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We develop a Reggeized model for the 3-to-3 amplitude, using group-theoretical variables. The triple-
Regge vertex is defined by the asymptotic form of the amplitude. We show that the Veneziano model has
the asympotic form predicted by our model.

I. INTRODUCTION

INCK practical scattering experiments generally
have only two particles in the initial state„ theoret-

ical physicists have focused most of their attention on
such reactions. From a broad theoretical point of view,
on the other hand, there is no reason to exclude pro-
cesses with more than two particles in the initial state.
Indeed, both crossing and unitarity imply that an
understanding of processes with two particles in the
initial state is intimately related to more general
processes.

The usefulness of Regge-pole expansions for the
description of the asymptotic behavior of the 2-to-n
amplitude is well known. Expressions for the amplitude
in terms of group-theoretical variables have been
particularly convenient for the formulation of the
Regge-pole hypothesis. Such variables were first intro-
duced by Toiler' for the 2—to-2 amplitude, and were
extended to the general 2-to-n amplitude by Bali,
Chew, and PignottiP The resulting expression for the
2-to-n amplitude can be schematically represented by a
tree diagram. The diagram has n+2 external lines,
n —1 internal lines, two vertices with two external lines
and one internal line, and n —2 vertices with one ex-
ternal line and two internal lines. In the asymptotic
region, each internal line corresponds to the exchange
of a Regge pole, and a vertex function is associated with
each vertex in the diagram.

For the general ns-to-n amplitude, more complicated
tree diagrams can be drawn; diagrams containing
vertices with three internal lines are possible. Recently,
Toiler has suggested a particular set of variables for an
arbitrary tree diagram, his objective being an amplitude
free of kinematic singularities and constraints.

In this paper, we extend the Regge-pole hypothesis
to the tree diagram with one three-internal-line vertex

for the 3-to-3 amplitude. This is the simplest tree
diagram containing a vertex with three internal lines.
In Sec. II we define a set of variables for the 3-to-3
amplitude; these variables are more similar to those
used by Bali, Chew, and Pignotti' than to the new
Toiler variables. ' %e believe that the Regge analysis is
more transparent in our variables. In Sec. III we relate
our variables to the invariants, and in Sec. IV we define
an asymptotic region of the variables and extend the
Regge-pole hypothesis to the description of the ampli-
tude in this region. The triple-Regge vertex is defined
by the asymptotic behavior. In Sec. V we study the
3-to-3 amplitude in the narrow-resonance (Veneziano)
approximation and find that it Reggeizes in the ex-
pected manner.

IL DEFINITION OF VARIABLES FOR THE
3-to-3 AMPLITUDE

I.et us consider the process A;+8;+C; + A~
+Bf+Cf. For this process there are two possible tree
diagrams, which are shown in Figs. 1 and 2.

The analysis associated with Fig. 1 is very similar to
the usual multi-Regge analysis for the 2-to-4 amplitude
and is not expected to yield any essentially new informa-
tion, whereas the analysis of Fig. 2 is more complicated
and contains the concept of a triple-Regge vertex.
Therefore, in the following we confine our attention to
the tree diagram of Fig. 2.

For simplicity, we assume that all the particles are
spinless and that they all have the same mass m. %e
adopt the convention that incoming particles have
positive energies, whereas outgoing particles have
negative energies.

We define Q» by

Qx= p;»+pr» (&=~, &, &).

Energy-momentum conservation can be written as

P 1l P) ' 'fc Q~+Qa+Qc=o.

Pla Pls
Ji 'ic Pia P~a

FIG. 1. Tree diagram with no three-internal-line
vertex for the 3-to-3 amplitude.

~ Work supported in part by U. S. Atomic Energy Commission.' M. Toiler, Nuovo Cimento 37, 631 {1965}.
~ N. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163,

1572 (1967).' M. Toiler, CERN Report No. Th. 975 {unpublished).
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FrG. 2. Tree diagram with one
three-internal-line vertex for the
3-to-3 amplitude.

