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External spin continuation is proposed in a three-channel self-consistent p bootstrap in which the channels
are composed of pions and first pion recurrences. Emphasis is placed on presenting those aspects of the
problem that may survive generalization to other multichannel bootstrap situations. The relationship
between the existence of recurrences and the statement of unitarity is studied in an endeavor to treat
internal and external particles more uniformly than in a previously proposed one-channel problem. Un-
conventional amplitudes are constructed which, unlike the conventional helicity amplitudes, possess the
property that kinematic zeros are urjjtformly factorizable under external spin continuation. The set of
spin-dependent coupling constants introduced into the problem satisfies a number of constraints due to the
nonexistence of certain types of couplings, to Bose-Einstein statistics, and to redundancies in the channel
definitions. Crossing relations, unitarity, and a unitarization procedure for the unconventional amplitudes
are formulated.

I. INTRODUCTION

HERE has been proposed' a p-meson bootstrap
model in m~ scattering in which the bootstrap

conditions and the ms. p-wave phase shift generate
an implicit relation between the analytically continued
spin J and mass N of an external pion. This view of the
p bootstrap provides us with a particular framework in
which to study the possibility of the Regge continuation
of an external particle.

The connection between recent bootstrap investiga-
tions on the one hand, and the questions we hope to
answer in the program started in I and continued in the
present work on the other hand, is explained below.

Several external scattering systems have been studied
as models in which to test the idea of a self-consistent p,
or more generally, a self-consistent set of particles. "
The statement of self-consistency itself can assume a
variety of forms. For example, one could demand strictly
self-consistent properties of the p (input mass equals
output mass, etc.) and then, if the model does in fact
determine such properties, compare them with the
physical values. Or, as was done in a Reggeized p boot-
strap, 4 one could search for input p Regge trajectory
parameters, including setting the input mass equal to
the physical p mass, that yield an amplitude best satisfy-
ing crossing symmetry and bypass the specific question
of the existence of an output resonance.

Thus there is no single definition of self-consistency,
nor is there general agreement on what finite systems
of external particles may best demonstrate the self-

consistency hypothesis of a given set of internal par-
ticles, with the exception that multichannel systems
with their inherent inelastic eAects are recognized to
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have a better record of achieving self-consistency than
single-channel systems. '

Since an ultimate bootstrap theory of hadronic mat-
ter, assuming one is ever realized, must very likely en-

compass an infinite number of channels, the obvious
enormity of the task of constructing such a theory sug-
gests turning away our attention to more immediately
fruitful problems. However, any conventional single-
channel or multichannel scattering system is extendible
to a system of greater dimensionality through the ad-
dition of channels in which the original external particles
are replaced by their Regge recurrences. While these
recurrence channels, extended, say, from only a few
original channels, may account for only a minor part
of the totality of channels in an ultimate theory, there
is an obvious computational advantage in carrying out
such an extension and it is, therefore, one that deserves
exploitation. The advantage is that an infinite number
of channels are introduced at once if the recurrence
channels stemming from the Regge recurrences of a par-
ticular external particle are handled in a uniform way,
i.e., if the spin of the particle is considered as a con-
tinuous variable. Accordingly, we call the infinite set of
channels labeled by a continuous spin variable a con-
tinuols channel when it is necessary to distinguish it
from a conventional finite set of discrete channels.

The complexity that a bootstrap system would as-
sume, even in the simplest example of this type of ex-
tension to an infinite-channel system, correspondingly
admits a larger variety of definitions of self-consistency.
Thus, in a suitably chosen model, we could again de-
mand strict self-consistency for a set of internal par-
ticles (input masses equal output masses, etc.) for a
fixed physical set of Regge parameters describing the
external particles and then compare the internal self-
consistent properties with the physical ones. Alter-
natively, we could demand, as well, that input masses
equal output masses equal physical masses, etc., and
satisfy these equalities by adjusting variable parameters
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describing the external particles and then compare
the external parameters, so determined, with physical
values. It is clear that as tests of self-consistency these
two procedures are the same in content. The proposed
p-bootstrap model in I is essentially a realization of the
latter procedure (in retrospect the former procedure
may actually be easier to work out) and is the simplest
such extension of the original p bootstrap' in 7rx scatter-
ing to an infinite-channel system. The long-range em-
phasis in this model is not necessarily to establish an
improved p bootstrap or to determine a realistic external
pion trajectory, but to discover and explore features
that seem to be characteristic of the general problem
of external spin continuation.

Should self-consistency be actually achieved in the
proposed model, a more immediate connection with
other current work is possible. A feasible version of the
model in which the p is more properly treated as a
Regge pole would involve Reggeon-Reggeon —physical-
particle couplings, and would therefore be closely re-
lated to the successful multi-Reggeon exchange model
of production processes. '

The specific questions we wish to answer in the im-
mediate context of the model are: (i) Can crossing sian-
metry approximated in a hadron scattering process
(specifically sir scattering) in the form of a self-con-
sistent bootstrap determine a mass-spin relation for an
external particle, and if so, (ii) does this relation bear
any resemblance to a conventional Regge trajectory&
In question (ii), particular attention might be paid to
the analyticity of the trajectory and to its slope where
it passes through the physical pion. An afFirmative
answer to question (i) was tentatively established in I,
but a number of difhculties arising in that study were
inadequately treated. Therefore, it is the intent of this
paper to reexamine some of these difIiculties in their
own right, especially those concerning the relationship
between unitarity and recurrences, before attempting a
numerical evaluation of trajectory parameters. Further-
more, we wish to confine the content of this paper
largely to the formal development of generalizable as-
pects of external spin continuation in a multichannel
problem, and defer for following work the more special-
ized aspects, such as the formulation and solution of the
p-bootstrap equations.

