wb+&ro)(wb+D. b) (2w, )'»

for P wave. In the above, C a'f is proportional to a
crossing coefficient, ~;; is the mass difference between
baryons i and j, v is a form factor, and m, 0 and p35 are
the internal meson's energy, momentum, and mass, re-
spectively. Of interest is whether in addition to coupling
constant and mass-difference information, the model
has further theoretical content. For instance, in the
nonrelativistic domain, the Schrodinger equation yields
information both about energy eigenvalues and about
wave functions. Recent work on the determination of
form factors in self-consistent dynamical theories, using
simple model calculations, implies that exponential
dependence occurs in the momentum transfer variable.
If our model is restricted to only baryon-exchange
processes, no indication about the qualitative behavior
of form factors is obtained because the external mo-
mentum dependence factors out of the integration over
internal virtual momentum. LSee Eqs. (18a) and (18b).j
This is no longer true when meson-exchange processes
are included in the calculation. To first order in the
baryon-mass difference,

v(q) 1 d'k p„b
&..a

(2w,)"' (2w )'" (2~)'2wbzw„

3 W.+Ma —m,X.{a).(b+q)(&y--
'

(19)
4 'Np

"J.D. Stack, Phys. Rev. 164, 1904 (1967); J. Harte ib
165, 1557 (1968), R. Brout and F. Knglert, Phys. Letters 27B
647 (1968). 7

W»« =E.baD. b«/a~. ,
F„b E,——bBE'„b/BM, .

There are two such normalization equations jn this
calculation, one each for 56+ and 70 .

For baryon-exchange processes with S- and P-wave
internal mesons, the dynamical factors are
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where y=(ks+qs)/2kq and X„scontains powers of the
meson momentum. Thus, in particular, the sets of
equations (15) and (16) do contain information about
the momentum transfer dependence of the structure
functions v(q). At the level of our calculation, with the
use of staticlike kinematics and neglect of short-range
forces, we feel it unwise to take too seriously the form
of v(g) implied by the bootstrap modeL Instead, we
ind that self-consistency can approximately hold for
an exponential form v(q) =exp( —p/f), the precise value
of the cuto6' p being determined upon pinning down the
scale of the model by requiring that one of the coupling
constants have its empirical value.

The 6nal form of our bootstrap equations is given in
terms of dimensionless variables )generated by working
with Eqs. (15) and (16) to iirst order in the baryon
mass difference] go ——Dss /sf(56+56+BS ) gi =D 2'/

xf(70 56+BS ), gp=D82"'f(70p 70 BS ), gD=D32"'
xf(70D

—70-BS ) g =Dls'"f(B5p—BS—BS ) and

x=Pkt(70-) M('56+)]D—/D

The quantities D;; are deined by

12K

k'
e—'&~ —dm,

00

Dj ———
P36

e—'&~ —dm.
VD

where I'„g contains various powers of the meson
momentum, depending on the particular process. '4

Performing the angular integration, we find that

v(V)

(221/ ) I/2 (220 ) I/2

" v(k)v'(k+q) Qo(y)
iV,.O d34/, (20)

C(x)=1+x if x)0,
= 1/(1 —x) if x(0. (23)

The constants n are ratios of meson-exchange and
baryon-exchange dynamical factors which appear
naturally when we use the dimensionless variables
previously discussed. With the de6nitions

" v(k) v'(k+q) Qo(y)
dzo )

tt
g

" k'v(k)vs(k+q) Qo(y)E2-
67t @35

(24)

the quantities n are aI=E 2I/( D» Ds)s' /,sas ——&OID32»2/
D12 as D12E02/(D13EOI) and DI2E22/(DI8E21) ~ The
SU(6) crossing coefFicients can be calculated using
methods described in Ref. 25 and in the Appendix. The
normalization equations have the form

Ke then have for the vertex bootstrap equations

go = (11/15)go'+ (9/4) (5/33) '/'gi'g pc( —2x)
2—(15/22) '"gl'g DC( 2—x)+2 (8/15) '"nIgo'g.