184 1732



TR I P LE —RE GGE V E RYE X 1733

Since Q~ is a spacelike vector, there is a Lorentz frame
in which Q~ points in the positive z direction. To specify
this frame further, we require the three-vector p;~ to
point in the z direction. Let this frame be called "frame
a„." Four-vectors in this frame have a superscript a„.
Equation (2.1) completely determines p;~~v, pr~~v, and

P c&v [.(mz zt )1/2 0 0 & ( tc)1/2]

pic' =[—(m' ——tc)'/2 0 0, —,'(—tc)'"]
Qc' =[0, 0, 0, (—tc)'").

(2.3c)

Since Q~ is spacelike, there is a frame in which Q~
and Q/& are of theform

Qg=[0, 0, 0, (—t„)'/2]
Qs= ["&v&0&rv) &

where I'—z =4+rt& and rv= ( tg)'/'( —Q~ Qa)—. Using
(2.2), we can write

where

p;~"= [(m' ——,'4)'" o, o, 2(—4)'"]
P/'~ '——[—(m' —4tg)' ' 0, 0, -', (—t~)' '], (2.3a)

Q "=Lo, o, o, (-t )'").
We define frames b„and c~ in an analogous manner.
Thus'

p;s'v= [(m' ,'t//)'/—' —0,0, —,'(—ts)'"],
p, =[—(m —-', t )" O, O, -', (—t )''] (2.3b)

Q."=[o,o, o, (-t.)'"],
and

sinhq/„= %2 (4t.) '/9, '/'(tp, t/&, tc), (2.6b)

to the frame b„, we arrive at a frame which we call c„.
ln this frame

Q '"= ( tc—) '—/2[&9/ (tg, t//, tc), 0, 0, ted+ to ts),—
Q/&"= ,'( tc) -'/'—[WX—'/'(tg, ts, tc) & 0& 0, ts+to tg] &-
Qc"=[0,0, 0, (—tc)'/z]. (2.5c)

A z boost of magnitude q, , where

sinhq« ——W ,'(t&tc) "9—,.'/z(t~&ts&tc)
& (2.6c)

applied to frame c„, takes us back to frame a„.
Frame X„is related to frame X~ by a Lorentz trans-

formation g» which preserves Q»»v=Q»»', i.e., an
element of the three-dimensional Lorentz group. We
may parametrize gx by a rotation through an angle pz
around the z axis, a boost of magnitude l» in the x
direction, and a final rotation around the z axis through
an angle vg. Therefore, we have

g»=R, (v»)B»(P»)R„(p») (X=a, b, c). (2.7)

to the frame a„, we arrive at a frame called b„, in which

Q =—'(—ts)—' '[~X"'(tg&ts&tc) &0& 0, tA+t/& tc—]&

Q/&'" ——[0, 0, 0, (—ts)"'],
Qc "=—(—ts) '/ [&V/ (tg&ts&tc)& 0, 0, t/&+to tg—].

(2.5b)

Similarly, by an application of a z boost of magnitude
qb„where

The set ft~, v~, f„//„ts, vt&,fvy/„tc, vc f.,p.) is our set
of Toiler variables for the case in which X(t~,ts, tc))0.
Of course, the amphtude can depend upon only eight
independent variables. We show below how to eliminate
four of the above variables; but it will be convenient
in Sec. IV to express the amplitude as a function of
all 12 variables.

Frame a„has been specified only up to an arbitrary
rotation about the z axis. A redefinition of frame a„by
an arbitrary angle @ is equivalent to replacing p by
p,+p. Therefore, the amplitude must be left invariant
by the transformation p,,~ p, +@,i.e., it is independent
of p, (a kinematical dependence on p, would appear if
particle A; or particle At had spin). Similarly, the
amplitude cannot depend upon p, g or p, g.

