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satisfied for all s; i.e. the reduction of U(s,J) to U(s)
when J—& 0, 2 would not automatically guarantee the
corresponding reduction of U(s,J) to U(s). This type of
failure of unitarity is partially corrected in I by adding
some terms to the input amplitudes so that unitarity is
exactly satisfied when J~0 only at the resonant
energy. Further discussion of this technical point is un-
warranted here and rightly belongs to the subject matter
of latter work, since it clearly involves highly specialized
approximations.

IV. CONCLUSION

We have established the basic formalism for the three-
channel generalization of a p-bootstrap model in xx
scattering proposed for investigating external spin con-

tinuation. The three-channel model was motivated as a
means of obtaining a statement of unitarity that was

more compatible with the infinite set of conventional
channels introduced by external spin continuation. The
formalism hinges around the set of amplitudes con-

structed so as to be free of kinematic zeros throughout
the spin continuation, and concerns the formulation of
constraints, crossing relations, and unitarity for these
amplitudes.
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Corrections due to overlapping p and a. bands in the decay A I ~ 3~, and p bands in A 2
—+ 32', are evaluated

to first order in the p and 4r widths. The corrections in the case of the A I indicate the use of a smaller anoma-
lous magnetic moment XA (or 5) than was previously needed to fit the width of the AI.

I', = 141(1—-'X~)' Me+,

F~,=F,-,.+F~, .+Fc,
where F&, , is the decay rate into pm,

(2)

I'g, , = 7.0(8+12Xg+5Xg') MeV, (3)

Fz, , is the decay rate into os. (undetermined by
current algebra, Fg is the nonresonant "seagull"
contribution, and ~& is the anomalous magnetic mo-
ment of the charged Ai particle. The experimental
value F,= 111~17MeV is obtained by choosing

Xg = 0.4&0.3. (4)

Equation (4), combined with Eqs. (2) and (3), pro-
vides for minimum values of F~,. For example, if

' H. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 {1967);
S. G. Brown and G. B. West, Phys. Rev. Letters 19, 812 (1967);
R. Arnowitt, M. H. Friedman, and P. Nath, ibid. 19, 1085 {1967);
Phys. Rev. 174 1999 (1968); 174, 2008 (1968); J. Schwinger,
Phys. Letters 24i1, 473 (1967l; J. Wess and B.Zutneno, Phys. Rev.
163, 1727 (1967); B. W. Lee and N. T. Nieh, ibid. 166, 1507
(1968);I. S. Gerstein and H. J. S"hnitzer, ibid. 170, 1638 (1968);
175, 1876 (1968).

I. A1~3~
ECENT current-algebraic "hard-pion" calcu-
lations' have established a correlation between

the decay rates for p —+ ~m- and A 1 ~ 3m, namely,

F,= 120 MeV, then 'A~ = 0.3 and F~,+ 78 MeV. This is
to be compared with the most recent experimental
compilation, in which F~,=80&35 MeV. The impli-
cation is either that the other modes are small or that
significant interference eRects occur, so that the over-
all width stays within experimental limits. It is to
these interference eRects that we address ourselves in
this section.

The eRect of finite widths may influence current-
algebra results in essentially two diRerent ways:
(1) The inclusion of a spread in the two-point spectral
functions will alter the longitudinal constraints on the
vertex functions due to the generalized Ward identi-
ties,"and (2) the use of the altered two-point functions
(propagators) will affect the calculation of the four-point
tree diagrams, such as AI~3m via p mesons. The
6rst type of correction is constrained by minimal-
coupling principles to a replacement of the mass m-'

in the inverse 0. and p propagators by m' —iFm. ' Since
quantities such as 6 '(p') —6 '(q') enter the Ward
identities, this type of replacement will have no eRect
within the minimal-coupling framework.