The key steps in I are briefly reviewed in this para-
graph, since their logical sequence is essentially the
same as the sequence of steps in the present calculation:
(i) The helicity amplitudes for vr*ir —+irir via inter-
mediate p formation and decay are computed where m*

has spin J, odd normality, mass SI, and otherwise
carries the quantum numbers of the pion, while the p
is treated as an elementary vector meson of known
mass and width. The amplitudes contain two coupling
constants which presumably have an a priori unknown
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dependence on J and M. (ii) The p-exchange crossed
amplitudes are constructed and the helicity p waves
are projected out. (iii) The partial waves thus obtained
are made to satisfy elastic unitarity by a phase X/D
method, based on the p-wave phase-shift input. (iv)
The unitarized p-exchange amplitudes are then matched
to the direct amplitudes computed in step (i) with a
sufhcient number of conditions so that the mass-spin
relation is determined. A certain amount of information
about the coupling constants is incidentally determined
as well.

In Sec. II, a three-channel generalization of the boot-
strap model studied in I is formulated in which the
channels are composed of pions and first pion recur-
rences and where again one external particle (in the
initial state, say) is continued in spin. In this way, the
recurrences are explicitly introduced into the unitarity
sum and we thus approach a more uniform treatment
of internal and external particles. Most of the results
of this section Lwith the exception of the explicit struc-
ture of the Q and Q(J) matrices derived in Sec. II Dj
are readily extended to more channels and, therefore,
constitute the beginnings of a general model-indepen-
dent formalism for studying external spin continuation.
Much of the effort in this section is directed toward the
construction of linear combinations of partial-wave
amplitudes such that under the continuation of an ex-
ternal spin, they are uniformly free of kinematic zeroes.
These combinations are the U amplitudes of Sec. II E
where the meaning of the preceding statement will be
clarified. Partial-wave p-exchange amplitudes are con-
structed in a standard way in Sec. III and the cor-
responding V amplitudes are found. A statement of
unitarity for the V amplitudes and the outline of a
tentative unitarization procedure are formulated.

Further progress in the three-channel bootstrap
is considerably more model-dependent and involves
specialized approximations that will be the subject of
later work.

II. THREE-CHANNEL AMPLITUDES

A. Unitarity Sum

Ke require some preliminary consideration of the
statement of unitarity here. For the moment we do not
need to assume any simplifying reduction of the number
of intermediate states in the unitarity sum. %here one
of the intermediate particles is a pion, the question
arises of whether or not to continue the amplitude in
the spin of this pion simultaneously with that of the
external pion. Furthermore, the question may equally
well be asked of any pion recurrences belonging to the
intermediate states.

The question is plausibly answered in I, but perhaps
not in a truly convincing way. There it is argued that
if the liiodel is to admit Regge recurrences as well as
m's in the intermediate states of the unitarity sum. , the
spins of these recurrences as well as of the 7r's should
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be regarded as discrete quantities always fixed at their
phvsical values in contrast to the continuum of spin
values of the external m.~. This is made plausible by
showing that there appears to be no sensible way to
continue analytically in the spins carried by inter-
mediate states, despite the temptation to say that this
somehow ought to be done, since it seems inconsistent
to treat the external and internal m*'s in unlike
manner.

Here, we adopt a more positive stand by stating that
the correct way to treat the recurrences in the unitarity
sum follows from the observations that (i) for any of
the discrete physical values J of an external spin, an
invariant set of physical intermediate states, with or
without recurrences, occurs in the unitarity sum inde-

pendently of J, and (ii) the analytic continuation in
external spin is nothing more than a type of smooth in-

terpolation of the amplitude between the physically
meaningful values. The first observation is equivalent
to the fact that any channel which communicates with
a two-particle channel A+8 also communicates with
channel A+8*, where particles 8 and 8* dBer by an
even number of units of spin, but otherwise are identical.
The obvious smooth interpolation of observation (i) to
arbitrary values of J is then that the set of intermediate
states remains invariant with respect to arbitrary
changes in J.

It would clearly be desirable to construct a model of
sufFicient fIexibility so that pion recurrences are a possi-
bility and are introduced, at least tentatively, into the
unitarity sum. This feature complicates the problem
in that it must then be solved by many-channel tech-
niques. For example, if only two-particle intermediate
states consisting of pions and the first n pion recurrences
are allowed in the unitarity sum, the model then has
2(n+1)(n+2) discrete channels which may be thought
of as special cases of the n+1 continuous channels con-
sisting of a m* of continuous spin J and a pion or one
of the recurrences. In the case of the p-exchange model,
there would be (23+1)(323+2) a priori unknown
J-dependent coupling constants.

B. Three-Channel Problem

We consider the case n=1 with three discrete chan-
nels, which are special cases of two continuous channels,
and ten J-dependent coupling constants in the p-ex-
change model. Let channel index i = 1, 2, 3 denote dis-
crete channels m-x, m'~, and x'x', respectively, where x'
is the first recurrence; let index $=n, P denote con-
tinuous channels m-*m-, x*x', respectively.

It is of interest at this point to count up the number
of independent helicity states within these channels that
communicate with the p. VVe assume that all three
coupling particles have isotopic spin= 1, in which case
there is only one way that the isotopic spins couple, and
hence the isotopic spin degree of freedom does not con-
tribute to the multiplicity of states.