Frame a, is also specified only up to an arbitrary z
rotation, and redefinition of this frame by an arbitrary
angle qb is equivalent to the following change of vari-
ables: v ~ v +&, vq~ vy+P, and v. ~ v,+@. This
implies that the amplitude can depend upon v, vq,
and v, only in the combinations ~,&, coz., and co„,where

X(x,y, z) =x +ym+zm —2xy —2xz —2yz. (2.4)

Since t~&0, X(t~,ts, tc) and I' z' hav—e the same sign.
If I'—e'&0, there is a frame, designated by a„ in

which Qg points in the positive z direction, and only the
z and t components of Qs are nonzero. If u' —v'&0,
there is a frame, designated by a, , in which Q~ points
in the positive z direction, only the x and z components
of Qs are nonzero, and the x component of Q/& is
greater than zero.

Therefore, we have two cases to consider. The two
cases are distinguished by the sign of X(t~,ts, tc) We.
note that a different choice of variables, e.g., the new
variables of Toiler, ' would allow us to unify the two
cases. However, a judicious parametrization of Toiler's
variables is a nontrivial problem.

Case I: X(t„,t/&, tc))0. We have completely deter-
mined Q~ ", and Qs "is determined by (2.2) up to the
sign of the t component. We have

(2.8)or~y= v, —vy, etc.

Q.g"——[0, 0, 0, (—tg)'/') (2.5a)
Qs = —,'(—tg)

—"'[aX' (t~/, t t /)&, c0, 0, t„+t/& tc), —
Q"=-,'(—tg) '/'[WX'/'(tg, t//, tc), 0, 0, tg+tc t//]. —

Hy application of a z boost of magnitude q ~, where

sinhq, /,
= W (t&t//) /'&'(tp, ts, tc), —(2.6a)

Clearly, co,g+eup, +co, =0. Therefore, the amplitude
depends upon only eight independent variables.
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Case II: X(tz, te, tc)&0. Equation (2.2) completely
determines Qg "', Qe'"', and Qc"'. We have

Therefore, the amplitude must be left invariant by the
transformation (2.12).

The inelegance of (2.12) arises from our parametriza-
tion of g~'. A diferent parametrization can lead to a
simpler expression of the covariance condition. For
example, the parametrization

Q~"' ——[0, 0, 0, (—tg)'»],
Q "'=-', (—t )-"~0 [—X(t.,t.,t,)]",0, t„+t,—t,),
Qc" =~(—t~) ' (0, —[—X(tg, te, tc)]'», 0, tg+tc te—).

(2.9a)
gx'=Bv(gx)B (yx)R, (8») (X=a, b, c), (2.13)

A rotation about the y axis through an angle 8,~,

where

(2.14)
carries us from frame a„' to frame b,'. A rotation about
the y axis through an angle H~„where However, the parametrization (2.11) is more suitable

for the analysis of Sec. IV than is (2.13).
sin8p, = ——',(tete)

—'»[—X(tg, t et )c]'",
co&s.=-,'(t, t,)-' (»t,+t,—t ), III. EXPRESSION OF THE INVARIANTS IN

TERMS OF OUR VAMABLES
carries us from frame b„' to frame c„'. A rotation about
the y axis through an angle 8, , where Case I: X(tz, te,tc))0 In fra.me av, Qe is given by

Qa'v=I-(g ')Qe". Using (2.3a), (2.5a), and (2.7), we

(2.10c) can calculate (p;„+Q&)2. The result isg(tAtc)—' [ &(tA, te—,tc)]»,
cos8cs g (tAtc) (tA+tc te) &

replaces (2.12) by the statement that the amplitude
depends upon q, gq, and g, only in the combinations

sln8 g= g (t~te) [ ~(4 4 tc)] I
(2 10 )

8 g, bg, and b„=—b, q
—bq„where

costt, g= ', (t 4)-"'(4+4 tc), —

cosh/~' —+ cosh&~" ——cosh&~' cosh'
+sinhf~' sinhg sine~',

cosv»' ~ cosv»"= sinhi»' cosv»'/sinhf'»",
sin vx' ~ sin v»"= (cosh' »' sinhg

+sinhfx' cosh' sinvx')/sinhi»",
(X=a, b, c).