The second type of correction will have quite dis-
cernible eRects. We will calculate these in the approxi-

' A. H. Rosenfeld et a/. , Rev. Mod. Phys, 40, 77 (1968).' Schnitzer and Weinberg (Ref. 1}.
4 Gerstein and Schnitzer {¹f1).
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mation of (i) replacing the mass ni' in the inverse
propagator by rn' —iFn& (Breit-Wigner), and (ii) then
going to 8-function limits for all quantities of the form
(Fni/ir)L(rn' —q')'+ (Fni)'j in the integrations over the
Dalitz plot. To this order, we find the following: (1)
There is no interference among the different decay
modes given in Eq. (2) and (2) there is a sizable cor-
rection to Ai —& 3x via both the p and 0. intermediate
states. In the case of A~~3w via the p, LA=0.3 will

give a correction of about 38%%uo.

We consider the decay of the 3 & into 3x as proceeding
via the three diagrams shown in Fig. 1 for the case of a
p intermediate state, plus three more similar diagrams
with the p replaced by cr. There is also a direct non-
resonant contribution, 4 which we discuss later on. The
general Feynman amplitude for the decay Ai"(P) ~
n'(ki)+n'(ki)+&r'(k&&) may be written

e„&"&(P,A)No(kia, kgb, kgc),

where X is the polarization of the A~, A, u, b, c are
isotopic indices, and P= hi+hi+kg. Isotopic-spin
invariance permits the reduction

~p ~ F 4 a~ bc+ ~ts~A &~ac+ Cts~Ac~ab ~

Dining A jpn, purer, A&fTm. , and 0~m couplings by

P, A

P, A

kid

+~ kgb

k3C

P, A

k, o

&to. &. Diagrams contributing to A~ ~3~ and
Aa ~ 3x via p as the'intermediate state.

~3X *(P l Fp, where

6' t'= spin-1 projection operator
= —g e+P Pe/nil '.

The notation J'dp, is shorthand for the integration
over the three-particle phase space

dp&&
= (2&r) ~(Msiti&o, &os&o,)

—'d'k, d'kid'kl. (12)

~(Ai: ~ 'p(V) +~'( k))

= o.a.Gg,.L-,

'rnid'(1+

Xg)g„.+ (1—Xg)&I„k„j,

Z(pi —+ z-'(k)+ w'(k')) = ie.&,.Gp..(k k') &„—

&(A&ii

~ o(q)+n'(k)) = ib.&Gg..(q —k) &„

Z(o —+ s. (k)+s'(k')) = B,&G.

we find that

(6)

The symmetries existing in the phase-space integra-
tions

dpi (R&",R&'&) =Ii, independent of i

dpi. (R&',Ro'&) =Is, mdependent of i, g (iWg)

A„= (R &'& —R„&'&)+S„"'

8„=(R„&'&—R„&'&)+S„&'&

C„=(R„&'&—R„&'&)+S„&",
where

R„&'&= ',iG (r-p'(rn1+&g)(&k kie)

+(1—Xg) (og —os) (ki+ks) „j

dp3 (R"&,S&o)=Is, independent of i
(&)

~ ~ ~

dp, ~(R&'&,S&i&) =I4& mdependent of i, g (iWg)

dpi, (S&'&,S&o)=Is, independent of i

(13)

(2ki —P)„
S„&"= iG~~.GA..

8$ —0 y
—'LI

and the other amplitudes are de6ned by cyclic permuta-
tion of ki, ki, and ki. We have defined o;=(P—k;)'
(i = 1, 2, 3).The contact term is omitted for the moment.

