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We consider matrix elements of the axial-vector current in spinor electrodynamics, and develop the
change in the usual reduction formalism caused by the presence of the axial-vector-current-two-photon
triangle diagram. When at most one photon is reduced in from the external states, we are able to charac-
terize the anomalous behavior of the triangle diagram entirely in terms of a consistent set of anomalous
Geld-current and current-current commutators.

' T has recently been shown' that the axial-vector
- ~ current in spinor electrodynamics does not satisfy
the usual divergence equation

a~j „'(x)=2im, j'(x),
where

expected from naive use of the equations of motion.
Rather, because of the presence of the triangle diagram
shown in Fig. 1, the axial-vector current satisfies the
anomalous divergence condition

8"j„'(x)=2imo j'(x)+ (ao/47r)F & (x)F'&(x)ot.,p, (2)

with Ii& the unrenormalized electromagnetic field-
strength tensor. Because radiative corrections to the
basic triangle diagram (Fig. 2) involve axial-vector
loops with at least five vertices, and because these larger
loops satisfy the usual axial-vector Ward identity,
Eq. (2) is an exact equation, valid to all orders in
perturbation theory. '

In the present paper we explore further consequences
of the singular behavior of the triangle diagram in
spinor electrodynamics. Although the anomalous
divergence phenomenon appears in all matrix elements
of the axial-vector current, we will consider expHcitly
only the axial-vector-current —two-photon matrix ele-
ment (OI j„ Ik~, o~, ko, oo), which is described in lowest
order by the graph of Fig. 1. (Here kq, ko and o~, oo

denote, respectively, the four-momenta and polariza-
tions of the two photons. ) First, we develop the reduc-
tion formalism for the triangle graph. When one photon
is reduced in, we are able to characterize the anomalous

'S. L. Adler, Phys. Rev. 177, 2426 {1969).This paper will
hereafter be referred to as I. See also J. Schwinger, ibid. 82, 664
(1951), Sec. V; C. R. Hagen, ibid. 177, 2622 {1969);R. Jackiw
and K. Johnson, ibid. 182, 1457 (1969};B.Zumino (unpublished).
As in I, we use the notation and metric conventions of J. D.
Bjorken and S. D. Drell, Rerutieistk Quantum Fkhfs (Mcoraw-
Hill Book Co., New York, 1965), pp. 377-390. Xn particular, we
uSe eO1qg= e'~'= 1.

2 S. L. Adler and W. A. Bardeen, Phys. Rev. 182, 1515 {1969).
Note that the anomalous divergence term can be rewritten in
terms of Gnite quantities as (n/kr)F, & F,'&~g „,where F,& is the
renormalized electromagnetic 6eld-strength tensor.

behavior of the triangle graph entirely in terms of
anomalous commutators of the electromagnetic field
with the axial-vector current ("seagulls" ) and of the
electromagnetic current with the axial-vector current
("Schwinger terms"). We check that the various com-
mutators which we obtain are consistent with each
other, with the equations of motion, and with the
electromagnetic-field canonical commutation relations.
These formal considerations indicate that the equations
obtained from explicit study of the matrix element

(0I j„'Ik&,o&, k&, o&) can be applied unchanged to the
matrix element (A I j„'IB), with A and 8 arbitrary,
when at most one photon is reduced in from the external
states. Using the anomalous commutation relations,
we complete the heuristic verification that the quantity
go introduced in f is the chiral generator in massless
electrodynamics. Finally, we show that when both
photons are pulled in, one cannot represent the triangle
graph by a reduction formula containing a time-ordered
product with the usual properties.

To study the reduction formula for the triangle graph
with one photon pulled in, we use the equation'

&oI j'(o) Ik~ o~ ko oo)L(2~)'2k~o(2~)'2k~o7'"

Z~
cr de-i@1 x

XCl, (0 I T(j„'(0)& (x)) I ko, oo)P(2x)'2koo7'I'

= —iog'oo Leo'/(2n. )'7R.,„(kg,ko),

where A, is the photon field and R,»(k~, ko) is the
explicit expression for the lowest-order triangle graph
given in Kqs. (17) and (18) of I. Bringing C] inside the
time-ordered product (using the usual rules4 for
differentiating time-ordered products), we find

d'x e '"'*ID.(0 I T(j„'(0)A.(x)) Iko, oo)

=A „,kgo+8„,+C„,(kgo), (4)
~ Since in Eqs. (3)-(7) we work to lowest order only, we omit

the wave-function renormalization factor from Kq. (3}.
4S. L. Adler and R. F. Dashen, Current A/gebras (W. A.