(2.12)

carries us from frame c„' back to frame a„'.
In frame b„'

Q„'=-', (—t,)- ~ (0, [ &(t„t—„t,—)]'», 0, t,+te t,), —
Qe'"' ——[0, 0, 0, (—te)'"]
Qc'",=l(—te) '»(0, [—~(t~, te, tc)]'», o, t +t 4). —

(2.9b)
In frame c,',

Q„"'=-,'(—t,)-'»(0, [—X(t„,t„t,)]' 0», t„+t, t,), —
Qe"'= ( tc) ' —(0——[—X(tg,4)tc)]' 0, 4+to tg), —
Qe"'= [0 0, 0, (—tc)»']. (2.9c)

Frame X,' is related to frame X~ by an element of the
three-dimensional Lorentz group, denoted by gz'.

gx'=R. (vx')B (i»')R, (tsx') (X=a, b, c). (2.11)

The set ft~, 'g,v', ts, ',te, 'vq', I'q', tsar', tc, v, ',I', ',ts, ') is our
set of variables for 3(t~,te, tc)&0 As in case .I, the
amplitude cannot depend upon p, ', pq', or p, ,'. The
removal of the fourth dependent variable is more com-
plicated, however. It arises from the fact that frame a„'
is de6ned up to an arbitrary y boost. A redefinition of
frame a„' by a boost of magnitude p amounts to the
following transformation of variables:

(p*~+Qe)'= m'+ 2 (4+ tc 4)—
& (~~ m'/t~)'~—'&'(t~, te, tc) cosh'', . (3.1)

We can express (p;e+Qc)' and (p;c+Qz)' by cyclic
permutations of (A,B,C) in Eq. (3.1).

Inframea„, p, eisgivenby p;e'v=t(g, 'q, Q gQ)pe'
Using (2.3a), (2.3b), (2.6a), and (2.7), we can calculate
(p,~+p;e)2. The result is

(p;x+ p;e) = 2m 4(t~+te —tc)—
a-', cosh'. ( t )-"—(m' ,'t, )' 9,—"—(t„,t„t,)
W2 cosh''y ( te) "(m' —4te)'"A'"(tg—,te, tc)
+ (tzte) "' cosh''r cosh''q

X (m2 .'t„)»2(—m2 ,'t, )»2(—t~—+te t,)—
—2 sinhf, sinhf'q cosra, q (m' ~t~)'t'(m 4ste)'t'—

(3 2)

We can express (p;„+pfe)s by changing the sign of
(m' —44)»' in (3.2); (pfQ+ pjB)' by changing the sign
of (m' ——,'4)'»; and (pf~+ pfe)' by changing the signs
of both (m' —4t~)'" and (m' 4te)"' E—xpressio. ns for
the other two-particle invariants can be obtained by
cyclic permutations of (A,B,C). All other invariants
can easily be expressed in terms of the two-particle
invariants.

%e note that the invariants depend upon v„vb,
and v, only in the combinations co, ~, ~y„and co„, and
that no invariant depends upon p, , p, g, or p.

Case II: X(t, ,te tc)&0 The calculat. ion of the in-
variants is similar to case I. The results are

(p'A+QB) m + 2 (te+tC —tA)
—sinhf, ' cosv, '(-', m'/t~)"'[ X(—t&,te, tc)]'"—(3 3)
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and

(p;A+ p;B)'= 2m' ',—(4-+ ta tc—)
+2(mp b—tA)"p(m A—ta)" {coshi ' coshi'b'
—s111111a' slIllli b'[(cos va' cos vb')

X-,'(tAta) I~'(-tA+t, t,)—

+Slllv Slllvb ))}+p[—ll(tA, ta, tc)]I~I

X[(—ta)
—'"(m' ——,'ta)'" sinhi b cosvb'

—( tA) "—'(m' AtA)"—' sinhi a' cosv, 'j. (3.4)

Other invariants can be expressed by appropriate sign
changes and permutations of (A,B,C) in (3.3) and (3.4).

We note that the invariants do not depend upon p ',
py', or p, ' and that they are left unchanged by the
transformation (2.12).