From the Appendix, the A ~ decay width is given by

Fg,„i ——2 dp&&, (R&'& R&")—2 Re dpi~(R"' R&")

3+- d'p3. S(",S"' «d'p3. S"',S"' 14
2Fg, g

= dp&& P(A, A)+Re(A, B)j, (10)

(8)
dpi (S&",S&")=Is, independent of i,j (i')

(9)
allow us to write (again, omitting the contact contri-
bution for now)

Where (X,F) denotes the spin-averaged quantity Note that there is no p-o interference.
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We now implement the limits

2 X
b(m' —o),

m2 —0.—iFm Fm

Re
~ ~

1 * 1

my —Py —'EFymy m2 —0 2
—sF2m2

~'b(mzs o—z)b(m2' o—2), (1'7)

while making use of

dpz ( ) =(2zr) '(2m&) 'zr dozdos( ) (18)

for the phase-space integration of the interference
term. ' It should be noted that to sustain this approxi-
mation, we must make sure that the intersection of the
p (or o.) bands lies within the Dalitz plot. Amusingly
enough, this is fulfilled if mA, '&2mp +m; this
means that for canonical values mA, =&2mp, , the inter-
section lies just at the edge of the Dalitz plot. The
prescription we follow is to calculate the interference
terms as if the intersection point lay within the Datits
ptot, and then take 2 of the result obtained

We can now state our results. Neglecting all terms
of O(m '/m, '), and setting m~, =&2m„and, for
simplicity, mA, =42m, we obtain

%2GA„2 m, '
I'g„ t'& = (9+12& +5K '), (19)

768m

I'~, = 117+(G~„'/4zr) X 18 MeV. (25)

As stated earlier, the correction is 38% in the case
of the p intermediate state. For the case of the 0., it is

Finally, we turn to the contact term. By itself, this
is estimated to give a small contribution to FA„perhaps
15 MeV. 4 The question arises about its interference
with the other terms. For this it is crucial to note that
current algebra determines the phase of the Feynman
amplitude for this "direct" decay mode to be pure
imaginary. A typical interference contribution will

then take the form Lsee Eqs. (8) and (9) for the phase
of the pole terms]

ia
doz«z Re

~
(ib(oz&o2)]

m2-~, -irma

dozdo g(ab) (m' oz) (z—r/I'm) b(m' zrz) —(26)

=0.

With G, '~28 (giving I', = 115 MeV) and G
~12m, ' (giving I',—260 MeV), we have

r„=7.0(8+121,g+SXg'+-, (2+Kg)']
+ (Gg „'/4zr) )& 18 MeV. (24)

With RA=0.3, we have

v2GA, p~2 mp' Gp.„'
1~,„.«& =- (2~y„)z

768m 32

m GA~ 2

(0)—
192m v2

Il)FAI, trm

192~ V2 16m,'

II. A2 —+3m

(21) This case is similar to the last but considerably
simpler, because (1) there is no o intermediate state,
(2) there is no current-algebraic prediction of a contact

(22) term, and (3) there is only one A2pzr coupling constant,
which we define by

Hence there is no interference between the contact back

(20) ground and the tree diagramsin the present approximation

As seen in Eqs. (13) and (14), I'~„&o&, I'~„&o& are
the partial widths A~~ px, Aj —+~m. as calculated
without interference, and FA„&'&, FA, &'& are the
interference corrections.

Current algebra states that Gg» =(2F ) '. This
folds with Eqs. (19) and (20) to give'

I „=7.0L8+12&„+5&,.y —;,G...(zy~„)]

+ I+ X11 MeV. (23)
4x 16m '

'See, e.g. , G. Kallen, E/ementary Particle Physics (Addison-
%'esley Publishing Co., Inc., Reading, Mass. , 1964). For the
noninterference terms we use the canonical form J'dp3 J'do
Xq(o)/Qo J'dQ k(s,o) /2+s, where q(o) and go are the momentum
and energy in the c.m. system of pions 1 and 2, and k(s, Qo) is
the momentum of pion 3 in the A I c.m. system.

'%'e use Ii cos8~=94 MeV (where 8@ is the Cabbibo angle
and m, =765 MeV. Keeping additional terms in ns ~/m, ' would
tend to decrease the factor 7.0 in Kqs. (3) and (23).

