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Nonlinear Realizations. II. Confoiiaal Symmetry
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Use is made of the formalism of nonlinear realizations to treat the spontaneous violation of conformal

symmetry. The associated "Goldstone" particles, which are characterized by a four-vector and a scalar
field, are unusual in that they possess mass.

and the dilututions

Xls Xls+P~-
X2 X2

Xls ~ Xfs8 (1.2)

vrhere x'= x„x„denotes the usual Lorentz-invariant
squared length, and the parameters P„and X are real.
There is no reason to expect these transformations to
represent symmetries of natur- rather the opposite
in fact. However, it is conceivable that they could repre-
sent "broken" symmetries and so be useful in physics.

Now in the accompanying paper it was suggested
that the nonlinear formalism is a natural vehicle for
discussions of spontaneously broken internal sym-
metries. In particular, the massless bosons whose
fields appear nonlinearly in the efI'ective Lagrangian are
to be looked upon as Goldstone bosons. The lack of
manifest (i.e., linear) covariance in such Lagrangians is
simply a refiection of the truly noncovariant nature of
the underlying physics. If the same situation holds in
the case of conformal syIIunetry, we may expect that
nonlinear realizations of the conformal group (linear
relative to the Poincare group) may be the natural
vehicle for expressing this. The following discussion is
thus devoted to the proposition that conformal sym-

*Qn leave of absence from Imperial College, London, England.
'A. Salam and J. Strathdee, preceding paper, Phys. Rev.

184, 1'l50 (1969).
~ A recent discussion of this group with references to earlier

work is contained in G. Mack and A. Salam, ICTP, Trieste,
Report No. IC/68/68 (unpublished).

I. INTRODUCTION
' 'N the accompanying paper' some formal develop-
s - ments of the technique of nonlinear realizations
were discussed. The discussions of paper I were confined
to internal symmetry groups. In the present paper the
nonlinear method is extended to include space-time
symmetry as well. Thus, it will be shown that, with
appropriate modi6cations, those 6eld equations which
manifestly exhibit Poincare invariance can be rendered
in a form possessing conformal invariance of the non-
linear type.

The group of conformal transformations' in space-
time includes, in addition to translations and homogen-
eous Lorentz transformations, the characteristic special
conforrnal transforrnations

metry is broken spontaneously. The Lagrangian but
not the ground. state is assumed to be invariant under
the transformations (1.1) and (1.2). Of course it will

be assumed that both the Lagrangian and the ground
state are invariant under the usual inhomogeneous
Lorentz transformations. In line with the attitude set
out in I, we shall treat the broken symmetry by means
of nonlinear realizations which become linear with
respect to the inhomogeneous Lorentz subgroup. There
are, however, some important departures from the
general features of intrinsically broken internal sym-
metries discussed in I which we summarize here.

The 6ve preferred fields whose existence is necessi-
tated by the noncovariance of the vacuum with respect
to the special conformal transformations (1.1) and
dilatations (1.2) comprise a 4-vector P„and a scalar o.
These 6elds characterize what might be called "Gold-
stone bosons. "Unlike the case of internal symmetries,
some of the Goldstone bosons have spin. More surpri-
singly, they all have muss. In Sec. III, where effective
Lagrangians are discussed, it will be shown that it is
quite within the rules to include masslike terms for the
preferred fields in the Lagrangian. '

The nonlinear realizations of the conformal group
are presented in Sec. II together with formulas for
covariant derivatives. These are used in Sec. III to
construct effective Lagrangians. These Lagrangians
are manifestly invariant under the inhomogeneous
Lorentz group only, and can therefore include, for
example, mass terms, which are forbidden in a truly
conformal invariant theory. An example is discussed in
Sec. III. Finally, the detailed transformation properties
of the preferred and other fields are derived in the
Appendix.

II. NONLINEAR REALIZATIONS OF
CONFORMAL GROUP

Discussion of the conformal transformations of space-
time is facilitated by exploiting their equivalence to the

'One may perhaps be able to understand this appearance of
massive Gelds as a consequence of the Anderson —Higgs-Kibble
mechanism discussed in I, which seems to operate in this case.
The vector Geld @„couples like a gauge Geld in that it enters the
covariant derivatives of other GeMs in the combination 8„—i'„.
If these were the only couplings, one could perhaps surmise that
this is a consequence of the operation of the Anderson-Higgs-
Kibble mechanism. However, there could be other couplings as
well which make the situation unclear.
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11 (g) —+ 4'(g) = D(h)+(A 'g), (2.1)

orthogonal transformations in six dimensions. 4 Let us

begin, therefore, with linear representations of the group

O(4, 2) gaia. P~—
g.+~.(g.+-gs)

g.+-~ g+2o'(gs+gs)
g, . n—g 2—n'—(gs+gs)