Benjamin, Inc. , New York, 1968), Eq. (2.7).
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withs

A„,=2 d4xe*"'*'b(xO)(0
I I

A (x),j„'(0))I k2, 02),
FrG. f. Axial-vector triangle diagram which

leads to the extra term in Eq. (2).

Yjg. V5

Yp

Bp.= d4*' 2 *k(xO)(OILA. (x),j.'(0)) Ik2, 02),

Cp.(40) =eo d'*e "'*(oI7"(jp'(0)j.(*))Ik2 02) r

8
A.(x)—= A.(x), j.(x)—=f(x)y.P(x) .

Bxp

Provided that the time-ordered product in C„„ is not
too singular, in the limit as k20 ~oo, the function Cp. (k20)
has the Bjorkeno-Johnson-Low" behavior

—ieo
d4x e'~'*B(xO)C„(k20)=

kgo

x(0 I Lj (x),j„'(0))I k2, 02)+OL(ink&0)~/k202), (6)

02PR pp(k2, k2)

42r (k2 02 k2 02 ){0 rpp+rg 000rprp gp000rrp

+k10 L2(1 gr0)(k2r00rpp+k200arpp)

+grO(1 g00)kl"00rpp gpo(1 g00)kl"00rrp

+(terms which vanish when o =0 or f2 =0)))
+OI (lnk20)e/k202). (7)

indicating that the equal-time commutators
LA.(*),j'(o)) LA.(*),j'(0)), »d I:j.(x),j'(0)) «e
to be identified, respectively, with the parts of E.»
behaving like kio, 1, and kjo ' as kjp becomes infinite.
From Eqs. (17) and (18) of l, we find

8
B~(x) =LVXA(x))~=0 " A (x)

Bx

8
E'(x) = —A '(x) — A '(x),

Bx'
(9)

We have only listed the current-current commutators
containing at least one time component, since these are
the only ones which appear when divergences with
respect to the vector or axial-vector indices (e or p) are
brought inside the time-ordered product in Eq. (5). All
of the nonvanishing commutators in Eq. (8) are
anomalous in the sense that if they are calculated by
naive use of canonical commutation relations they
vanish.

It is easy to check that the anomalous commutation
relations of Eq. (8), together with the reduction
formula of Eqs. (4) and (5), correctly reproduce the
known divergence properties of the lowest-order
triangle diagram. Consistent with our assumption that
the time-ordered product C„„ is not too singular, and
obeys the Bjorken-Johnson-Low asymptotic formula,
we use the usual formulas' for cMerentiation of the
time-ordered product,

~0"T(j'(y)j.(x))=7'(~."i'(y)j.(*))

(10)
+b(y'-x')L j"(y),j.(x))

~*'T(j'(y)j (x))=T(j'(y)~ j.(*))
+~(*'-y')Lj.(*),j.'(y)).

Comparing Eq. (7) with Eqs. (5) and (6), we find the
equal-time commutation relations'

LA (*) j'(y)) =LAo(*) j'(y)) =0
LA.(x),jo'(y)) = (—»«/x) ~'(x —y)~"(y),

LA (*)j'(y)) =(2«/x)b'(x —y) 0""&'(y),

Ljo(x),jo'(y)) = (—2eO/2x') B(y) V*@(x—y)

fj (x)»o'(y)) =(-Io/4 ')I.E(*)x&,8'(x-y)),
Ljo(*),j'(y)) =('o/4 ')LE(y) x ~,4 (x—y)),
'We have suppressed the dependence of A„„.. .,C„on k1

and kq.
6 J. D. Bjorken, Phys. Rev. 148, 1467 (196S).
7 K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)

Suppl. 3?-38, 74 (1966).' We remind the reader that since we have deduced the com-
mutators of Eq. (8) from the triangle graph alone, without
considering other graphs, we have not yet ruled out the presence
of additional terms in the Geld~rrent or currentwurrent commu-
tators of higher order t~a~ ao or ee, respectively. However the
consistency argument of Eqs. (23)-(30) below suggests that such
terms, if they occur at all, are at worst Schwinger terms and sea-
gulls of the usual type, which cancel agltfnst each other when
vector or 8~~&-vector divergences are tall.en.

