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coupling constant, number of inelastic channels, phase
space, statistical counting, etc. Dynamics may then be
needed only for explaining a particular channel whose
contribution tends to vanish as energy increases,
Therefore, it would appear that the low-energy reso-
nance region has greater dynamical content than the
high-energy domain studied in this paper. Our model
also suggests that the analysis of inelastic collisions will

be simplified if the quasielastic part is removed. Con-
cerning experiments in the future, it is desirable to
measure the energy spectra for z~p, E+p, and pp
scattering so that our calculated E(s) can be checked,
at least qualitatively, by experiments. Finally, we notice
an interesting prediction on the width of x~ elastic
diffraction scattering. According to our model, the
quasielastic scattering for all processes is mainly due to

the OPE diagram. However, such a diagram is forbidden
in em scattering by 6 parity. We expect that the con-
tribution due to other diagrams is very small. As a
consequence, the quasielastic cross section for vrx will
be very small. If the x7r total cross section behaves like
all other total cross sections (i.e., does not increase
with increasing energy), we predict that shrinkage of
the ~m digractiorl, peak is impossible.
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A generalization of gauge invariance in strong interactions is given. This leads naturally to a structure
of I U(3)j' with the gauge fields corresponding to the quantum numbers J = 2++, 2+, 1,1 +. Currents
of both first- and second-class types are present. A tentative assignment of the gauge fields to possible
resonances is made.

1. INTRODUCTION

N important method in considering the sym-
~

~

metrics of strong interactions has been to use
gauge invariance of a Lagrangian to infer the existence
of conserved currents. The gauge invariance is then
broken by mass terms for example, resulting in partial-
conservation laws. When these conserved or partially
conserved currents are assumed to be the currents
which describe the electromagnetic and weak inter-
actions, several deep results follow. ' The spin-1 gauge
fields that are inferred by a local gauge invariance of
a Lagrangian have been considered to be important
because they must belong to the regular representation
of the symmetry group. With the recent work of Kroll,
Lee, and Zumino and of others, ' they too have been
shown to be important in a dynamical sense in describ-
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' S. Adler and R. Dashen, Current A/gebras (W. A. Benjamin,
Inc. , New York, 1968).

~ N. M. Kroll, T. D. Lee, and B.Zumino, Phys. Rev. 157, 1376
(1967}.

~T. D. ree and B. Zumino, Phys. Rev. 163, 1667 (1967);
T. D .Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters 18,
1029 (1967).

ing the electromagnetic and weak interactions of the
hadrons. Since broken SU(3) is well established as an
algebraic symmetry, it would seem important to in-
vestigate the full consequences of an approach based
on successive approximations to a completely exact
local gauge invariance. Not only is such a method an

important and fundamental way of arriving at the
interaction of fields, but it has, in the past, also been
used to infer the existence of pionic resonances which
are identified with the gauge fields. 4

In this paper, we examine a generalized application
of gauge invariance, ~~ and arrive at an underlying
group structure of LU(3) O'. A tentative assignment of
the gauge fields to possible resonances is made.

4 J.J. Sakurai, Ann. Phys. (N.Y.) ll, 1 (1960).
'The group )U{3)j' obtained here is not the same as the

group obtained previously by the authors listed in Refs. 6 and 7.
The transformations which these authors considered may still
be applied along with the generalization given here and would
result in a doubling of the number of gauge fields.' P. G. O. Freund and Y. Nambu, Phys. Rev. Letters 12, 714
(2964).

~ A. Salam and J. C. Ward, Phys. Rev. 136, B763 (1964). We
shall follow the notation of these authors.
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2. EXTENSION OF GAUGE PMNCIPLE

Ke shall work, for simplicity) with the free massless-

fermion Lagrangian~'

(2.1)Lp= tr—(gq„BA),
where

P=&2TQ, a=a, 1, . . . , 8

in the mixed-tensor representation of U(3). The nine

Hermitian matrices T are related to those of Gell-
Mann' by

T =-'P
2

We now rewrite Eq. (2.1) in a manifestly C-invariant

way:
(2.2)

where, in the Dirac-Pauli representation of the y
matrices,

x=4'= nCP,
x= n'O'C—',

with C=y4yp and
~ g ~3= 1. We may also split f and X

into left and right components,

PL,R= p(1~V3)4,
XL,R 3 (1~Yp)x

The free massless Dirac Lagrangian then becomes

where the suffix i on B,
„

is formal, i.e., B,„=—B/Bx„,
~=1,. . . , 4.