+ 0 (10/3) I/snsglsg C(——n,x)

gl gIL4gI'+ (9/5) (5/33) ' "gpgo ——',(15/») "'gDgo

+x(8/15) nigogoC(4a4x)+2(2/11)' 'nlgpg„

XC( ;n—sx—)+;(1/-») /snlgng„C( ;a—sx)], (»)
g p =7/11g p' 1/11—gD'g p (3/4—4&2)gil'

+9/5 (5/33) '"gI'goC(2x)+2 (2/11) "'a gi'g

&(C(sasx)+(2/11) '"nig„(g p'+gD')

gil = —(111/352)gns —(9/44%) gD'g p —1/11g psgll
—20(15/22)1/sgisgoC(2x)+ 2 (1/11) '/snsglsg„C(oasx)

—3/11(11)'/'nigil'g +2(2/11) '/'nigDg pg„.

In the above, the function C serves as a good approxi-
mation to the exact dynamical factors deaned in (15)
and (18):

(11/15)g04+glsL(9/4) (5/33) '/'g pgoC( 32/Ix) I/2—', (15/2—2)—'/'gDgoC( —32/Ix) 2/2+ —,Ogl'C( —I/Ix —I/sx) (pl/I/3)

+ (9/4) (5/33) '/'g pgoC( —2/sx) pi —12 (15/22) '/sgDgoC( —Vsx)pl]+ 0 (8/15) '/'go g p
+gis I (9/32) (10/3) '/'gog„C( —psx) p4+ 3'2 (10/3) '/'C( 2/sx) gog„ps+ 3 2 (2—/11) ' "gpg„C(—2/sg (8/3)psg]ps—

[45/32 (11—) ' 2]gil g„C( 2/sg
3
2pox)—ps} =—(7/11)g p4 —(111/352)gll —(2/11)g sg ps —(3/11')gD'g

+gI'Qgl'C(2/sg+2/Ix) (pl/2/8)+ (9/5) (5/33) ' 'g pgoC(4/sx) pi ——,'(15/22) "'gDgoC(2/sg) p,
+(9/5)(5/33)I/sgpgo(32/Ig)2/2 20(15/22)I/sgDgoC—(32/Ig)2/2]+48(2/11)'/'gp'g p +(9/4)(2/11)'/sg 'g g p
—(9/64v'11)gD gop2+gl Llo(8/15) ggo('g +sxP 2)psx+ 8( x/121)'" g peg(p )psx4

(9/8V'11)gDg—oC(psx)P4+0(2/11)'"gpg. C(nsx)ps (9/841 1)gDg—pC( gsg)ps] (25)'

The dimensionless constants y and P are ratios of dy-
namical factors and Green's functions appearing
naturally in the normalization equations when we deine
the coupling constant and mass-di6erence variables.

~ For details in this type of calculation, see E. Golowich, Phys.
Rev. 164, j.912 (19@').

They are defmed by 2/I=DI4D»/DI32, »=D32D»/
(D38DI2) ) 2/3 D12 /(DIID18)1 Pl DIID32/(DI2D3I) g

P2 E22D32 (D83D12 )& ps =E03DI2/(E02DI3) & p4
E02D32 /(D38D12 ) p Ps =DIIE22D32 /'/(D33D3IDI23/2),

"For a restricted version of this model, see E. Golowich, Phys.
Rev. 153, 1466 (2967).
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Ps =+ssDts/(E22Dts) and P7 Dss /DssDst and are all

of the order of unity.
The nonlinear algebraic equations (23) and (25) were

solved with the aid of a computer. We found only one
solution: go=0.84, g~=0.58, go=0.66, g~= —0.61, and
x=0.22. The cutoff variable P was determined by re-
quiring that the value of go give the correct SNm
pseudovector coupling constant. This implies that
@=1.05 p, 3~

' or a cuto6 around 750 MeV2 which corre-
sponds approximately to cutouts found in previous
models employing SU(2) and SU(3) symmetry. "'4