(2.4) with the explicit generators (2.6). The results are

~here g denotes the 6-dimensional coordinate vector

qA and A. a pseudo-orthogonal transformation on these

coordinates,

g,+P,(gs g—s)
e*Bxg'= gs+P g+2P2(gs g,)—,.gs+P g+2P'(gs gs)—

(2 9)

(2.2)'gA ~ QA ~AB'QB ~
I ~ fA

g5 cosho+ q6 sinhcr.g5 sinho+ g6 cosho..Throughout this section the following summation

convention for ppconvention for u er-case Latin indices is tacitly
The corresponding transformations of the quantity
x„defined in (2.8) are given by, respectively,

$AgA kings 4gs+ 4 ls

gsgs $1g1 52g2 $3gs 55 Js+ ksgs' ( ' )

The matrices D(h.) comprise a finite-dimensional

representation of 0(4,2). Corresponding to the infinite-

simal transformation A.= 1+~ they take the form

X„—+ X„+12„,

Xfs Xfs

+P.—,
X2 X2

XfA ~ XiL68

(2.10)

D(A) = 1 226ABJAB ) (2.4)

where the generators of in6nitesimal transformations

JAB must satisfy the usual commutation rules

(1/2)L~AB) JCD] gBCJAD gBDJAC

+gAD JBc gAc JBD ) (2 o)

where gAB is the metric tensor defined by the form (2.3).
The generators of the 6-dimensional self-representation

are given by

which are indeed a translation, a special conformal
transformation and a dilatation. This completes the
interpretation of the elements of the group 50(4,2) as
conformal transformations on space-time. What remains
is to interpret the functions 11'(g) in terms of space-
time fields.

To this end consider the "orbital" contribution to
the generators JAB. In particular, the infinitesimal
change in a scalar field C (g) takes the form

a4(g) e 6ABaAB4(g)

2 6ABL'QA(a/ag ) gB(a/—ag")jc (g) . (2.11)

(JAB)CD 2(gACgBD gADgBC) ~ (2 6) In terms of the new set of independent variables

The 6fteen generators of conformal transformations
are de6ned in terms of the set JAB as follows:

x~= g~/(g'+gs), 5= gs+gs, & = gs —gs, (2.12)

the components of the operator DAB are given by

homogeneous transformations,

translations,

special conformal transformations,

dilatations,

I',= ~5m+ J6,
E„=Js„Js„(2.7)—
D= J;6.

~arsy xfs~v +v~fs y

as„+as„——a„+2x„s(a/W.),
as„as„=P/—~)a„2.x„[x„a—„s(a/as)—j,

ass = x.a,+s(a—/as) x(a/a) )—

(2.13)

This assertion can be justi6ed by computing the e6ect
of 6nite transformations generated by P„, E„, and D,
respectively, on the 4-vector x„de6ned by

*,= g,/(gs+gs) (2.8)

4 P. A. M. Dirac, Ann. Math. 37, 429 (1936}.

Clearly this quantity is indeed a 4-vector under the
transformations generated by J„,. The action on qA
of the other transformations can be got by integrating

These forms can be simplified somewhat when it is
recognized that the surface g2=constant is invariant
under the group. If physical space-time is mapped into
one such surface g2=0, then it is possible to eliminate
the derivative a/aX by suitably adjusting the behavior
of C(g) in the neighborhood of the preferred surface.
Thus, a replacement like

'41(g) ~ @(g) (X sxs) a4—(g)/—aX

while leaving 4 (g) unchanged on the surface g'= 0, does
make aC'/W, vanish there. Henceforward, therefore,
it will be assumed that P =~x2 and that the necessary
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adjustment has been made, i.e.,

~tsv= &ls~v &v~ts )

~5ts+ ~6ls = ~ts )

85„B—e„=x'8„2—x„L xB, ii—(8/Be) j,
Bye = —x 8„+K(8/l9K) .

(2.14)

The only remaining obstacle to a space-time interpre-
tation is the presence of the variable a. The standard
way to deal with this is to suppose that 4(it) is a homo-

geneous function of degree l, in which case the depen-
dence of K factors out as ii'. This factorisation occurs only
on the hypercone it'=0, which is the reason for preferring
it.

The decomposition of irreducible representations of

O(4, 2) under the subgroup consisting of just the inhomo-
geneous I.orentz transformations is generally rather
complicated. For example, the 6-vector Cg contains
two scalars and a 4-vector,

stgCg, Cs+Cs, and C„—x„(Cs+C6), (2.15)

as can be verified with the help of (2.9). This particular
decomposition is the only one we shaD need below. In
general we shall we concerned in the following with an
entirely diferent method of extracting space-time
tensors from the linear representations of 0(4,2).