(8) kz d xe ' '*Qp(QIT(jp'(0)A, (x))jk202)

=k2' d'xe'~'*B(x')(OIIA (x),j„'(0))jk202)

—ieo d4x e'~'*b(x')(0
I LjO(x),j„'(0))jk2, 02). (11)

)p. 'Y5 )p, )5

-v& z-

Fre. 2. Typical second-order radiative corrections
to the triangle diagram.

To check gauge invariance for the photon which has
been reduced in, we multiply Eq. (4) by k2'. Using
vector-current conservation (8'j,=0) and Eq. (10) to
evaluate k2'Cp (k20), we find
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Using the commutators of Eq. (8), one can easily see
that the right-hand side of Eq. (11) vanishes. To check
the axial-vector divergence of the triangle, we multiply
Eq. (4) by —(k«+kp)". Using the axial-vector-current
divergence equation (2) and Eq. (10) to evaluate
(ki+kp)&C„.(kip), we find

(&+—&) fd'x"e '" a.('lo&(j'(o)& b))l&, )

ie—p d xe 'p"(OI T(L2imp j'(0)

with each other, with the equations of motion, and with
the usual electromagnetic-field canonical commutation
relations. In the Feynman gauge, the electromagnetic-
field equations of motion and commutation relations are

OA„=A„—O'A„=ep j„,
LA "(*),A (y)] I *="=LA"(*)A'(r))l* ="=0 (14)

LA "(*),A'(r)) I *="= —«g"'bo(x —y) .

We also need the divergance equations satisfied by the
currents j„(x,t) and j„o(x,t),

+(«/4«r)F& (0)F'&(0)pt. ,„)j.(x)) I kp 'Ep)

+ dpx e'~'*b(xp)

—jp+V. j =0,

—jo'+V j"=2impjp+(2««o/«r)E B,

(15)

d'x e*"'*b(xo){—(k«+k p) &(0
I LA.(x),j„'(0))I kp p«)

+««(o ILj (x) jo'(o)) lkp pp)}L(2~)'2kpo]'"

= —pop(ep /2«r )k«&kp'pt„p . (12b)

When multiplied by pi Eq. (12b) is identical with
the matrix element (0 («/4«r)Ft'F"pt«, Ik«, pl k« p'2)

XL(2«r) P2kip(2«r) P2kpp]'«P which comes from the anoma-
lous term in Kq. (2) if we calculate the divergence of

(OI j„'Iki p«' kp op) directly, before reducing in one
photon. We see then that the reduction formula of
Kqs. (4) and (5), combined with the anomalous com-
mutators of Eq. (8), correctly characterizes the anoma-
lous axial-vector index divergence of the triangle
diagram. As Jackiw and Johnson' have particularly
emphasized, in the reduction formula the anomalous
divergence term k~»k2'e»„, arises from the failure of the
"Schwinger term" Lj„jop) and the "seagull" LA„j„p)
to cancel. {As a point of consistency, we note ths, t the
pseudoscalar —two-photon triangle R„L'defined in

Kq. (19)of I]has the asymptotic behavior R„(ki,kp) ~0
as k~p~~. Thus the usual equal-time commutation
relations

LA.(*),j'(r)) =LA.(*),j'(r)) =0 (13)

remain valid, and no extra seagull terms are picked up
when the one-photon reduction formula is applied to
the matrix element (OI 2impj'I k«, p«, kp, pp). }

We proceed next to check whether the commutation
relations of Eqs. (8) and (13) are formally consistent

&&{—(ki+kp) &(0
I LA.(x),j„'(0))Ikp, pp)

+iep(0
I I j.(x),joo (0)) I k„p,)}.