Dependence of the solutions on the cutoff is very weak,
with magnitudes varying about 15% for the cutoff
range 0.7 &P& 1.1 p» '. As mentioned previously,
we determined the trimeson coupling constant g„
from the experimental p —+ mm decay width. A value of
I', =100 MeV inserted into

g+
2

y+
2

p+
2

7
2

5
2

f,s/4tr = ',FM,s/F-, s (26)

gives f,=4.9, from which, by means of an SU(6)
Clebsch-Gordan coefficient, we find f(BSr BS BS )
=16.9. Since g„=Drs"sf(BSs BS BS ), this implies that
g„=0.75. We did the calculation wit. h several values of
g„because the pvrm. Width is a matter of some dispute.
We found the solutions qualitatively unchanged,
although having a larger numerical dependence on g„
than on the cuto6 P.

We consider next the set of predictions implied by the
solutions. '~ The mass difference between multiplets
56+ and 70 is given by 3E(70 )—M(56+)=xDts/Dts
=230 MeV as compared with the empirical value of
380 MeV. LSee Eq. (11).j Our result has the correct
feature that 70 lies above 56+ in mass, but is smaller
in magnitude than the actual value. The scale of the
I'-wave transitions in which two negative-parity
baryons couple is determined by the quantities g& and
g~. These transitions are dificult to detect, but there
has been recent work" done on the decay Yr*(1660)~
Ys*(1405)s with the result that F(YrsYs*s.)—22 MeV.
As shown in Table I, this imples a pseudovector
coupling constant f(Yr*Ys*rr) =1.1 tr ' or in different
units, f(Fr*Ye*rr) =6.1 trss '. This number can be
compared to the SU(6) couplings fr, fn by means of
Clebsch-Gordan coefficients f(Yt*Ys*s)=(11) '"('sf'

~~fn) or, in terms of the dimensionless variables,
Dss'"f(Fr*Ye n)= (11) ' '(-,'fp —. —,'sgo). Since Dss'"
=0.022 p35 for a cuto6 $=1.05 @35 ', we have 3g p' g egg)
=0.42 from the experimental data. From the calcula-
tion, we find Sgp —~~g~ =0.34, in reasonable agreement.
Unfortunately, we cannot further test the 70 F/D ratio
because of the paucity of data on the 70 —&?0 35
transitions. Finally, there are the 5-wave transitions
in which two baryons of opposite parity couple. From
the decay width of the transition Ys*(1405)Zs. we infer
a coupling constant f/(4s)'is=0. 44 (see Table I),

"M. Primer st at Phys. Rev. Lette. rs 20, 610 (1968); J.
Button-Shsfer, kid 2, 1123 (1968.).

l+
2

FIG. i. Energy-level diagram depicting baryon decays. Levels
are identihed by spin and parity (J~}. All transitions involve
emission of a pseudoscalar meson. Heavy lines indicate the domi-
nant transition modes.

which imPlies f(70 56+BS ) =5.1 and thus gt=Dts'ts
)t,'f(70 56+B5 )=0.24, roughly a factor of 2 smaller
than the value g~

——0.58 from the model. This result
for g~, within the rough accuracy expected of the calcu-
lation, is probably the most model-dependent of our
predictions because the ratio of S- and I'-wave dynami-
cal factors is more sensitive than the solutions them-
selves to the type of cuto6 used.

The sizes of various terms in the vertex equations
(22) indicate how they compare with previous boot-
strap calculations. For instance, the largest coupling
constant f(56+56+BS ) is dominated by two processes,
namely, 56+ and B5 exchange in elastic 56+BS
scattering. This explains the success of earlier calcu-
lations which sought to explain the physics of the —,'+
and ~~+ baryon states using the most obvious of the
elastic channels. However, the couplings of the 70
multiplet, 70 56+35 and 70p, ~ ?0 35, are not domi-
nated in our model by any particular process. From
this we must conclude that a comprehensive under-
standing of the negative-parity baryons is a true
many-body problem, probably beyond the scope of the
conventional bootstrap approach unless some large
group such as SU(6) is employed.