Turning now to the problem of constructing non-
linear realizations of the conformal group, we must
invent a set of constrained fields, or reducing matrix, '

I.~, with the anomalous transformation behavior

Le(it) ~ tiLe(tt 'rt)h '(A 'it, A), (2 16)

where h is a matrix of some subgroup of 0(4,2). The
nonlinear fields iP are then to be defined by

f(n) = D(Le ')+(n), (2.17)

where +(i)) is the linear field (2.1). In order that the
iP(rt) so defined should be interpretable as a space-time
distribution we must require that it be a homogeneous
function of it. Moreover, since the preferred Gelds Li, (rt)
satisfy a number of quadratic and inhomogeneous
constraints, we must have them homogeneous of degree
zero,

Le(l n) =Le(~). (2.18)

(~) —eix Peig Ke iaD—(2.19)

where I'„, E„, and D are the 6X6 matrices defined in
(2.9). The parameters i'„snd o are to be the preferred

It then follows that iP(rt) is homogeneous to the same
degree as the linear Geld 4'(it) in which it is embedded.

The structure of the subgroup H to which the matrix
h(it, &) belongs is determined by the system of con-
straints to be imposed on the reducing matrix. There are,
presumably, several distinct models from among which
one can choose. For the present paper we choose the
5-parameter boost given by

fields. The factor exp(ixP) does not play an essential

role. It has been included mainly to simplify the
formulas for covariant derivatives to be derived below.

The laws according to which the preferred fields P„
and a transform are determined by requiring that the
two columns (Li)~i, and (L&)~6 transform as true 6-
vectors. In other words, the matrices h(it, A) are to act
only in the subspace 0, 1, 2, 3. The subgroup H is to
coincide with the ordinary homogeneous I.orentz group.
That such conditions can be imposed with only five
parameters at our disposal is by no means evident;
the general program discussed in I suggests that 15—6
=9 fields are needed. However, since the translations
are realized trivially —and therefore linearly —it should
not be necessary to associate preferred fields with them.
We shall demonstrate by an explicit calculation that
five parameters suSce.

The two columris can be obtained with the help of
the matrices given in (2.9). They are

(C.+;C')e.
-', (1+2xC+x'C '+y') e' (2.20)

.——,'(1+2x4+x'C' —y') e.

C.= sL(L~)"+(L~)"1= 2(1+x')~
.—,
' (1—x')e- (2.21)

C'„—x„(C'g+ Cie) =P„e,
(4s+ C e) =g'e',

(2.22)

respectively. This determines that @„and 0- are indeed
a true 4-vector and a true scalar under the group of
translations and homogeneous Lorentz transformations:
the Poincare group. The corresponding quantities
contained in 0'& are given by

C „—x„(C,+g,) = O,

(C 5+g 6) = e

(2.23)

which are a 4-vector (trivially) and a scalar consistent
with the proposition that 0'~ is a 6-vector.

(b) Special conformal transformations: This group
taken together with the homogeneous I-orentz trans-
formation comprises a Poincare-like group which can be

The parameter fields P„and 0 are clearly expressible
in terms of the components C~ alone and their trans-
formation properties are fixed by the requirement that
Cg transform as a true 6-vector,

C~(it) ~ AgoCe(A 'it).

From the transformation behavior of 0- so deduced, one
can derive the law for %z by substitution into (2.12).
It transpires that %~ is a 6-vector also.

I.et us consider the various transformations in turn.
(a) Inhomogeneous Lorentz transformations: Ac-

cording to (2.15) there is in C» a 4-vector and a scalar,
viz. )
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gp,

A 'g = q5 cosh'+ g6 sinhX

.g~ sinh'A+ q6 cosh).
which implies

(z().
-)x)„=x„e-". (2.26)

Ender this transformation C„remains invariant awhile

dealt with in close analogy to the above. This group is
obtained from the space-time Poincare group by every-
~here making the replacement X.-+X6~ X;—X6, so
that, for example,

x.= ~,/(n. +9-6)~ n./(nz n—z) = x./x'

Making the appropriate adaptation of (2.15) one can
extract from Cg the 4-vector and scalar,

4'. -(x»/. ')(C' -C') =4"'-(*./ ')(1+2 4)e'
(O'; —C'()) = (1+2x P+x'(tz)e~. (2.24)

All five of these quantities are scalars under the specia1
conformal transformations,

x„/xz ~ x„/x'+)3„.