For i = 1, there is only one state communicating with
the p. In channel 2, of the five helicity states, angular
momentum and parity conservation reduce these to
only two states communicating with the p, while for
channel 3, angular momentum and parity conservation
and Bose-Einstein statistics reduce the number of in-

dependent states to five. Hence, there are a total of
eight independent states in the discrete channels.

In channel o. there are two independent helicity states,
while in channel P there are eight. There are then a total
of ten states in the continuous channels and therefore
a maximum of ten J-dependent coupling constants
when each state is coupled to the p.

Ke note that channels 1 and 2 may be considered
as special cases of channel 0., while channel 3 may be
considered as a special case of channel P. Hence, the
three coupling constants of channels 1 and 2 are special
cases of the two J-dependent channel-o. coupling con-
stants, while the five channel-3 coupling constants are
special cases of the eight J-dependent channel-P cou-
pling constants. Also, channel 2 is a special case of
channel P. These cross relations between the discrete
and continuous channels contribute to the existence of
certain constraints among the ten J-dependent cou-
pling constants. These constraints are discussed more
fully in Sec. II D 4.

C. Resonant Scattering Amplitudes

Let us suppose that an arbitrary two-particle helicity
partial-wave scattering amplitude may be written as the
sum of rt resonant arr3Ptitldes, i.e., amplitudes each of
which represents the formation and subsequent decay
of some resonant state or unstable particle between
external two-particle states of definite helicities and
angular momentum. A scattering amplitude then has
the form of an n-term dyad,

F(J3lT3J 4(T4& Jj(T27202) Q P '(3; 0'3 —0'4I T, II J30'3)
s=l

&&~ I ~«4»(i; 02 —02
I T'Il~ioi)~1~202», (1)

where I', contains the pole and form factor parts of the
propagator of resonant state i, T; is the transition oper-
ator connecting an external two-particle state to i and
includes the angular momentum projection operator,
(i; 0

I
is the state describing resonance i at rest with spin

projection 0 along the z axis,
I 730&) is a plane-wave

state of particle of spin J&, helicity 0I, moving in the
positive s direction, and E is a rotation by m about the
y axis.

D. p-Formation AmpHtudes

1. iVotation

The scattering amplitude representing the formation
and decay of an intermediate p is a special case of Eq.



1772 L. TH I E B AUX

(1) in which n=1 and the formation or inverse decay
amplitude is

&';oi —~g f~ffAox» f
Jgoe).

We now introduce some compact notations for these
formation amplitudes as further specialized to the
channels described in Sec. II B.We define

r.,-(J)=&'io'ITIIJo)~l~)) (2)

r-'(J) =(—)'&~; o—r
I ~IIJo»12r)) (3)

to be the p-formation amplitudes in channels o and P,
respectively. It is always understood that the spin-J
m-~ has variable mass M, the spin-2 x' has unknown
mass p, , and the spin-0 x has mass 1, and hence no nota-
tion for the particle masses is included in (2) and (3).
The factor (—)' in Kq. (3) ensures that the spin-2 n.'

is particle (2) in the sense of Jacob and Wick. r Also
suppressed in Eqs. (2) and (3) is a notation for the iso-
topic spin part of the state vectors. In the absence of
that notation, which would explicitly show the iso-
topic spin-exchange antisymmetry, we must remark that
Bose-Einstein statistics require

Z. Channel 0,

F,N=P Q,,Ng, N, g=1, 2 (10)

We now construct the channel-n formation ampli-

tudes F,P(J) in terms of a pair of covariant coupling

constants gi and g2. In the covariant tensor representa-

tion, the spin state of any one of the particles under con-

sideration is a Clebsch-Gordon product of basic spin-1

vector states. Thus, in the rest frame of the x*, the

spin state is the purely spacelike rank J tensor

(4.s) "'s, when J has integral value. The x spin state
is the scalar Co'= 1, while in the c.m. or p rest frame,
the on-shell p spin state is the purely spacelike rank-1
tensor (4,')~.

Introducing two provisional coupling constants g~'

and g2', we can write

r.;(J)= (g 'f-fe+g 'g-e)f f (C"'*) (e')'" '(9")
where the four-vector f is some linear combination of
the ~* four-momentum p* and the m four-momentum

p, namely, f=ap* bp. We—carry out the reduction of

Kq. (9), use the notation defined in Eq. (7), and obtain

lu&Rlb)) = —
I gib I g)).! 4

where the elements of the matrix Q(J) factorize into
For p formation in the discrete channels, we define

Q'(J) = C' (J)»(J).
F.,*'= r.,s'(J'),

wherei= 1, 2, 3 is the discrete-channel index, $&——$g ——n,
pg=P, Jg=o, and Jg= Jg ——2.

Conservation of parity requires

The elements of the nonsingular matrix C(J) are

Cu(J) =s '", Cgg(J) = [-,'(J+ 1)7-''gy(S, 3E'; 1),
Cgg(J)= J-'", Cgg(J)=0,

r 4=r~0'
~ T ~ —Tg 0' (fi) and the elements of the diagonal matrix k(J) are

while conservation of angular momentum requires
fo r f&1. Hence, a—choice of independent helicity
subscript pairs (or) is (00), (01), (10), (11), (12), (21),
(22), and (32). Accordingly, we introduce another,

ore uniform notation rp(J), k= 1, ~ ~ ~, 10 for the 10
independent continuous-channel formation amplitudes
by the following definitions:

where

k (J)=Ss+'(Mg 1)

k, (J)=Ss '(3Eg, l),

s= (p*+p)',
S(x,y) = [s'—2s(x+y)+(x —y)'7'",

y(x, y; s) = —,'(xy) —'"(x+y —z).
r'(J) = r«(J),
rp(J) = rope(J),

r,(J)= r, e(J),
F7(J)= rage(J),

rg(J) = rggs(J),

rg(J) = rgp (J),
r4(J) = roP(J),
rp(J) = ru'(J),
rp(J) = rgP(J),

rio(J) = rpgs(J),

(7)

and a notation I';, j= I, , 8 for the eight independent
discrete-channel formation amplitudes:

We have replaced the provisional coupling constants
by new ones according to the definitions

gg(J) = ——,'[J!/(2J—1)!!7'"(u+b)b (231) Jg, '

and

gg(J) = [(J+ )!/2( J—) "7'"b' '(2~)' 'g '

3. Channel p

r,= r, (o),
Fp= I'g(2),

r,= r,(2),
r, = r,(2),

rg= rg(2),
r,= r, (2),
r, = rp(2),
rp= rg(2)

In similar fashion, we construct the channel-P for-
mation amplitudes F„(J)in terms of eight covariant

(g) coupling constants gp, , g~p. Here, the x' has four-
momentum p and is described in its rest frame by the
purely spacelike rank-2 tensor (4-,g) s. In terms of a

~ M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 8 C. Zemach, Phys. Rev. 140, B97 (5965).
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r, (J)= P Q,,(J)g,(J), i=3,",1o, (13)

where the elements of the matrix Q(J) again factorize
into

Q*i(J)= C*i(J)»(J). (14)

In turn, the nonzero elements of the nonsingular matrix
C(J) are

Cgg(J) = s '",
C84(J) = (V'8)Vs,

C (J)=Ll(J+1)7 '"v,
Cgg(J)= —4h(J+1)7 '"vss '"
C»(J) = —

Lg (J+1)7 '"vgvs,

Css(J) = —2B(J+1)(J+2)7 '"vgvs,

Cgg(J) = —Lg (J+1)(J+2)7—'"s—'~'(-'+v ')

C, o(J) = Ll(J+1)(J+2)(J+3)7 '"v (l+v ')

C44(J) = V'-,',
C (J)= —L2(J+1)7 '"v,
C«(J) = L2(J+1)(J+2)7 '"

c4,gg(J) = —$2(J+ 1)(J+2)(J+3)7 '~svg,

Csg(J) =J '",
Cgp(J) = (12J)-'"
Cgg(J) = —2L3J(J+2)7-'"vs,

Cg.sg(J) = t:3J(J+2)(J+3)7 'ig(l+vsg)

C (J)=(Js) '"
C47(J)=gJ '"vs,
Cg (J)=LJ(J+2)7 '"v
Cgg(J) =LJ(J+2)7 '"s '"vg

Cg, lg(J) = LJ(J+2)(J+3)7 ' vsvg

C»(J) =(2J) '"
Cg, sp(J) = L8J(J+2)(J+3)7

Cg (J)= t:2J(J-1)7 '"
C. o(J)= —L2J(J—1)(J+3)7-"»

Cgg(J)= —L4J(J—1)7 '"s '"
Cs sg(J) = L4J(J—1)(J+3)7 ~igvg

C~g. sg(J) = L8J(J—1)(J—2)7 "8
i

set of provisional coupling constants gl', -, g~o', we
have

1'-.P(J) = (gs'f fpf, fsfxf, +g4'g.pf, fsf) f,
+gs g~sfpfvf&fi+gg f~fpg»f&f~
+g7 g~pg&sfxf8+gg g~sgpxf~fg

+gg f~gpsg~xfi, +gxa g~sgpggvg)

&&f f(@.' —') (~'- ')"(@'')'""""' (12)

The reduction of Eq. (12) yields

and the elements of the diagonal matrix k(J) are

ks(J) =Ss+8(3E',tgg),

k, (J)=k,(J)=kg(J) =Ss+'(Mg, tsg),

k7(J) =kg(J) =kg(J) = Ss '(Jrrg,-ts'),

ksg(J) =Ss 8(Mg tsg).

In these expressions we have used the abbreviated
notations

vs= v(s,3f', u'),
vs= v(s, ts'; Jrlg),

vs = —v(cV', 44' s) ~

Again, the provisional coupling constants are replaced
by new ones, appearing in Eq. (13), defined by

gg(J) = ——,'L2J!/3(2J —1)!!7'"
)((ay b) agbs(244) —'(2M)-sg ~

g4(J) = LJ!/(2J 1) ~ ~7' 'abs(244) (231) g4' i

g (J)= L(J+ 1) '/3(» —1)"7'"a'b' '( u) '(23f)' 'g ~

gg(J) = —lL(J+ 1) '/(2J —1) ' 7'"
)&(a+b)abs '(244) '(231)' sgg

g7(J)= p(J+1)!/(2J—1)!!7~isbs-~(2~) ~—sg7,

gg(J) = lL(J+2) '/(» —1)"7'"ab' s(2u) '(23')s 'g ~

gs(J)=-,'L(J+2)!/(2J —1)!!7't'(a+b)b s(2M)' gg,

g»(J)= 5(J+3) '/(» 1) '!7'"—b' '(2~)~'g ~

4. Coupting Constant C-onstraints

When the continuous-channel formation amplitudes
are specialized to the discrete channels, a number of
constraints are found to exist among the coupling con-
stants. These arise from (a) the nonexistence of certain
types of couplings when J=O, 2, (b) Bose-Einstein
statistics in channel P at J= 2, and (c) the redundancy
between channel n at J= 2 and channel P at 1=0.