IV. ASYMPTOTIC BEHAVIOR OF THE AMPLI-
TUDE AND DEFINITION OF THE

TRIPLE-REGGE VERTEX

Case I: 7)(tA, ta,lc))0 Let the .amplitude be written
as f(tA, g„ta,gb, tc,g,) We ca. n expand its dependence on

g in terms of its projection onto the unitary irreducible
representations of the three-dimensional Lorentz group.
We write this projection as

The expression for the full amplitude is

f(tA&ga&tB)gb)tc)gc) ~ )t)(tA)tba) (Cosh|) a)
(IS Ny

X&t (tA Va tB gb tC gc) & (44b)
with

y(t, tb.) = g '" P„(t„), (4.5a)

and

)t)(tA vo ta gb tc g,) = Q e' "'p (tA, ta, gb, tc,g.) (4 5b)

Since the amplitude cannot depend upon p, we have

p„(tA) =p(t„)b„p and

f(tA)ga&ta&gb)tc)gc) ~ p(tA)(COShia)
feb-+oo

X)t&(tA) v &tB,gb, tC,gc) ~ (4.4C)

We repeat the above analysis for the dependence of
&t&(tA v tag tBc g,) on gb and gb, c The final result is

f(tA)ga)tB, gb&tC&gc) ~ p(tA)p(ta)p(tC)
fat'bf~oo

X (coshi' ) '&"'(coshf'b)a "»'(coshi. )a"c'

X)t)(tA) Va)tB) Vb)tC) Vc) . (4.6)

f „'(tA,ta, gb, tc,g,) = dg, e '""d„„l(t',)e 'av.
The triple-Regge vertex &t&(tA, vo, ta, vb, tc, v, ) for the

case X(tA, ta, tc))0 is defined by Eq. (4.6).Remembering
the dependence of the amplitude on v„vq, and v„we

Xf(tA, ga, ta,gb, tc,g.) ) (4 1)

where e *""d 1(f')e '"v is a unitary irreducible repre-
sentation of the three-dimensional Lorentz group. The
inverse formula for the amplitude is given by

f(tA, ga, ta, gb, tC,gc)

e f (tA, t o,ta, gb, tc,g )e'"~ (4.2)

&t&(tA) Va)tB) V b&tC& Vc) = &t&(tA&ta&tc&PPab)»&bc) ~ (4 7)

In terms of invariants, Eq. (4.6) is of the form

f(tA, ta, tC,S.,Sb,S„S.b,Sbc)Sca)

g(tA)g(ta)g(tc) I
s,

I

'"'
I
sb

I

'BI
I
s, I

X V(tA)ta)tc)Kab)Kbc)Kca) &
(4,8)

I sb(, (s, (
~ ~ with K b, Kb, K fixed, where

m, n

where

f)aa (tA)i a&tB&gb&tC)gc)

—1(2+ioo 2$+$
dt a ' 1(fo)

tanxl and

s.= (p;A+QB)', sb= (p;a+pc)',
s,= (P, +Qc)',A

(4.9)

s, b= (p'A+pea), sb.= (p;a+pic)') (4 10)

Sca (Pic+PfA)

Xf~ l(tA, taa, gb, tc,g,)+discrete terms. (4.3)
K ah = Sas b/Sa b ) K bc = SbSc/S bc &

Kca =Scsa/Sca ~

(4.11)

The functions u~„' can easily be related to d „'.'
If we assume that f „' is meromorphic in the t plane,

the leading term in the asymptotic expansion of f
is controlled by the position a(tA) and the residue of the
leading pole in f '. If we assume that the residues are
factorizable, we have

f a(tA, i'.,ta, gb, tc,g.) ~ p„(tA)(coshi'. ) I&»
orb-+aO

Xp (tA tB gb, tC,g ) ~ (4.4a)