The behavior of @„and 0 under these transformations
is complicated and not of particular interest apart from
the fact, which can be extracted from (2.24), that the
quantity x'e is a scalar. This is enough to assure the
correct transformation law for 4'~, viz. , the invariance
of the quantities

e„—(x„/x')(e, —e,) = 0,
(+&—+())= x'e '. -(2.25)

(c) Dilatations: These are produced by the hyper-
bolic rotations in the g5g6 subspace

scured in conformal space even within the context of
linear representations by the fact that the derivative
()/Bx„ is only part of an operator 8» which belongs to
the fifteen-dimensional (adjoint) representation. Of
course, the other components of this operator can be
expressed in terms of 8/Bx, and x„ itself as in formula
(2.14) (with KB/8)(= l, the degree of homogeneity). Let
us consider, therefore, the operator 6» defined by

&~e)l =- D(L() ') &»+, (2.30)

where 4' is given by (2.17) and 8» by (2.14). This
operator transforms in a hybrid fashion,

+ABQ ~ l) AA'l)BB'D(k)+A'8'P I (2.31)

and in order to avoid the appearance of A in the trans-
formation laws it is useful to define the new operator

~(»))l=(Lz ')» (Lz ')» ~~ e4, (232)

for which the rule (2.31) is modified to

k(»))l' + kg+'kBB'D(k)6(g'e')Ijf . (2.33)

8» 'z(e" )zz (—e'* )ee (K„z7„+2lD)z e . (2.34)

It was for this reason that the factor exp(zxP) was
included in the definition of L~. From (2.30), (2.32),
and (2.34) one can derive the formula

d, (»)P ,zD(Lz, ')——
Xf((K„)»e'(8„+2'„)+21D»)4', (2.35)

The fifteen components of h(~~) decompose into
I.orentz multiplets among which is to be found a 4-
vector candidate for the role of covariant derivative.

The computation of A(z&) is very much simplified
by remarking that it is possible to represent 8» in the
form

C.-+C,~ e
—"(Cz+C()), (2.27) or, on separating out the irreducible parts,

comparison of which with (2.22) yields the law

e ~ e +".
(2.28)

Substitution of the second of these into the expressions
(2.23) shows that 4'„ is invariant while 4'z+4'() trans-
forms like (2.27).

Thus it is proved that the transformations of the
parameter fields @„and 0. can be such as to make true
6-vectors of both 4 ~ and%'~, i.e., of the last two columns
of the boost matrix (I&)». The nonlinear realizations
f(z)) extracted from the linear 4'(z)) in the manner of
(2.17) with the boost (2.19) transform according to the
prescription

k(n) ~ D(h)f(h "~), (2.29)

where h=h(z), A) is an ordinary homogeneous Lorentz
transformation. The fields ))1 (z)) transform irreducibly
under the I orentz group.

It remains only to set up the formulas for the co-
variant derivatives. This problem is somewhat ob-

~(")4'=o,
(&(z»+h(()„)))l'=D(Lq ')e (8„+2@„)%, (2.36)

(+ (zp) + (()p)))l' = 0,
~(M)4'= l(l'.

It is therefore clear that the covariant derivative must
be contained in the operator A„defined by

A„f= D(L& ')e'((7„+2'„)D(L&)P, (2.37)

which transforms according to the nonlinear prescrip-
tion

d,„P~ h„.D(h) A,P(zz 'z)) . (2.38-)

To extract the covariant derivative from (2.37) it is
necessary to follow the procedure of I in separating off
from l(„f the parts which are proportional to the co-
variant derivatives of the preferred fields @„and 0..
Thus one can write

D„f=e'((7„+2+„)P+D(Lz, ')e 8„D(Lq)P-
= e'((7„+2l4„)f ,'z(Lz, 'e B„Lz)»S~z—)p—, (2—.39)
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where the S~s generate infinitesimal SO(4, 2) trans-
formations on 4'(q). The covariant parts of the factor
L~ 'e B„I.~ are given by

(L~ 'e a—„C)g
=-'L(L 'e'a L )~' (L—g 'e a„Lg)g']

'" (aA.+4'g"—248.)'
e (a„o+2p„), (2.40)
e (a„0+2'„)

For the in6nitesimal dilatation

bx„=)x„

the fields transform according to

8x—„a„p+hip,

bx—„a„@, hf-.,

6o.= —Sx„~„o+

(2.47)

(2.48)

(L e a„e),
', $(L~-'e a„—L~)~'+ (L~ 'e'a—„Lg)g'j

gI ~—8 (a~0+2/'p)
e (a„0+2'„).