Since we are only working to lowest order (order ep'),
the anomalous divergence term proportional to
eo«).pF&'F'opt, „makes no contribution. However, the
anomalous commutator terms in curly brackets may
be evaluated from Eq. (8), and they give

with E and B given, of course, by Kq. (9). We proceed
to combine Eqs. (14) and (15) with Eqs. (8) and (13).
All the commutators which we write down are at equal
time, with x'=y =t.

(i) From
I A, (x),joo(y)] =0, we deduceo

LA.(*),j,'b)]+ LA.( ), (a/at) jo'b)]=0 (16)

On substituting Eq. (15) for (8/Bt)jp'(y) and using
LA, (x),j'(y)] =LA, (x),IP(y)) =0, we find

LA, (x),jo'(y)) = —LA (x), (2««p/«r) E(y) B(y)) . (17)

Using the canonical commutation relations of Eq. (14),
we then get

LA.( ),jo'(r)) =o (18)

LA.(*),jo'(r)] =(—»«/~)b«(x —y)&"(y) (19)

in agreement with Eq. (8).
(ii) From I Ap(x), jp'(y)]=0, we deduce

LAo(x), joo(y))+LAo(x), (8/o)t) jp'(y)) =0. (20)

Substituting Eq. (15) for (tt/ttt) jp'(y) and Eq. (14) for

Ap(x), and using the commutators LAp(x), jo'(y)]
=LAo(*),j'(r)]=LAo(x), 3'(y)) =0 we find

L«jo(x),jo'(r)) = —LAo(x) (2«/x) E(y) .B(y)]
= ( 2iap/«r) —B(y) &,bo(x —y), (21)

that is,

Ljo(x),jp'(y)) = (—«eo/2«r«) B(r) V,bp(x —y), (22)

in accord with Eq. (8).
(iii) From LAi(x), jo'(y)) = —(»««o/«r)bo(x —y)&"(y),

we find

LA.(*),j"(3))+LA.(x),(~/~t) jo'(y)]
= (—2«««p/«r) b'(x —y)B'(y)
=(2i««p/«r)bo(x —y)LV~3&E(y))" (23)

9 We use here the method of D. G. Boulware and L. S. Brown,
Phys. Rev. 156, 1724 (1967).
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Substituting for A, (x) and (r)/r)t) jp'(y) as before, we find

tepj. (x) jp'b)] —LA.(x),&. 1p(y)]
=(»«/x)&'(* —y)E&.X@(r)]"

—fA, (x),(2«/n) R(y) 8(r)]
=(—2i o/ )PE(x) XV h'(x —y)]'. (24)

Using Eq. (8) to evaluate Lep j„(x),jpp(y)] and
—LAr(x), W P(y)], we see that Eq. (24) is satisled.

(iv) From Ejp(x),jp'(y)]= (i—e /p2 pr)8(y) ~ hp(x —y)
we 6nd,

~&~/d~) j (*) j"(r)]+Ljo(*) (~/~&) jo'(y)]
= (—pep/2xe) $(y) ~ & lie(x —y)
= (t'ep/2~r )EVrX E(y)] &abp(x —y). (25)

Substituting Eq. (15) for (t)/R) jp(x) and (8/r)i)j p'(x)
gives'0

—t.&* i( ) jo'b)1 —Ljo(*),&. i'(r)]
= &t"/2 ')L&.XE(r)] &*h'(x—r) (26)

I)sing Eq. (8) to calculate the commutators on the
left-hand side, we 6nd that Eq. (26) is satisfied.

(v) Finally, to check the consistency of quantization
in the Feynman gauge, we must verify that

L—=30+V.A (27)

and I remain dynamically independent of the axial-
vector current. That is, we must verify that

and that
P-(*),j.'(r)] =o

[L(x),j„'(y)]=0.

(28)

(29)

Equation (28) follows immediately from the first line
of Eq. (8). To check Eq. (29), we substitute Eq. (14)
for Ap and use LAp(x), j„'(y)]=0, giving

Ll (x) j'(r)]=bpjp(x) j'b)]
+Lw, A(.),j.'b)]. &30)

Substituting commutators from Eq. (8) then shows
that the right-hand side of Eq. (30) vanishes.