The more usual form of local gauge invariance is
now extended by demanding that each of the Gelds

QL, R and XL R may be transformed separately and
independently, i.e.,

where

fL'=PpWLP ',
fR'=QOPPRQ ',
XL'=RpRXLR ',
xg' ——+05'xgg ',

Pp= exp(i piP),

P= exp(iT3'pi&),

Qll= exp(ippP),

Q= exp(iT3ppj), and so on.

(2.4a)

(2.4b)

(2.4c)

(2.4d)

~ Although all of our results could be derived with the simple
quark representation of U(3), we use the mixed-tensor repre-
sentation, since it can be extended quite easily to include the
spin-0 mesons. Since the pseudoscalar-meson nonet is self-conju-
gate, we need to introduce a new nonet of spin-0 mesons, and
then apply our gauge principle to the non-Hermitian matrices
M M~+jMg and E=CMC '=DE~. The details are similar to
the discussion in Ref. 7 except that only vector-gauge Gelds are
introduced. This means that the tadpole mechanism used there
will not give diferent contributions to the mass terms of the two
sets of particles in this theory.

9 M. Gell-Mann, Phys. Rev. 125) 1067 (1962).

I p
— 3 tl (fL rpBiplpL+ lpR rpBppljlR'

+xLrpB3p)rL+xRvyB4pxR) 1 ( 3)

Xp„"——X,„'—(1/gpp) B„ppp, (2.6f)

X4„'=SX4„S'—(i/g4)SBP i (2.6g)

X4„"——X4„'—(1/g4P) B„34P. (2.6h)

Note that each of the 6elds X~„transform independently
as a representation of SU(3).

%e now de6ne the 6eld strength Z „„ofthe 6eld
X„„by

Z „„=B„X.—B„X„+ig„[X„,X„„7,
Z„„„o=B„X„0—8,X „',n= 1, 2, 3, and 4,

and write

where
F„„„4=B„X„,'—B„X„'v2f'3'pX „'X„.p. —(2.7)

Then the Lagrangian

I 2 tl jkL'Yp+1la4'L+QRrpDpplpR

+xL vpDppxL+xR rpD4pxR )
4 (P+p& P +pm +~ape ~npv ) q (2.8)''

where all indices are summed, is invariant under the
local gauge transformations (2.4) and (2.6).

This is an extension of the method of arriving at
chiral SU(3)XSU(3) symmetry by gauge invariance,
in which case only the fields pL and pR would be gauged
separately. It amounts to applying unitary trans-
formations to all components of the Dirac four-spinor.

If we require that the Lagrangian Jo be invariant
under the four independe33t transformations (2.4) where
the ~, n= 1, 2, 3, 4, depend on x„,then the derivatives
8», ~ 84„arereplaced by the "covariant" derivatives

Di,, QL B„QL——+pg, [Xi„,lfL7+pgi'Xi„'fL, (2.5a)

D3.4R=BAR+igp[X3„4R7+igpPX3,PPR, (2 5b)

D3pXI = BpXL+Zgp[X3p, XL7+zg3 Xp~ XL, (2.5c)

D4pxR= Bu)rR+pg4[X4u xR7+ig4pX4„pxR, (2.5d)

wh~~~ X»=~2&'X~„'.%e have thus introduced 36
spin-1 Qelds.

For the Lagrangian (2.3) to be invariant under the
transformations (2.4), we require

(D 0 )'=PpP(D, P )P-',
with analogous expressions for Dp„QR,D3„XL,and D4„XR,
in terms of the matrices Q, R, and S. This leads to the
following transformation character for the 6elds X»,
X2„,X3„)and X4„.