Type (a) constraints are readily derived by inspection
of Eqs. (9) and (12). These are

0= gg(0) = gg(0) = gg(0) = g7(0) = gg(0) = gg(0)
= gsg(0) = gM(2). (15)

Type (b) constraints are found by first applying rule
(4) to Eq. (3) at J=2 to obtain

F„P(2)= 1', P(2). (16)

From definitions (t) the only nontrivial applications of
this result are F4(2) = Fs(2) and 1'7(2)= 1'8(2), or equiv-
alently in terms of elements of the matrix Q(J) evalu-
ated at J=2, M=@,,

e«(2)g (2)+Q.(2)g (2)+Q.(2)g.(2)
=e (2)g.(2)+e. (2)g.(2)+Q-(2)g (2)

and
Q77(2)g7(2) = Q88(2)gg(2) .

We then find that these equations are identically satis-
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fied at all energies if and only if

gs(2) = gs(2) and gv(2) = g„(2) . (17)

and the elements of Q factorize into

Q 4= C*iki, (22)

C22= C11(2) i

C„=C2,(2),
C4;= 2C24(2),

C4v = 2Csv(2),

C;;=C44(2),

Css =Css(2),
C68= C69(2),

C88 C99(2) i

C11=C11(0),
C28= C12(2),

C44= Css(2),

C46 = Css(2),

C4s = C89(2),

Csv =C4v(2) +C4s(2),

Csv =Csv(2)+ Css(2),
Cvv= C»(2),

Fs ~(0)=I' 6 (2), (18)

which, by definitions (7), becomes Fs(0)= F,(2) and
F4(0) = I'2(2). Again, in terms of elements of Q(J), these
are

Q»(0) gs(o)+Q84(o) g4(o) =Q»(2)gv(2)+Q»(2) g (2)

Q44(0)g4(0) = Q22(2)g2(2) i

and the elements of the diagonal matrix k are
both of which are identically satisfied at all energies if
and only if k, = S(1,1), k2

——Ss(P2 1)

k, = S(I42&1) ks ——Ss(442 442)

k, = ks ——Ss(442 p2)

kv= ks= S(442 44')

(19)g,(0)=g, (2) and g4(0) = g,(2) .

Equations (15), (17), and (19) together constitute 12
constraints among the coupling constants. That these
are very simple in form is attributed to the way certain
J-dependent factors were absorbed into the provisional
coupling constants gI, '.

The way in which the coupling-constant constraints
are to be incorporated into a three-channel bootstrap
model will be seen in later work. En the one-channel
model of I, where there is only one constraint Lof type
(a)$ it is found that this constraint selects one of the
two possible solutions to the bootstrap equations. Also
in I, Bose-Einstein statistics do not emerge as an ad-
ditional requirement, since in the simple system under
consideration it merely happens to be consistent with
the conservation laws of parity, isotopic spin, and angu-
lar momentum. Hence, no constraints of type (b) exist
in the system, nor of type (c) since there is only the one
continuous channel o..

E. U Amplitudes

According to Eq. (1), and from Eqs. (13) and (20),
the resonant scattering amplitude representing the for-
mation of the p from a continuous channel and its sub-
sequent decay into a discrete channel is

F„(J)=P,F,F,(J)

=Z P Q'2gsQ 1(J)g1(J),

or, in an equivalent matrix notation,

F(J)= Q&(J)0(J)
where

U24(J) =g2P,g1(J).

(23)

Type (c) constraints can be derived by applying rule where the nonzero elements of the 8X8 matrix C are

(4) to Eq. (3) at J=O to obtain

in which

gr= g1(o),
gs= g2(2)

gs= g4(2)

g?=gv(2),

g2= g1(2),
g4=gs(2),
g6= g6(2),
g,=g, (2),

(21)

5.

I"discrete

Channels

As we have already observed, the discrete channels
may be considered as special cases of the continuous
channels. Hence we may specialize Eq. (13) to the dis-
crete channels by using rule (5) and definitions (8).
The results so obtained can be further reduced, using
the coupling-constant constraints and properties of
Q(J), to the form

8

F;=g Q,,g,

While amplitudes F(J) have factorizable kinematic
singularities, they do not all have kinematic zeros which
are factorizable in a uniform way as J varies. This is
easily seen from the type (a) constraints listed in Eqs.
(15) and the structure of matrix k(J) which carries the
kinematic singularities and zeros. For example, in the
neighborhood of the channel thresholds and pseudo-
thresholds, Fs(J) S~ ' for J&4, while Fs(2) Fs(0)

S. En fact, all amplitudes except those containing
F2(J) and F16(J) exhibit this nonuniform behavior of
kinematic zeros. This is a serious defect carried by
F(J), since it is clearly desirable to have scattering
amplitudes which are free of kinematic zeros as well as,
singularities, and furthermore, we are especially con-
cerned here with analyticity in J.

A solution to this difhculty presents itself in the form
of the U amplitudes introduced above. The undesirable
features of F(J) are actually carried only in Q(J), which
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may be factored out according to

U(J) = Q 'F(J)Q '(J) (24)

which equation we now take as the definition of U(J)
corresponding to any amplitude F(J). This procedure
obviously works satisfactorily for the n-term dyad form
of Eq. (1) as well as for the pure p resonant amplitudes
because Q(J) depends only on the external states. Then,
insofar as a partial-wave amplitude F(J) derived from
any dynamical model and possessing the standard
threshold and pseudothreshold kinematic singularities
can be expressed in the form (1), the corresponding
U(J) defined by Eq. (24) will be free of kinematic zeros
for all values of J.