~ps =~ tst~Aa~ bc+ ~tt AA brac+ Cts pSAc~a b ~

From the Appendix, the decay rate is

(28)

I'~, z = dpa L-', (A, .4)+Re(A,B)], (29)

where in this case (X,V)= sX zz*(P~e'z'I'„q, and tP~e'z'

is the spin-2 projection operator

6"e' '= —'ap.ea»'+-'(6 - tp»+6-'ape ) (3O)

&(~z""(p+q) ~ Oz'(p)+~'(g))
—&AscG e e &pxzrpvp ~ (27)

The Feynman amplitude for the decay A2"(P) ~
zr'(kz)+zr~(kz)+zr'(k3) may be written as ez'"3E„„,where
SUz invariance allows the decomposition )similar to
Eq. (5)]
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with 6' &= g—a~+PaPp/mg, '. Analogously to Eq. (7),
we have
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with

R„."'=2Gg, ccGccckccoacbckcck, "kbc/(mg, ' —o c) . (32)

8&2) and E&') are dined by cyclic permutation of
kq, ko, and ko. As before, n;= (P—k;)' (i=1, 2, 3).
Using the symmetries given in Eq. (13), we obtain

=2 dp (R ',Rc'~) —2 dp (Rc'~,Rco~). (33)

%ith the same b-function approximations as in Sec. I
(this time the intersection of the p bands is in the rniddle
of the Dalitz plot), we obtain (neglecting all terms in
mc'/m, ' and using m~ '=3m ')

IA 3 IA +I A

2 5Gg, p mp

3x 60'3

Gg„2G, ' m, 5

256~ 6(h8

The transition amplitude for an isovector particle
(index A) into three a mesons (indices cb, k, and c) can
be written

MAabc —AgAag c+bB)A gbca+C 1kccg ab (A1)

where we have omitted the Lorentz indices on 3f, A,
B, and C for typographical clarity. If we deine the
Feynman amplitudes for the decays

M '+ =,„b(a. (kg) a+(ko)a (kb)
~

A )co
X (2M2coc2coo2cob)' ",

( )Moooo b(m. o(kc)n.o(ko)pro(kb)
~
Ao)

X (2M2coc2coo2cob) '~'

then the decay rate of the A particle is

(
Fz b dpb ]

(Mo~—[o+ JMoooo]o [, (A3)
3!

where the factor 3! is included because of the Bose
identity of the three xo's. The element of phase space
dpb was defined in Eq. (12). The notation ~M~'
includes an average over the spin of the A meson. In
terms of the amplitude A, B, and C,

or

Fg, = 1'g„"'(1—3G, '/256),
Mo~ =A

7

&0000=A+B+C. (A4)
where Fg„&0) is the width calculated on the basis of
A2~ pn- without interference. If Fp= j.15 MeV, then
G, '~28 and the correction is 33%.What this means
in practice is that the value of G~» obtained by setting
r~, = rQ p

(') is suspected of being in error by about
16%%uz on the low side. This may be of importance in the
comparison with experiment of the results of super-
convergent sum rules~ and Veneziano-model relations. s

~ F. Gilman and H. Harari, Phys. Rev. 165, 1803 (1967);M.
Ademollo, G. Veneziano, H. R. Rubenstein, and M. A. Viraroso,
Phys. Rev. Letters 19, 1402 (1967).

'H. Goldberg and Y. Srivastava, Phys. Rev. Letters 22, 749
(1969); 22, 1340 (1969).

There is enough symmetry in the problem
Li.e., ReJ'dpb, (A, B)=ReJ'dpb (A, C) =Ref dpb (C,A),fdpb (A, A) =fdpb (B,B)=fdpb (C,C)j to allow (A3)
and (A4) to combine to give

I'g b
= dpb E,'(A,A)+Re(A, B-)]. (A5)

The notation (A,B) denotes the spin-averaged scalar
product

(A,B)—= (2J+1)-' A...„,*a» "» "'""&B„....„(A6).
where 6' is the spin-J projection operator.