Xi„' PXi„P-' (i/g——,)PB P'— (2.6-a)

Xi"=Xi'—(1/gi') B.pi'
~ (2.6b)

Xp„'——QX3„Q-'—(3/gp)QB Q
' (2.6c)

(1/gp)B pp (2.6d)

X3„'=RXpl,R '—(i/gp)RB„R—' (2.6e)



1730 P. J. O'DONNE LL

3. PARITY AND CHARGE-CONJUGATION
IN VARIANCE

By demanding local gauge invariance of the Lagran-
gian under the transformations (2.4) and (2.6), we have
introduced interactions between the spin-1 fields and
the baryons, and between the spin-1 fields themselves.
The latter case is the well-known result of Yang and
Mills" that the currents corresponding to the spin-1
fields are nonlinear in the spin-1 fields. In this section
we focus our attention on the linear interaction terms
in the Lagrangian (2.8), which may be written

The Lagrangian we are considering is also invariant
under the chirality, or p5, transformation defined by

Case (i):

SR~PI. , xR~xr. ,
and

Case (ii):

PR~AL, XR~XL,
and

A'(+) -+ —A'(+),

L; 4= 2i—tr(gipLY„(Xl„,pL]+g2$RY„(X2„,iIR]
+g2XL'YyLx2w L]+g4xR'Yet x4v& R3
—22 tl(glVL YyXlPPL+g2VRYpX2PPR

+gl xLYi4X2i4 xL+g4 XRYI4X4& xR) .

A. Charge-Conjugation Invariance

(3.1)

so that we have a conserved quantum number +1 for
processes involving V„fields, and —1 for processes
involving A„fields. %hen we add mass terms to the
Lagrangian, this quantum number will no longer be
conserved.

The linear part of the interaction Lagrangian now
reads Dn case (i)]

For the Lagrangian I.; & to be invariant under charge
conjugation, we must have

gJ=g4 and CXg„6'=X4„,
g2= g3 and CX2„t '= X3„,

I- -4= 22g «flan. LI'. ' 'A] —xY.Ll'. ' ',x]
+A'~Y4L~ ~'+',4']+xv~v4E~ ~'+',xl
+(PY.N xY,x)vu"—'

+ (A'p YA+xv, Y4x)~,"+') (3.3)
with similar results for the singlet terms. Ke can now
define eigenstates of C by

where

I'„&+i—,(X,„aX4„),
Z„&+&= -', (X2„&X2„),

(3.2a)

(3.2b)

B. Invariance under Parity

For parity conservation, two cases are possible:

gz=g2

gy= —
g2 and

(pXy;{p = —X2;,
6'X3;6 '= —X4;,
6'Xj;6 '=X
6X„a'=X4;.

pV .(+)g-i — V .(+) gA .(+)p-I —A .(+)

Case (ii). Let

(+)—V '(6)+A '(9) Z(+) — V '(6)+A '(+)

Then

OV (+)S '= —V (+), 6A (+)o '=A, (+).
'o C. N. Yang and R. I.. Mills, Phys. Rev. 96, 191 (1954).

Combinations of I'„(+)and Z„(+) transforming as
vectors and axial vectors under I' may now be made in
each case.

Case (i). Let

y (~)- V (~)+A (~) Z (~) V (+)

There are no linear fermion-interaction terms involving
the fields V„(+)and A„(' in this model. This is to be
expected, for the currents corresponding to these fields
are "second class, " and are coupled to derivative
terms. "

4. SYMMETRY BREAKING

The work of Kroll, Lee, and Zumino' has shown that
although local gauge invariance may be a useful con-
cept in arriving at the underlying group structure, it
is unnecessary (and indeed is not wanted) in setting
up a model field theory for low-energy processes in-
volving the electromagnetic current. To arrive at an
algebra of fields for the group structure U(3)&&U(3)
XU(3)XU(3) that we have obtained above, it is
necessary to add a mass term to the Lagrangian.
Adding the term

—mo' trX„„X„„—po'X„„X„f,'
to the Lagrangian reduces the gauge invariance to that
of the "first kind, " i.e., transformations with constant
~„.For the spin-1 particles, there is both a dynamical
and algebraic symmetry'2 of LU(3)]4.

To reduce the symmetry further involves introducing
ad hoc models for breaking the symmetry. For ex-
ample, addition of a fermion mass term m~ reduces
the symmetry under» transformations and leaves
only SU(3) synunetry. Alternatively, replacing the

"For example, the term arising from a second-class vector
current in p decay contributes to the coefBcient of k„.

~The concepts of dynamical and algebraic symmetry are
discussed by S. steinberg, Proceedings of the Fourteenth Inter-
national Conference on High-Fnergy Physics, Vienna, 1968 (CERN,
Geneva, 1968},p. 253.
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TABLE E. Possible nonets corresponding to the quantum
numbers J~~. The mixing angle is calculated using the mass-
mixing {Ref. 2) model. The two missing mesons should be in the
region 1.2-1.6 GeV.