Unrelated to the problem of kinematic zeros, another
feature in favor of U(J) over F(J) is that the coupling-
constant constraints apply directly to elements of U(J).
Hence, we have included in Eq. (24) the factor Q ',
whereas the factor k—' would have sufficed to remove
the fixed kinematic singularities of the discrete channels.

%e can also define U amplitudes in the case of dis-
crete channel-discrete channel scattering. A typical res-
onant scattering amplitude representing the formation
of the p from a discrete channel and its subsequent
decay into a discrete channel is

Fsj I pFsI j
=P FvQ)2g4Q)igi)

The s-channel scattering angle 8, is the angle in the c.m.
system between particles of spin J and L,. Ke insert the
previously suppressed energy variable s in the partial-
wave amplitude F;;(s,J).

The functional relation between the subscripts ij
and the spins and helicities is given by 2=i(Lr, L'r')
and j= j(o,J'o'), where

and

1= i(00,00),
3=2(21,00),
5 = i(20,21),
7= i(21,22),

1=j(0,00),
3= j(0,20),
5= j(1,20),
7= j(1,22),
9= j(2,22),

2 = i(20,00),
4= 2(20,20),
6= i(21,21),
8= i(22,22),

2= j(1,00),
4= j(0,21),
6= j(1,21),
8= j(2,21),

10= j(3,22).

(28)

(29)

For negative helicity values we have

aild

2(Lr, L'r') =4(LI.I,L'['I)

j(o,J'o')= j(lol J'lo'I)
(30)

which follow from Eqs. (6), (16), and (18). The inverse
relations

or, in the matrix notation,

F= QUQ,
where

UI i= g~ppgt.

Ke then define

U —Q-1FQ—1

(25)

(26)

r= r(2), r'= r'(i), L= L(2), L'= L'(i),
(31)~=o(j) ~'=~'(j), J'= J'(j),

are implicit in Eqs. (28) and (29).
Let B' and B" denote the s-channel helicity ampli-

tudes corresponding to p formation in the t and u
channels, respectively. The helicity crossing relations'
are then

to be the U amplitude corresponding to any partial-
wave amplitude F describing the scattering between dis-
crete external channels.

III. y-EXCHANGE AMPLITUDES

A. Crossing Relations for U Amplitudes

8'(s, 8, ; Lr,L'r'; Jo,J'o')

(—) +"'+"+"di '(A)dv"'(A)d. '(4' )
),X',2,V'

Xd ' z'($4)F(t, 8)', J'X',L'v'; JX,Lv) (32)

B"(s,8„Lr,L'r', Jo,J'o ')

P, )t', v, v'

The full (angle-dependent) s-channel resonant scat- + ( )1+,+1.+,& s(x )d s (X )dtering amplitude, for intermediate p formation between
an initial continuous channel composed of particles of
spins, J, J' and helicities o, o' and a final discrete channel Xd„, z'(x4)F(N)8, ) Lv)J'v'; Jv)L'V ). (33)'
composed of particles of spins I, I.' and helicities r, r', is

The crossing angles are dined in terms of an angle
F(s,8, ; Lr, L'r', Jo,J'o')=d . .. (8,)F,,(s,J). (27) p=f(x)y; Mi)M2)M2)M4) such that

(x+Mi M2 ) (y+Mi M2') —2M12(M12 M22 M22+M42)
cosf =

fx2 —2x(M 12+M22)+ (M 12 —M22)')"'+2 —2y(M 1'+M2')+ (Mi' M')')"'—
'T. L. Trueman. and G. C. Wick, Ann. Phys. C,N. Y.) 26, 322 (1964).
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and sing&0. Then with M(J), M(j'), etc. , denoting the
masses of particles of spin J, J', etc. , we have

P,=f(s,t; M(j),M(j'),M(L),M(L')),
P,=P(s, t; M (J'),M (j),M(L'), M(L)),
fs= P(s, t; M(L),M(L'), M(j),M(j')),
$4=@(s,t; M(L'),M(L),M(j') M(j)),
X)=P(s,u; M(j),M(j'),M(L'), M(L)),
X2=f(s,u; M(j'),M(j),M(L),M(L')),
Xs=f(s,u; M(L),M'(L') M(j'),3II(j)),
«=P(s,u; M(L') M(L),M(J) M(j')).

Particle (1) and (2) assignments are in the same order
in 8', 8", and F: e.g. , 8'(s,8„(1),(2); (1),(2)). These
assignments serve (a) not only to define helicity states,
but also (b) to define the scattering angle, which in all
channels is the c.m. angle between particles of the same
assignment, and (c) to define the isotopic spin states.
The pair of particles in each channel, crossed or un-
crossed, has total isotopic spin=1. The total isotopic
spin state is, therefore, conveniently constructed in the
same definite way for each channel by introducing a
label that distinguishes between the particles which are
otherwise identical in isotopic spin. All three above
considerations are incorporated into the helicity cross-
ing relations.

The complete p-exchange amplitude is then

and the angular-momentum-1 partial-wave projection
of this, reverted to the ij subscript notation, is

(t J) P ( )e(j)+x'+v+1 (c)d) (.)z(fs. .)
) X'vv'

Xd) "(i)'")(A*))d-(')"'(&s'i)

Xd, , (;)"*'($4.;)A .,), -"'(8()

XQ' ~(t)Q'((t, j) (39)

,„(u J) p ( ))+r'(j)+v+r(i)d& (. J(xi, )
)),Vvv'

Xdvs'(i) (xmij)der(i) ()(sij)

Xd. , (;)""(«;;)d) . , ~'(8.)

xQ;-.( )Q;-(,j). (40)

Here, we shorten the crossing-angle notation to

Pii;=f(s, t; M(j) M(j'U)),
M(L(i)),M(L'(i))), etc., (41)

and delne

(42)

The appropriate variables s, t, u, are introduced as
necessary into Q, Q(J), and P,.