The remaining part of this antisyxnmetric matrix,

These transformation laws are all linear. Those for the
preferred 6elds, however, contain inhomogeneous
terms. It is these inhomogeneous terms which sympto-
mize the underlying vacuum asymmetry. Thus, an
in6nitesimal conformal transformation of the vector
Geld at x„=0 takes the form

(L 'e'a, L-).,= 2e (g:4, g,A.)—, (2.4l) W.(0)=P. , (2.49)

is not covariant on its own but must be combined with
the other terms in (2.39) to make the covariant deriva-
tive of f, which is therefore given by the expression

the vacuum expectation value of which cannot vanish.
Similarly, an in6nitesimal dilatation of the scalar 6eld
at x„=0 takes the form

D„f=e (a„+2+„2iS„—&.)p . (2.42) a~(0) =x, (2.50)

Finally, the independent parts of (2.40), whose covari-
ance is dependent upon the requirement that 4g(g) and
4~(g) are homogeneous of degree zero, are adopted as
the de6nitions of the covariant derivatives of p„and 0,
respectively,

D„y„=e"(a„@„+qpg„„—2@„y„), (2.43)

D„(r= e (a„0+2',). (2.44)

Since f(g) is homogeneous of degree f, it contains,
in addition to its dependence on x, the factor ~, which
must of course cancel from any held equations which are
to have meaning in space-time. The fields @„and 0-,

being of degree zero, have no such factor. Hence, the
rules for constructing conformal invariant and meaning-
ful field equations out of the covariant quantities P,
D„f, D„g., and D„o must be (a) covariance under the
Lorentz group in the linear sense, and (b) homogeneity
in q space.

Although the method we have followed in deriving
these realizations is exactly the one set out in I for the
construction of nonlinear realizations, our results are a
little unexpected. The realizations of this section are
not, strictly speaking, nonlinear, This may be due to
the operation of an Anderson —Higgs —Kibble mechan-
nism. ' The details of the transformation 1aws are de-
rived in the Appendix. Corresponding to the infinite-
simal special conformal transformation

axe= (x2gu~ 2x„x„)P„,

the various Gelds transform according to

8$= bx„a„f 2lP„—x„g 2iP—„xg„„g, —
&),= —ax„a„@g+2p„x„pa+ (pz —2xxp„p„),

50 = —5x„8„0—2p„x„.

which again implies a vacuum asymmetry.
It is necessary to remark that, in order to avoid

clutter, the preferred fields have not been normalized
throughout this section. This can be corrected by
making a trivial adjustment: Replace @„and 0. every-
where by fp„and go. Then, for example, the covariant
derivatives (2.43) and (2.44) become

D„y.=e" (a„y„2f@„y„y—fy~g„„),
D„=e"t a„+(2f/g)y„g,

while the infinitesimal variations (2.49) and (2.$0)
become, respectively,

&~.(0)=e./f,
Lr(0) = X/g.

ID. CONFORMAL INV)LMANT EFFECTIVE
LAGRANGIANS

The rules, formulated above, for the construction of
conformal invariant Geld equations can of course be
expressed in the language of Lagrangians. However,
there is one further requirement to be met. This con-
cerns the degree of homogeneity of the Lagrangian
which must equal —4.

In order that the Geld equations derived by minimiz-
ing the action should be conformal invariant it is
clearly necessary that the Lagrangian should transform
as a scalar density. This means that it is necessary to
keep track of the Jacobian

~
ax'/axj which corresponds

to the transformation x—& x',

[ ax'/axe L(g'(x'), p„'(x'), . . .)
=L(4(x)A, (x),".), (3.l)
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where P„=D„P. The variables D„P. and D„o, which
must be present, are indicated by dots. The Jacobian
is easily computed for the various types of transforma-
tion. The results are, respectively,

(a) inhomogeneous Lorentz transformations

(
ax'/ax~ =1,

(b) special conformal transformations

(
ax'/ax( = (x"/x')',

(c) dilatations, x —+ x'=Ax,

(
ax'/ax( = x4. (3.2)

4 (n) = ~tl (x),
0.(n) =el.(x) (3.5)

That the fields f(n) and f„(n)= D„f(n) have the same
degree of homogeneity / is a consequence of the defini-
tion of the covariant derivative operator which was
adopted in Sec. II. If 2 is a true scalar in g-space,

~(4'(n') A"'(n'), )= ~(4(n) A"(n), ) (3 6)

for the transformations of O(4, 2), then it follows that
the x-space Lagrangian defined by (3.4) satisfies the
condition

(~/~')'L(4'(x')A, '(x'), ".)= L(4(*)A.(x), ") (3 7)

and it is a simple matter to show that, in each case, the
factor (e/e')4 coincides precisely with the Jacobian
determinant of (3.1):

(e/e')4=
[ ax'/ax] . (3 g)

Thus, we can conclude that the Lagrangian obtained
by the prescription (3.4) from the homogeneous n-space
scalar of degree —4 is indeed a scalar density under the
conf ormal transformations of space-time.

To summarize: Conformal invariant effective
Lagrangians can be built out of the homogeneous field
variables P(n) and the covariant derivatives D„P,
D„p„, and D„a which belong to nonlinear realizations,
by making combinations which are manifestly Lorentz
invariant and which are homogeneous of degree —4.
The degree of homogeneity of any given Lorentz
scalar combination can be brought to the required value
through multiplication with the appropriate power of
the conformal scalar gg4~ which has deg 1. Finally,
extract the common factor I(: '.