Ke conclude that the commutation relations of
Eq. (8), which were obtained from the triangle graph
in lowest-order perturbation theory, are consistent with
the equations of motion and canonical commutation
relations of Eqs. (14) and (15). Moreover, the fact that
Eq. (19) for LA.(x),jp'(y)] and Eq. (22) for f jp(x), jp'(y)]
were deduced from simpler, exact commutators" and

'PWe have used Pjp{x) E{y) B(y))=0, which follows from
$jp(a) A (y)]= Ljp (a),A. (y)]=0. Note that Ljp (x),A, (y) $ =0 can
be derived from I jp(x),A (y))=0 and the divergence equation
8jp{&)/@+V'z j=0, in the same way that we derived Eq. (19).

~' The commutation relations LA, {g}j p(y)g= fA, {g) j~(y)]=
t Ap(x), j„P{y))=LAp{s},j'(y)1=0 can be Proved to all orders in

perturbation theory by the Bjorken-Johnson-Low method, using
the Weinberg asymptotic rules discussed in Chap. 19 of Bjorken

equations of motion suggests that Eqs. (19) and (22)
are themselves exact to all orders of perturbation

theory ".The values given in Eq. (8) for LA, (x),j.'(y)],
Lj„(x),j,'(y)], and Ljp(x),j,p(y)] cannot, on the other

hand, be deduced from the consistency argument of
Eqs. (23)—(30). To see this, we note that Eqs. (24),
(26), and (30) Las well as the reduction formulas (11)
and (12)] are all unchanged if we modify these commu-

tators to read

'CO!p

LA (x),j.'b)] =—~ &x-»""~b)

—iepb'(x —y)S"(y),

—ieo
Pj'„(x),Jo b)]= PE(x) XV,a'(x —y)]

4x'

ieo
Lj.(*),j'(y)]= LE(y) X&*&'( —y)]

F2

8
L~'(x y)S"'b)]

ax"

with S"'(y) a pseudotensor operator. In other words,
the consistency check of Eqs. (23)—(30) does not rule
out the possibility that higher orders of perturbation
theory may modify Eq. (8) by adding Schwinger terms
and seagulls of the usual type, "which cancel against
each other gas in Eqs. (11) and (12)] when vector or
axial-vector divergences are taken. It is expected" on
general grounds that the commutator )A„(x),j,'(y)]
does not involve derivatives of the 8 function and that
the commutators Pj „(x),jp'(y)] and Ljp(x),j.'(y)] do

and Drell (Ref. 1). Let T,„~jf,{k1,~ . ~ ) be an arbitrary amplitude
involving an external photon of polarization o and four-momentum
k1, an axial-vector current j„p with four-momentum —k1+5,
2f external fermions, and b additional external photons. Because
of charge-conjugation invariance, we cannot have 2f=b=0.
When f&0 or b&1, the asymptotic coegciewt a associated with T,
as k1p —+~, can never be greater than zero. When f=0 and b=1,
the super6cial asymptotic coeKcient is 1 (the graph is linearly
divergent), but gauge invariance implies that the photon b must
couple through its 6eld-strength tensor, and this reduces the
effective a to zero. Thus n for T can never be greater than zero,
and since T is arbitrary, this statement holds for all subgraphs
of T as well. We conclude that T pffft, (k1, . . .)~{lnklp}l'as k1p~~,
and since k&~T,„2j&(kl, . . .) =0 by gauge invariance, this means
that Tp&gj'fi (k1 . . .) k1p {lnk1p)&. Comparing with Eq. (5), we
conclude that I A (x},j„'(y)g = t Ap(x), j„'(y))=0. An identical
argument holds with j„' replaced by j'.

'~ We believe that Eqs. {19)and (22) are exact when sandwiched
between normalizable states {a

~
and

~
b). We make no claims about

matrix elements involving non-normalizable states such as
j,(x) [a) or j„'(y) ~a) and, in particular, we do no3 demand that
the commutators of Eq. (8) satisfy the Jacobi identity. (They
do rot.) For a discussion of Jacobi-identity breakdown, see Johnson
and Low (Ref. 7)."See Adler and Dashen (Ref. 4), Chap. 3; Boulware and Brown
(Ref. 9); D. G. Boulware, Phys. Rev. 172, 1625 (1968).
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not involve derivatives of the b function higher than
the first. Under this assumption, Eq. (31) represents the
most general form for these commutators consistent
with Eqs. (14) and (15).