J P C I =0

V 1
A 1 + +
V 1 — +
A 1 +

p(765) K~(890) cu(783)
A 1 (1070) Kz (1240) D (1285)
A gL (1270) K+(1400) KgKg(1440)
B(1220) KA (1320}

octet

y(1o2o) 4o'
E (1420) 76o

pp(1410) 90

singlet

spin-one mass term above by a nondiagonal mass term
—trX„„Lm']„X

„

leads to terms like

tr(&&tike (+& p' (+&+~22 p' (—& p' (—&

+mkkA„&+&A„&+&+&Ni'A„t'A„' ') .

Similarly, the symmetry may be broken by o6'-diagonal
terms in the nonlinear-interaction part of the Lagran-
gian. "The reduction of SU(3) symmetry also involves
extra assumptions beyond the gauge theory presented
above, particularly since there will be mixing of the
or —P type for each set of nine fields. "In the following
we shall assume that the Lagrangian has been re-
written completely in terms of the fields V„(+)'and
A„(+",and that the symmetry of the Lagrangian has
been reduced to that of SU(3).

If we assign a resonance to each of the vector fields,
we see that there should be resonances with the quan-
tum numbers I~=i+, J~=i+, and I =1 J 1

y
as

well as the well-known quantum numbers of the p and
A1 mesons. These new quantum numbers would pro-
vide a natural explanation for the 8 meson at 1220
MeV, and for the A2c(1270) if the spin of these mesons
is confirmed to be one. In Table I, we show some
tentative assignments of particles" to the 36 fields of
[U(3)]'. The mixing angle for the nine mesons V is

2'x, which means that there is essentially no mixing,
or, that the Gell-Mann —Okubo mass formula holds
exactly for the AP, It*(1400), and lt, IC, (1440). The
two mesons needed to complete the identification of
the 2 nonet should be in the mass region around 1.35
GeV.
"Since local gauge invariance is now no longer applicable, the

gauge-field part of the Lagrangian may be kept SV(3)-symmetric,
and a symmetry-breaking term of the form E ~F„„F~f'may be
introduced into the matter part of the Lagrangian. See the first
of Ref. 3 for details and a discussion of the general arbitrariness
in the symmetry-violating term,

"There will also, in general, be mixing between the strange
members of the V(+) (A(+)) and V& ) (A( )) octets.

j'Particle Data Group, Rev. Mod. Phys. 41, 109 (1969); P.
Antich et al. , Phys. Rev. Letters 21, 1842 (1968).

5. CONCLUSIONS

J l (+)&—fthm&F ~(+)i P (+)Ic
J V (5.1b)

J A(+&i fink(Pi+ +.Pk+P A(+&JA (+&k) (5 1c)

J A(—)s fsq'kP A(—)~A (—)kJ JLV II

and the equations of motion are of the form

(5.1d)

(5.2)

where p refers to V(+), A(+'. Using the techniques
developed in Refs. 2 and 3, we can identify the spin
mesons with the appropriate current operator and also
arrive at an algebra similar to, but larger than, that
obtained in Ref. 3.

In addition to providing a natural framework into
which spin-1 resonances of abnormal C parity may
be accommodated (such as the 8 meson and the
A2~ if they are confirmed to be spin-1, we note that
for the gauge fields, the dynamical and algebraic sym-
metries have the same group structure. The evidence
against the existence of the new "second class" currents
which enter here is not complete. Indeed there are
indications that they may in fact exist." In addition
to the experimental processes listed" in which they
may be observed, we note that, generally, we may
expect to see effects due to their existence in com-
paring the scattering processes like v+S —+ E*+IJ.with
V++ + g++p 1?'18
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%e have examined the most general gauge theory of
strong interactions, based on the existence of SU(3)
symmetry for the baryons, consistent with a four-
component representation of the baryon fields, and
have obtained a symmetry of LU(3)]k. The currents
corresponding to this symmetry have the form Lwhen

the Lagrangian is written in terms of the fields V„(~)
and A„t~&]

I v(—&i fijk(if'~ &fik+P v( &jP—(—&k) (5 1a)