Suppose now that from the homogeneous function
of degree —4, defined over g space,

&(4 (n) A'. (n), . .)= ~.'&(4P n)A(~n), ), (3.3)

is obtained the Lagrangian of (3.1) by the prescription

&(4(n)A"(n) )= 'L(4(x)A. (x) "-) (3 4)

where the arguments are related by

In the parametrization of Sec. II the scalar field is
given by

—2qgC~ ——~e . (3.9)

where

L=Ly+Lp+L„ (3.11)

Le= e "+'+""P2~(A"DA D.Ivy)—
Le= 4e 4g'(D„Q, DQ )'—
L =-,'Xe-4' (D„(r)',

(3.12)

where l denotes the complex conjugate of l and X is a
constant. The exponential factors in L~, Lz, and L,
are needed in order to make the Lagrangian transform
like a scalar density. With the explicit expressions for
the covariant derivatives inserted, the forms (3.12)
become

L&= e '«"4+».f,'4(A „a„P a„~-„P)—
+me ~'~ 2f Imlgy—„gp„j,

L,=-', (aA„—aA„)',

L =~~Re "EB„&+(2f/g)p ]'
(3.13)

It is possible to include in Ly other couplings to the
preferred fields,

Le'= e "+'+""(&VvW ~+&'V~"ADA.), (3 14)

which reduces to the form

Le'=e '"""+» (&VvALa. +(2f/g)t. j
+h"e"fo„.fa„&,) . (3.15)

The Lagrangian (3.11) with the terms (3.15) included
can be brought into a simpler form if we express p„

This means that only the power of e is aBected by such
multiplications as are needed to bring the degree of
any term to the value —4. Since, in the application of
efI'ective Lagrangians to the computation of tree graphs,
it is customary to expand all functions of the preferred
fields in power series, this replacement of 0 by some
multiple of itself is a very mild adjustment.

It is of course necessary that the Lagrangian be real
(up to a 4-divergence). For this reason the "spin
coupling" of the field @„which is suggested by the form
of the covariant derivative

D„f=e"(a„+2lf@„2ifS„&—„)f

is not present generally. If f is a Dirac spinor the term
2ifS„—&g gives a purely imaginary contribution. In

fact, for this case the covariant derivative appears in
the combination

y„D„p=y„e' fa„+f(2l 3)g„Q— (3..10)

A possible Lagrangian for the system comprising a
Dirac field f of degree l in interaction with the preferred
fields p„and 0 might be given by
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and P in terms of new variables A„and N defined by

A„=y„+(g/2 f)B„e,

N —e
—ig Imbed

(3.16)

(3.17)

LU xie '«'+'&~Tr( U(iy„D„M——)U)—(3.23)

~ If the 6elds @„and o are correctly normalized, then f is dimen-
sionless while 1/g has the dimensions of mass.

The result is given by

L= e '«"—'+I&'[2&i(Ny„B„N B„N—y„N)+me g'N—iV

2f(I—ml h'/g—)Ny„NA „+h "e"No „„XB„A„7

ji~(B„A, B,—A„)'+ i2X(2-f/g)'e '"A„', (3.18)

and it becomes clear that 0. is lacking in kinetic energy'
In fact, since no derivatives of o appear in (3.18), this
field could be expressed in terms of the other fields and
eliminated completely from the Lagrangian. One is
then left with a system consisting of the nucleon field E
in interaction with a massive vector field A„. This
solution illustrates the Anderson —Higgs-Kibble effect
which was discussed in I. The massless fields @„and 0-

have combined to produce the massive vector A„.
Such a model as this one may provide the simplest

example of the spontaneous breakdown of conformal
symmetry. It has no claim to uniqueness however. Let
us consider an alternative model in which the
Lagrangian (3.18) is amended in such a way as to revive
a as an independent field.

To (3.18) we can add the term

I~.= (f/g')e "'DA' (3.19)

'tVhen p is eliminated from (3.19) in favor of A then
I.@ takes the form

le—2g~(g e)2+1(2f/g)2e-2gaA 2+ (f/g2) g

XI e " (Au (g/2f)~u—e)7 (3 2o)

and can be seen to contain the kinetic energy of cr.

(The 4-divergence, which happens to possess a mixed
CP character, is variationally insignificant. ) A mass
term for a. can be found in the scalar density quantity

I..'= (~/4g)'e-4g'. (3.21)

The Lagrangian (3.18) with the additional terms I.&,
and I.,' therefore characterizes a system in which the
preferred fields A„and o are associated with particles
of (bare) mass (1+).)'12(2f/g) and K, respectively.