IV. SUMMARY AND CONCLUSIONS

The work described in this paper divides into es-
sentially two parts: first a phenomenology of the baryon
resonance region, then a related bootstrap calculation.
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The reason for our phenomenological study of
baryon decay widths is that in bootstrap theory the
very existence of hadrons is related to the couplings
they have with various composites. To make any ap-
proximation scheme viable, one must have an idea of the
dominant couplings. The procedure we follow for ex-
tracting coupling constants from decay widths is given
by Kqs. (2) and (4), except where a factor of y& appears
in the phenomenological Lagrangians (1) and (3). In
that case, we make the substitution y~~ (1/p)y~y„8"
in order to compare di6erent baryon transitions in an
equivalent manner. The coupling constants in Table I
imply that the most important composites are those
with the smallest orbital angular momentum. This
empirical evidence from the resonance region reinforces
the same kind of conclusion reached by observing that
Regge trajectories appear to be linear in the square of
the center-of-mass energy. " This outlook was not
evident in the earliest attempts to understand higher-
spin states such as X~(2688) and $*(1525), where F-
and D-wave pion-nucleon channels appeared to be a
good starting point.

Given that the truncation problem can be handled
as indicated above and that the long-range part of the
hadron potential is actually described by single-
particle-exchange processes, it appears that, if done
carefully, the foundations of bootstrap theory are
reasonably secure. However, the situation is still
complicated because in any given calculation the num-
ber of different spin and strangeness states required
may be quite large. In our calculation we have at-
tempted to overcome the many-body dBBculties by
concentrating on the ground state and by using group
theory. The S- and P-wave SU(6) symmetry fits in
naturally with the kinematical constraints implied by
our phenomenology and at the same time, makes a
plausible statement about the nature of the appearance
of SU(6) in natur- as a limiting case characterized
by the static model. Although the symmetry gives us a
workable model, it clearly limits the accuracy of Our
calculation and forces us to take seriously mainly the
qualitative features of our results. It may well be
possible to improve on this by seeing how the model
responds to perturbations, thus giving us insights into
the nature of symmetry breaking. "

Our main conclusion is that an SU(6) description of
the baryon ground state in terms of 56+ and 70
multiplets of positive- and negative-parity baryons
appears to make sense. The baryon- and meson-
exchange interactions imply that 70 is 230 MeV
heavier than 56+ in our model. The presence of meson-
exchange forces in the calculation gives some infor-
mation about the momentum transfer dependence of the
baryon form factors. We Gad that self-consistency can

"Some of the many papers along this line include T. P. Gyuk
and S. F. Yuan, Phys. Rev. 151, 1253 (1966};J. G. Belinfante,
ibid. 140, B154 (1965);J. G. Koerner, i'. 152, 1389 (1966).

be achieved with a form factor e(q) =exp( —+) with

~p, as
' implying a cuto6 of roughly 750 MeV. The

least model-dependent of our numerical results is the
relative size of the P- wave couplings 56+56+35 and
70', g) 70 35, which, for example, are seen experi-
mentally in the xÃcV coupling constant and the
Fz*(1660)~ I'0 (1405)s. decay width, respectively.
The agreement with experiment is good, although not
enough data exist to test the prediction f(70' 70 3S )/
f(70n 70 35 ) = —1.1.The S-wave couplings 70 56+35
are predicted to be roughly a factor of 2 larger than one
6nds in nature, although this particular prediction is
model-dependent relative to the type of cutoff used.

We conclude by comparing the results of our model
with other approaches. For example, if p dominance
holds precisely at smaLL momentum transfers, then
universality of electric charge implies that the longi-
tudinal component of the p meson is coupled universally
to the isospin current. This relation is almost, but not
quite, a feature of our model. For the P-wave 56+56+35
vertex, the longitudinal part of the p is, in fact, coupled
to the isospin of the baryons in 56+. (The p is assigned
to the 8'part of 35 .) Since we normalize the 35 35 35'
and 56+56+35 couplings to experiment (which in the
equality of f,~& to f, is consistent with p univer-
sality), p universality is a feature of this sector of the
model. However, the existence of a nonzero D-type
coupling of 70 to 70 I335 violates p universality
(e.g. , see the SU(6) isoscalar factors for 78n ~70
S35 in the Appendixj, although this is almost certain
to be experimentally undetectable. As for the parity-
doublet conjecture, our model implies that positive- and
negative-parity baryons do not appear to have a 1-1
correspondence. It is dificult to see how the parity-
doublet scheme can coexist in a, naturel way with
bootstrap theory. If indeed, it turns out to be true,
then the dynamics of Regge trajectories will most
likely turn out not to depend in any important way on
their couplings to external particles,