In a similar fashion the U amplitude corresponding
to 8;,(s), the partial-wave projection of the complete
p-exchange amplitude in discrete-channel —discrete-chan-
nel scattering, is found to be

~(i(s&J) s d( os81)d&(i),&(i) (8~)
where

U .(s) =p p .i((s)g)g(,
kl

(43)

XB( 8„sL(i)r(i),L'(i)r'(i); Ja(j ),J'(j )0'(j )), (36) p (s) 3 p Q
—i .(s)Q

—i . d(cos8 )d . . i(8 )
where

8(j)= ~(j)-~'(j)

«(i) = r(i) —r (i).
The V amplitudes corresponding to B;,(s,j) are ob-

tained by using Eq. (23) in (27), carrying out the ap-
propriate s ~ t and s+-+ u exchanges, and inserting the
results into Eqs. (32) and (33), which in turn are fed
into Eq. (36). Then, Eq. (24) is applied to (36), and we
find

XLP,(t)X;,„,(t)+ P, (u)X,,„(u)j. (44)

The quantities X;,»(t) and X;,z)(u) are the same as the
quantities defined in Eqs. (39) and (40), respectively,
with the following replacements: in Eqs. (39) and (40),
(r(j ) ~ r(j ); in Eqs. (39)—(41),J—+ L(j),J'(j ) —+L'(j );
in Eq. (39), Q(t, J)~ Q(t); in Eq. (40), Q(u, J)~ Q(u);
and in Eq. (42), i' —+i(L'(j)V,L'(i))'), j'~i(L(j))(,
L(i)v), i"~ i(L(i) , )'L(j)V), j" ) i( L( )j l,(L'(i)v').

U„.(s,j)=p p .()(s,j)g~g((j),
kZ

where

(s,j)=-; P Q-';(s) Q-'.„(s,j)

X d(cos8.)di(t). (;)'(8~)

(37) B. Unitarity for U Amplitudes

The statement of unitarity for an 8)(8helicity partial-
wave amplitude describing scattering between discrete
channels, is

Im A,,(s) = P A, ),*(s)pq(s)8(s —s),)Ai, (s), (45)

where sI, is the threshold value of s in the channel cor-
XPP,(t)X(;),)(t,j)+P,(u)Xii), )(u,j))t, (38) responding to index k, 8 is the unit step function, p)) is an
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element of the diagonal matrix p= q', and q in turn is the
diagonal momentum matrix

q&

0 q2I2 0
0 0 q3I5.

with q;=c.m. momentum in channel i and I„=n)&n
identity matrix. The matrix A is such that qAq is the
helicity partial-wave amplitude matrix which may be,
for example, the resonant amplitude F(s) or a uni-
tarized version of the p-exchange amplitude B(s). Thus
A is the helicity partial-v ave amplitude with kinematic
singularities and zeros removed in the form of powers
of the initial and final c.m. momenta. The U amplitudes
are ordinarily of no necessity here since all spins are
fixed. The various pure helicity amplitudes within any
pair of initial and final channels all have threshold and
pseudothreshold singularities corresponding to orbital
angular momentum= 1.

VVe now take the crucial step, in accordance with the
discussion in Sec. II A, of reinterpreting the index j in
Eq. (45) to denote one of the continuous-channel helicity
states. Hence, j now runs over the values 1, , 10. In
the customary way, we distinguish the continuous-
channel amplitude matrix by inserting the additional
argument J, suppress the variable s, and write the new
statement of unitarity in matrix form

ImA (J)= A*p8A (J) . (46)

The diagonal matrix 8= 8(s) has typical element
8(s—s~), and the matrix A (J) is such that qA (J)q(J)
is the helicity partial-wave amplitude describing scat-
tering from an initial state in a continuous channel to a
final state in a discrete channel. The 10&10 diagonal
matrix q(J) is

(
(v )' 'I2

(cs)' '~ ~

where q and qp are the c.m. momenta in continuous
channels n and P, respectively.

We emphasize that the matrix A(J) has no kinematic
singularities, but it does develop kinematic zeros when
J=0, 2. For this reason, the helicity amplitudes are un-
satisfactory and the U amplitudes were introduced.
Therefore, we now determine the statement of unitarity
for the U amplitudes.

From Eqs. (11), (14), and (24) we have

A(J)=g 'CkUg(J)k(J)C(J)g '(J), (47)

where U~(J) is the U amplitude corresponding to A(J).
We may now write

IrnA(J) = Cq 'k ImU~(J)k(J)q '(J)C(J) (48)
and

A+= Cq Ik Ug+kq IC

which follow from the observations that q 'C=Cq '

C. Unitarization Procedure

In this section we outline a dispersion relationmethod,
generalized from the corresponding method in I, for
converting the input amplitudes U and U(J), con-
structed in Sec. III A, into amplitudes U and U(J)
satisfying unitarity.