Let us suppose that the system includes neutral
vector and pseudoscalar mesons in addition to nucleons.
They can be characterized by a Dirac multispinor field
U I'. The multispinor U can be expanded in terms of the
fifteen generators of the Dirac algebra

U= Up'y&+ 2 Uy &g +Uy5ivr 'Y&+ U575 (3 22)

and the tensorial component so defined are real, being
the fields of neutral particles. A coupling of U to the
preferred fields is included in the Lagrangian

where the trace is taken with respect to the Dirac
indices. The degree of homogeneity / must clearly be
real since we are dealing with neutral fields. The co-
variant derivative of U is given by the formula

D„U= e ((8„+2+„)U if—[ „„U]y,), (3.24)

which can be substituted into (3.23). If the multispinor
is expressed in terms of its tensorial components by
means of (3.22) then the Dirac traces can be performed
with the result,

I U= e
—ra(&+-",&a[L(U g U g U U )

,'M—e —"(U-„'+&2 U„,'-U„—Up—)
+f(U, U„.+3U:U„)y,7, (3.25)

in which it is necessary to replace P, by the combination
.4„—(g/2f)8„o It th.us appears that the coupling of the
preferred fields to the pseudoscalar and vector compo-
nents of the multispinor field —as fixed by the kinetic
energy term I.p—occurs with a definite ratio of three.
Unfortunately, these trilinear couplings are the only
ones allowed by Lorentz covariance and so would not
permit the distinguishing of these bosons through a
characteristic interaction.

The existence of particles associated with A„and 0.

would signal the conformal invariance of nature. On
account of their massive character and the fact that
they are electrically neutral, it is unlikely that their
couplings are of gravitational (cosmological), weak or
electric strength. They may exist among the hadrons.
The coupling constant ratios pointed out above could
be of significance in this context particularly when
formulated in the form of low-energy theorems.

Formulas for the conserved currents X„„,correspond-
ing to special conformal transformations, and x)„, cor-
responding to dilatations, are derived in the Appendix.
For the Lagrangian (3.18) augmented by the terms
(3.20), (3.21), and (3.25) one finds, at x=0,

E„,(0)= (1/f) (B„A. f&„A„)—
+(h"/f)e"a'+' N ~ N-, (3.26)

D„(0)= (2Xf/g')e 'g—A„+(B„A„—g„A„)—
&& (A (g/2f) ~.~)+—e "'""+'*'[(Iml (h'/g))Ny„iV-

+h"No„„N(A„(g/2f)i1„o)7 —(3.27).
It is possible to construct relations like those obtained

from the partial conservation of axial-vector current,
by adding symmetry-breaking terms to the Lagrangian.
For example, adding the terms

2(8K)2o2e 4"+~Z(i& &r)ig 'g~ (3.28)

where 4 denotes a constant with the dimensions of
mass, while Z is dimensionless, one finds the divergence

'If one believes in a quark model, one could go further and
assert that the degree of homogeneity EU associated with the multi-
spinor U is related to C for the quark (4'ff) by the relation 4g =2ReE~.
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conditions

B„D„=((bK)'/g)oe 4&-
,

8„E„.= (2/g)[(gK)'x, oe "—+Z47, ire '»a—$

(c) Dilatations:

xp e xiii

y„'(x') = e-iy„(x),
a'(x') = ir(x)+7

(A7)

APPENDIX: TRANSFORMATION DETAILS

In order to construct the conserved currents which in
a Lagrangian theory correspond to the various sym-
metries, it is necessary to have explicit expressions for
the infinitesimal variations in the fields. In particular,
it is necessary to have explicitly the infinitesimal form
of h(n, A). This appendix is concerned with the com-
putation of these expressions.

The Lorentz transformation h(n, A) corresponding to
the 0(4,2) transformation A is defined by the trans-
formation law of the boost components

Li,(n) » Li, (n) =AL4, (A 'n) h '(A'n, A), . (A 1)

where 1.& is determined indirectly by the requirement

which, since it is homogeneous of degree zero, is, in fact,
a function of x„only.

The transformation h(n, A) defined by (A1) can be
expressed in the form

h(n A) —eia De ig'Ke ia—PAeia—PeigKe iaD—
i, 'I

&
(A9)

and it remains only to substitute from (AS), (A6), and
(A7) to obtain the explicit form of h in terms of @», o,
x„,and A. The results are as follows:

These relations, (AS), (A6), and (A7), define the
transformation law for the entire boost matrix which is
given in terms of p„and o- by

(n) eia Peig Ke iaD—

hp5+hp, 6 gp, 5+gp6 y

which forces the combination

—24~ ——(Li)g.-+ (Lp) ~4

(A2) (a) Inhomogeneous Lorentz transformations:

Xy ~ Ayyxy+ (Xfs )

h„.(n, A) =A„., (A10)

in terms of which the parameters @„and 0., and, there-
fore, the entire matrix I.& can be expressed to transform
like a true 6-vector:

P„e'= 4&„—x„(C4+44),
@~e = Cq+4'6.