APPENDIX

We explain here some of the group-theoretic details
employed in the paper. We begin by considering the
calculation of SU(6) crossing coefficients (see also
Appendix A in Ref. 25). One can always proceed by
carrying out an explicit sum over Clebsch-Gordan
coefFicients, in a way analogous to that described by
de Swart" for the group SU(3). For higher symmetries,
such a sum is extremely tedious to calculate. However,
it is possible to simplify the calculation by noting that
the sum factors into a product of isoscalar factors for
the higher symmetry and of crossing coefBcients belong-
ing to relevant lower symmetries. Since the reader is
probably more familiar with the SU(3) symmetry, we
treat only that group here.

~ J. J. de Swart, Nuovo Cimento 31, 420 (1964).
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We follow de Swart's notation for SU(3) Clebsch-
Gordan coefficients, IIY3)

Pj. P2 P~
(A1) P.„(E Y) p.„(IY)

where 444, 442, and 442 give the multiplicities of the SU(3)
multiplets and vi, v2, and v are the respective magnetic
quantum numbers. Each SU(3) Clebsch-Gordan
coefficient factors into a product of an SU(3) isoscalar
factor and an isospin SU(2) Clebsch-Gordan coefficient
C:

'i~a'~~4
Y) 3Y~ 2Yg 3Y4

( &4 Y4)

t cha.nnels by (a bar over a symbol represents anti-
particle)

FIG. 2. Diagrammatic representation of Eq. {A7},in which a
crossing coefficient involving the exchange of state pp projected
into state p~ is given as a sum over the relevant isoscalar factors.

s ~ Pl+@2~ p3+p4 )

~: tat+pa~ pa+u4,

again with de Swart's notation. If we define the s and then we have for the crossing matrix p, t(tatttataat44)

(A3)

(~a. la. (wwww)l» r») '2=(—)+ ~*( )( )( )( ), (&4)

where Q, is the charge of particle i and tata„, and ta tt ~. represent the s,t channel SU(3) multiplets under consideration.
Using Eq. (A2) and the Gell-Mann —Okubo formula Q;=T,t+ ,'F;, Eq. (A4) -becomes

Pi P2 P~ P3 P4 PP
(ts, lP. (t ti2434 4)lt's. )= Z 2 (—)'" "'"

FIFPY&Y4Y' l&12I3I4I' Iyk I I2V2 IY I3V3 I4V4 II

t' Pa t44 tt tt Pt P 3

Q2 —F'3 I4V4 I'Y' IaYa Ia, —Va I'Y' t,tt, atgat, tlat

yCI, 1, 11414ICI, I, 1 12141 CI, 1, 1, Itlal'( )—tea lsa (A5)—
but an SU(2) Racah coefficient is defined by

(2I'+ 1)w(IaI'II4, I3I2) = (—)1'+ 'g ( )'" '"Cl„l„—l '""Cl,,l„l""Cl„ l„l;""Cl„ 1, 1 ""1', (A6)

and substituting (A5) into (A4), vie have the result

(I s. lP.4(~a 21 3~4)lA;)= 2 (-)""'"(—)"'t2+"(2I'+&)&(IaI'II4t I3I2)
FC ~s

f 441 442 l42 taa 444 tatt t42 444 44 tt' 441 Pa tt y'

EI,Y, I,Y2 IV I,F, I,V, IF I,—Y I, Y I'Y' I Y —I, V, I'F'—
The formula (A7) is viewed diagrammatically as in Fig. 2. The simplification of (A7) over (A4) becomes quite
substantial for a higher symmetry because the lengthy sum over Clebsch-Gordan coefEcients is replaced by a much
shorter sum over isoscalar factors, etc. For SU(6), a crossing matrix element is given in terms of SU(6) isoscalar
factors and SU(3) and SU(2) crossing coefficients. Several SU(6) crossing coefficients are given in Table II.