Case II: l)(tA, ta, tc)(0 The analysis . of f(tA, go', ta,
gb', tc,g, ') proceeds in the same way as in case I. The
final result for the asymptotic behavior of the ampli-
tude is

f(tA, g, ')ta, gb', tc)g, ') ~ p(tA)p(ta)p(tc)
t;e', fa', fc'~

X (cosh&a&)a&&A'(coshi'b&)a&'» (coshi'c&)a&&CI

X&t&'(tA, v, ', ta, vb', tc, v, '). (4.12)
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Equation (4.12) defines the triple-Regge vertex
(t&'(t„, v, ', tv, v(,', tc, v, ') for case II. Equation (4.12) must
be left invariant by transformation (2.12). Asymptoti-
cally, (2.12) becomes

cosh f»& -+ cosh f»"= cosh&»'(cosh&)+ sinh&t sin v»'),
CosvX ~ Cosvx

= cosv»'jcosh&t+sinhrt sin v»', (4.13)
sin vx' —+ sin vx"

= sinh&t+ cosh)t sin v»'/cosh))+ sinh&t sin v»'.

This implies that the triple-Regge vertex must satisfy
the condition

((( (t&I&Va &tS& V(»tC&Va )= Cosh&t+SlnhT/ S1I1Va )
X (cosh)t+sinh&t sinvq') ('»

X (cosh)t+sinh&) sinv, ') ('c)

(4.14)
for arbitrary q.

The covariance condition (4.14) of the triple-Regge
vertex assumes a simpler form when we express our
results in terms of the parametrization (2.13). For
this purpose we need the relation between the two
par ametrizations. '

by Chan. 4 In our notation, this expression is

X(1 N—I) ' ("»(1 N—g)
' (*»(1 N—I) '

XLI NI(1 I )ja(~a()+a(&v) —a(&a)

gI(1 Nm)]~(»a)+a(»&) a(~—&)

XLI IIII~(1 It )ja(&o)+e( )—a(~ )-a(&)&) (5 1)

where (I(s) = a+ bs

The asymptotic form of this expression as ls I& l»l&
l s, l

~ a(& with &(ob, &(v„&(, fixed, is given by

where

G(t& ts tc &( (, &((, &( ) b(—z)M(v)~(c)

2d&p3$y1-a {tp)&2—1—a {t&)p3—1—a {tp)

0

coshgx = cosh+x cosh&x ~

cos v»' = sinhy» jsinht'»',
sinv»'= coshy» sinh&t» jsinhl'»'.

In the asymptotic region (4.15) becomes

cosh/» ~cosh'y» cosh7f»
&

cosv» ~(cosh&)»)
sin vx' tanhgx.

(4.15)

(4.16)

1 tt'5'gag 52'V3 $3'V j
Xexp -v, -vm-v, +-l + + . (5.3)

b ( )(baK (&Kaca

Comparing (5.2) with (4.8), we see that the asymp-
totic behavior of the amplitude in the narrow-resonance
approximation is correctly predicted by the group-
theoretical arguments of the preceding sections.

VI. CONCLUSION
The asymptotic behavior of the amplitude is given by

f(tx,ga', ts,g(,',tc,g, ') ~~ p(tg)p(ts)p(tc)
VO& V~& V~

X (coshy ) (&")(coshy )a "v) (coshy, )a('c)

X&t&"(t~,ts, tc, rt„&tv, &),), (4.17)
where

(t&I tQ tc &&t ')tQ It )=&b (tg tv tc b Q BI& ) . (4.18)

In terms of invariants, Eq. (4.12) is also of the form
(4.8), except at the isolated points cosv, '=0, cosvv'=0,
Or COSv, '=0.

V. ASYMPTOTIC FORM OF THE AMPLITUDE
IN THE NARROW-RESONANCE

APPROXIMATION

An explicit expression for the six-line connected part
in the narrow resonance approximation has been given

Ke have extended the Regge-pole hypothesis to the
3-to-3 amplitude. From the point of view discussed
here, our hypothesis is as plausible as previous Regge-
pole hypotheses. The concept of a triple-Regge vertex
arises naturally in our considerations. We have seen
that the narrow resonance approximation of the 3-to-3
amplitude Reggeizes in the predicted manner, lending
credibility to our hypothesis. The considerations dis-
cussed here can evidently be extended to an arbitrary
process.
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