(A4)

From these relations it is straightforward to deduce the
transformation laws for it » and o by substituting (A3).
The results are, for the various types of transformation:

(a) Inhomogeneous Lorentz transformations:

x„—A„,x„+n„,
y„'(x') =A„y„(x),

O' X =O' X

(b) Special conformal transformations'.

x.'= (x»+ x'P.)/(1+ 2Px+P'x'),

P»'(x') = (1+2Px+ P'x')y»(x)+ $(1+2~)(1+2Px)
2x'P4'3p» L—2p4+p" (1+—2W) jx. -(A6)

~'(x') = ~(x) —ln
~
1+2Px+ P'x2

~
.

' The fields p„and o transform like a nonlinear realization of G
on G/H, where G is the factor group SO(4,2)/Z2 and H is the con-
nected component of the Poincarh group. We owe this remark to
Dr. L. Castell (private communication), who has also pointed
out the need for absolute magnitude signs in the transformation
law of r.

C'~(n) ~ @~'(n) =Agee'e(A 'n). (A3)

The parameters P„and o. are given by the expression
(2.20) for 4 ~. Inverting this expression gives

which means that for pure translations, x~ x+n, we
have h= 1.

(b) Special conformal transformations:
For these the computation is a rather lengthy

one and so we give the result only for infinitesimal
transform ations,

x'„=x„+(x'g„2x„x.)P,+-
h„,(n, A) =g„„+2(P„x,—P„x„)+

(c) Dilatations:

x„'=e"x„,

h» a(%A) —
g»'

(A11)

(A12)

4'(n') = (I 2i@.&..)4(n-) (A13)

Assuming that if'(n) is homogeneous of degree I, then
it is possible to define the space-time field P(x) by

4'(x) =& V(n)

where n is expressed in terms of x by (2.12). Then we
have

p'(x') = (1—/bK/K ——,'ibh„p„,)p(x),

Thus, for translations and dilatations the transforma-
tion h coincides with the identity, for ordinary Lorentz
transformations h coincides with A, while for special
conformal transformations h becomes a more com-
plicated Lorentz transformation.

Let us now compute the infinitesimal variations in
the field ill which are induced by transformations of the
conformal group. First, in q space,
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so that, finaBy,

g (x)=f'(x) P—(x)

(—bx„8„+1@/»+', zb-h„g, „)P . (A14)

The infinitesimal quantity b»/» appearing here is given
by

4/»= 0, inhomogeneous Lorentz transformations

= 2P x, special conformal transformations (A15)
= —X, dilatations.

The infinitesimal variations in the fields P, @„, and o.

and the transformations which induce them are listed
as follows:

(a) Inhomogeneous Lorentz transformations:

These infinitesimal forms can be used in the canonical
expression for the conserved currents

Eflux
=

BL BL BL
8+ lib~+ "oo+8x„L, (A19)

K„.= $(x'g.p 2x„x—p)8,$+2(lx„+iS,exp)gj

where P,„—=8„$, etc. Corresponding to the inhomo-
geneous I orentz transformations are the well-known
tensors T„„and M„„q. The new currents, which cor-
respond to the special conformal transformations and
the dilatations are, respectively,

I
~ls Xls+ tIs y+v+ EL' y Elsv+ CVP,

(~„,x,+—n„)8„P 2ze„,S—„.f,
Qx= (&y|xv+ zzp) ~p@x+ &) pfp,

80'= (fppxy+zz~)8~0'.

(b) Special conformal transformations:

(A16)

+ $(xzg„,-2x„xp—)8pyz, 2xyi—g„i,+—2xzy.5

BL
+ P( gx.,—2x,x,)a,o+2x„j

80,ls —L(x'g,„—2x„x„), (A20)
BL L

x„+(x'g„„2x„x„)—P„,
—P„( gx„„2x„x„)8„—$ 2lP„x„f—2ip„xg—„„p,
—P„( gx„,—2x„x„)ay,+2P„x„y,

+ (pz, —2x)g„y„), (A17)

P„(x'g„„—2x„x.)B„o—2i3„x„—
(c) Dilatations:

x„'=x„+Ax„,
&P= X(x„B„—l)f,—

X(x„B„+—1)p„
8o= —P (x„8„o—1) .

+ (x,B„o 1) x„L—, —(A21)
Ba

where it is to be understood that the derivatives with
respect to f include all fields and their adjoints, if
necessary, excepting the preferred fields P„and 0-.

The expressions (A20) and (A21) simplify at the point
x=o'

E„„(0)= —BL/8y„,„,
DP(0) = l(~L/e, u)4—

+ (8L/8&, „)g +(8L/Bo, „). (A23)