In order to compute certain SU(6) crossing coeKcients and also to compare our theoretical results with experi-
ment, it is necessary that we have SU(6) Clebsch-Gordan coefiicients. Most of the useful ones, namely, 35856-+
56, 70 and 3535 ~ 35', are already tabulated. "A tabulation of the 35?0 isoscalar factors exists, "but neither
of the 70 multiplets in the Clebsch-Gordan series agrees with generator matrix elements. Since we wish to classify
70v in this way (along with a relative orthogonal?OD), we have performed the calculation using the appropriate

~9 C. L. Cook and G. Murtaza, Nuovo Cimento 39, 53k (1965).' J. C. Carter (private communication).
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TABLE rr. Certain SU (6) crossing coefIlcients, Notation is standard except in part (a), where f denotes the antisymmetric coupling
35 35 —+ 35f. We use F and D throughout to denote the couplings 70 35 —+ 70g, 70D.

(a) ?0 f335~ 70 @35 (s4)
Direct

Exchange 20 56 70~y' 70D~ 70y'g) 70Dg 540 560 1134

1 {10)'/'/35 (28)'"/35 1/(35)'" 1/(35)'/' 0 0 (270) '"/35 (280)'"/35 (567)»'/35
35f/. 3/2(11)»» 1/2(11)'" 1/(11)1/» 1/{11)'/' 0 0 1/3(11)I/» 0 —1/3(11)»»
35f g) g(2/22) '" 3/2(22)'/ 0 ——,'» (2/11) '/» 1/(11) '/» 1/(12) '/» +»(2/22) '/' —p(2/22) '/ (7/96) (2/11)»»

Exchange

56
70p
70D
1134

56

9/2(33) '"
—(3/22) «'
—(9/5) (g) '"

?OD

4 (3/22)»»
6/21(2) 1/»

9/12
—(18/55) (11)«»

(b) 56 g)35~ 70 @35 (s-u)

Direct
70y

28/5(33)1/»

6/11 (2)»»

(»/5) (2/»)»»

1134

-(4/45)(l)
~(2/21)'"
—2(11)»»/99

three-quark wave functions. [See Eq. (4.2) of Ref. 31.]Our results are the following:

70'
8 = (1/+33)[(+10)8'38x +(+5)8'88s' —8 38 +(+5)8 31Q —8'3l'+(+5)1'38 +(+6)8'38 ],
8' = (1/+33)[—(+10)8' js Ss'+v28' 8~'+v28' Sg' —(+10)8' 10'—v28'3 I'+ 1338'+ +68'g 8„&]

10'= (1/+33) [2v28' 8'+ 2V28' 8' —2 8'ISI 10' —1'@10' —(+12)8'ISI 1Q']
P= (I//33)[ —4 83@84+8338~+13ISII~),

70')

8'= (1/16+165)[(55+5)8'3 Ss' —35 8' Sg'+ 10v28'ISI Ss'+ 20(+10)8' Sg'
+65v 28' 10'+9(+10)8' 1'+10v21' 84+ 22(+5)1'g 8'+ 55v38' 8 s4 —7(+15)8' S~'),

8' = (1/16+33)[4(+5)8' Ss'+ 40 8' Sg'+ 22(+5)8'ISI 8s' —26 8' Sg' —7(+5)8'g 10'+ 15 8'g 1'
+22v21' ISI 8'—2v21'g 8' —4v38'8 Sg' —11(+15)8' 10'+ 11v38'ISI 1']

10'= (1/8+33)[26&28'8' —7v28'I38'+40 8'10'+20 I')&10' —11(+6)8'8' —4v38'10']
1 (3/22) I /9[6 83ISI84+5 83@89+4 13@)p+ (11/v33')SIIS y]

In the above the subscripts A and S represent the antisymmetric and symmetric couplings of two SU(3) octets
to a third SU(3) octet.

"M. A. B. Bdg and A. Pais, Phys. Rev. 138, B692 (1965).