If we write O'= D 'X, where D has only a right-hand
cut E in s and X has only a left-hand cut I., then Eq.
(52) is satisfied if ImD= EpU8. T—o determine X and
D we make the customary dynamical assumption that
ImU(s)=ImU(s) on 1., and find

1
U(s) =U(s) —D '(s)

Im D(s') U(s')ds'

s —s
(53)

where D is formaOy defined as the solution of the in-
tegral equation

1
D(s) =1+— ds'D(s')G(s, s') (54)

with
1 p~(s")8(s")ds"

G(s,s') =—Im U(s')
a (s"—s) (s"—s')

(55)

Furthermore, it is easily seen that

1
U(s,J) =U(s,J)—D '(s)

ImD(s') U(s', J)ds'
(56)

(s' —s)

satisfies the dynamical assumption Im U(s,J)
=ImU(s, J) on I. and the J'-dependent statement of
unitarity Eq. (50).

The above procedure is actually heuristic in the sense
that we have ignored the question of convergence of
the integrals. As a practical matter, it may be more
convenient not to attempt to solve the integral
equation for D, as would be done in a conventional boot-
strap calculation and which as experience tells us would
very likely not yield a satisfactory p resonance, "but
instead to construct D directly from presumed proper-
ties of the p in much the same spirit as the m-m- p-wave
phase shift is used to construct the D function in I.
While Ã and D may be chosen such that U=D 'E
satisfies Eq. (52), Eq. (53) may in turn not be identically

and q '(J)C(J)= C(J)q '(J) and that q 'k and

k(J)q '(J) have no kinematic singularities. Substituting
(47)—(49) into (46), we obtain

ImU~(J) = U~ p~8Ug(J), (5o)
where

p~= QQv.

In the case of scattering between initial- and 6nal-
discrete channels, Eq. (46) becomes ImA =A~p8A and
leads to

(52)
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satisfied for all s; i.e. the reduction of U(s,J) to U(s)
when J—& 0, 2 would not automatically guarantee the
corresponding reduction of U(s,J) to U(s). This type of
failure of unitarity is partially corrected in I by adding
some terms to the input amplitudes so that unitarity is
exactly satisfied when J~0 only at the resonant
energy. Further discussion of this technical point is un-
warranted here and rightly belongs to the subject matter
of latter work, since it clearly involves highly specialized
approximations.

IV. CONCLUSION

We have established the basic formalism for the three-
channel generalization of a p-bootstrap model in xx
scattering proposed for investigating external spin con-

tinuation. The three-channel model was motivated as a
means of obtaining a statement of unitarity that was

more compatible with the infinite set of conventional
channels introduced by external spin continuation. The
formalism hinges around the set of amplitudes con-

structed so as to be free of kinematic zeros throughout
the spin continuation, and concerns the formulation of
constraints, crossing relations, and unitarity for these
amplitudes.
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Corrections due to overlapping p and a. bands in the decay A I ~ 3~, and p bands in A 2
—+ 32', are evaluated

to first order in the p and 4r widths. The corrections in the case of the A I indicate the use of a smaller anoma-
lous magnetic moment XA (or 5) than was previously needed to fit the width of the AI.

I', = 141(1—-'X~)' Me+,

F~,=F,-,.+F~, .+Fc,
where F&, , is the decay rate into pm,

(2)

I'g, , = 7.0(8+12Xg+5Xg') MeV, (3)

Fz, , is the decay rate into os. (undetermined by
current algebra, Fg is the nonresonant "seagull"
contribution, and ~& is the anomalous magnetic mo-
ment of the charged Ai particle. The experimental
value F,= 111~17MeV is obtained by choosing

Xg = 0.4&0.3. (4)

Equation (4), combined with Eqs. (2) and (3), pro-
vides for minimum values of F~,. For example, if

' H. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 {1967);
S. G. Brown and G. B. West, Phys. Rev. Letters 19, 812 (1967);
R. Arnowitt, M. H. Friedman, and P. Nath, ibid. 19, 1085 {1967);
Phys. Rev. 174 1999 (1968); 174, 2008 (1968); J. Schwinger,
Phys. Letters 24i1, 473 (1967l; J. Wess and B.Zutneno, Phys. Rev.
163, 1727 (1967); B. W. Lee and N. T. Nieh, ibid. 166, 1507
(1968);I. S. Gerstein and H. J. S"hnitzer, ibid. 170, 1638 (1968);
175, 1876 (1968).

I. A1~3~
ECENT current-algebraic "hard-pion" calcu-
lations' have established a correlation between

the decay rates for p —+ ~m- and A 1 ~ 3m, namely,

F,= 120 MeV, then 'A~ = 0.3 and F~,+ 78 MeV. This is
to be compared with the most recent experimental
compilation, in which F~,=80&35 MeV. The impli-
cation is either that the other modes are small or that
significant interference eRects occur, so that the over-
all width stays within experimental limits. It is to
these interference eRects that we address ourselves in
this section.

The eRect of finite widths may influence current-
algebra results in essentially two diRerent ways:
(1) The inclusion of a spread in the two-point spectral
functions will alter the longitudinal constraints on the
vertex functions due to the generalized Ward identi-
ties,"and (2) the use of the altered two-point functions
(propagators) will affect the calculation of the four-point
tree diagrams, such as AI~3m via p mesons. The
6rst type of correction is constrained by minimal-
coupling principles to a replacement of the mass m-'

in the inverse 0. and p propagators by m' —iFm. ' Since
quantities such as 6 '(p') —6 '(q') enter the Ward
identities, this type of replacement will have no eRect
within the minimal-coupling framework.

The second type of correction will have quite dis-
cernible eRects. We will calculate these in the approxi-

' A. H. Rosenfeld et a/. , Rev. Mod. Phys, 40, 77 (1968).' Schnitzer and Weinberg (Ref. 1}.
4 Gerstein and Schnitzer {¹f1).