Using Eq. (19), we can easily complete the argument
sketched in I that the operator

Qp= dpxLj, p(x)+(n, /~)A(x) v.xA(x)j (32)

d4 d4 e
—ikf x&—sky yx y

x .o„(ol T(j„p(0)a.(x)~,(y)) lo&

Cpep(k10)k20)+&p~&(klpyk20) y (36)

C„„(k»,k») =ep' d4xd4y e '0'*e '"'"

X(ol T(j. (o)j.(.)j,b)) Io).

is the conserved generator of y5 transformations in
massless electrodynamics. In I it was shown that

d—Q'=0, NV(y)3= —4V04b).
dt

(33)

We now show that Q' commutes with the photon field
variables. From the first line of Eq. (8) we find

The "time-ordered product" C„, contains all of the
dynamical singularities of the matrix element, but in
addition there is a polynomial in k1 and k2, which we
have labeled S„„arising from anomalous commutators
of A and A with the currents. If the time-ordered
product C„„were of the usual type, then it would have
the Bjorken-Johnson-Low behavior in the limits as
k1p k2p or k10—k2p become in6nite. That is, we would
have —Sep'

LQ',~.(y)) =LQ'Ap(y) j=o (34a)
C„.0(k) 0)kpp)

k10~(e, k20 fixed
10

d'xd4y

while from Eq. (19) we find'4

LQ',A, (y)j= d x j.(*),A, (y)

+ d'x ((kp/)r)A(x) VxXA(x),A„(y)

—pep'
d4xd4yC„p(k)p, kgp)

k20~oc), kIp fixed
20

xe '"'*e'k'r()(yp)(0I T(Lj,(y),j„'(0)]j,(x)) I0)

+O((lnkpp) e/kppp), (37)

x *"*~( o) "*"(0IT(Lj ( ),j'(o)jj.b))Io)

+O((lnk1p) e/k)p'),

—Mp2Axp 22&0
8"(y) — B'(y) =0, (34b) "" '"

0 o—" " 0 o+0' ""'0k —k'r 10 20

d4xd4y

as promised.
Finally, we will show that when two photons are

pulled in, the triangle graph cannot be represented by
a reduction formula containing a time-ordered product
with the usual properties. %hen two photons are
pulled in, Eq. (3) is replaced by"

dixd4y e—ik1 ze—ikp 0

„(0I T(j„'(o)a.(x)w, (y)) I0)

=41 epp/(2)r) 4jR,»(k),kp) . (35)

Bringing 0 and Q„ inside the time-ordered product
on the left-hand side of Eq. (35) gives"

~4 Equation (34) and Eqs. (16) and (T9) may be combined into
the simple observation that LQ', A,)=0 and dQ'/Ch=o implies
N A„&=0."Again, we neglect the photon wave-function renormalization.

"We have suppressed the dependence of C„„and Sp p on kI
and kg.

Xe *(&'+04'(.+,)e2i(k& kp) (x r—)$(&(x—p yp))

x(0I T(Lj.(*)j.(y)jj'(o)) Io)

+OHln (k10—kpp) )'/(k)o —kpp) 'j.

According to Eqs. (36) and (37), all terms in 1)!,»
which either approach constants or diverge linearly in
the three limits must be contained entirely in the
polynomial S. In Eq. (7) we saw that as k10 —+04, with
k20 6xed, R» approaches a nonzero 6nite limit and, by
Bose symmetry, the same statement holds for the
limit k2p —+~, with k1p 6xed. In I it was shown that in
the limit k1p —k2p~~ with k10+k2p fixed, R,» diverges
linearly (i.e., behaves as finite coefficient times k10—kpp).
Clearly, these three limiting behaviors cmseot be de-
scribed by a polynomial in k1p and k2p, which means
that C„„cannot vanish in all three of the limits in
Eq. (37). Thus, the time-ordered product appearing in
the two-photon reduction formula is not of the usual
type.
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