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Explicit expressions are obtained for the classical rotational time-correlation functions for
free rotation of the following: the linear, spherical-top, and symmetric-top molecule. This
is done by deriving the eigenfunctions and eigenvalues of the potential-free rotational Liouville
operator for each case. Conditional distribution functions for orientations and angular mo-
menta are then constructed, and correlation functions are computed by evaluating phase-
space averages with the distribution functions. The results obtained agree with those of
Sears for the linear molecule and Steele for the spherical top, but differ somewhat from the
calculation of Agrawal and Yip for the symmetric top molecule. The reason for this discrep-
ancy is discussed briefly.

I. INTRODUCTION

In classical statistical mechanics the behavior
in time of a system point in phase space is gov-
erned by Liouville's equation,

dW
dt

&W
+iZW,



TIME CORRELATIONS AND CONDITIONAL DISTRIBUTION FUNCTIONS

where 8' is the probability density for the system,
and 2 is the Liouville operator. Equation (2) fol-
lows since 5' depends on time both explicitly and

implicitly through the phase-space variables, de-
noted collectively by I'. If the system is a collec-
tion of noninteracting molecules, then 8' for the
system can be written as a product of one-mole-
cule probability densities, and 2 becomes a
sum of one-molecule operators. We will be con-
cerned here with solving Eqs. (1) and (2) for this
case. Furthermore, this paper will be concerned
only with rotational degrees of freedom. Conse-
quently I' will mean the six quantities e, P, y,
pe, pp, p, which are the three Eulerian angles
defining the orientation of a rigid molecule and
their conjugate momenta. We will follow the con-
vention in Rose for rotations. Since these vari-
ables form a canonical set, the one-molecule
Liouville operator for rotational degrees of free-
dom ls

L = Ice = —cscp px x e L =I~ =p, L =0,
x p' (4)

where I= I& = I&. Similarly the space-fixed Carte-
sian components LX, Ly, LZ for this molecule
are given by

= sine p —cose cotp p e

L =cose p —sine cotpp, L = pe Z e
and the Hamiltonian is

1 BH 8 BH 8 BH
+ —— +

Bp ae Bp Bp Bp Bye
BH 8 BH a BH a

ae Bp Bp ap By Bp
Q p

The Hamiltonian in Eq. (3) is simply the kinetic
energy since no potential energy terms are in-
cluded in the one-molecule problem.

Let L~, L&, Lz be the components of the angular
momentum vector along the body-fixed principal
axes (x, y, z). In the case of the linear molecule
the Eulerian momentum p&(= Lz) is zero, as is
also the moment of inertia Iz about the internu-
clear axis. The angle y is superfluous and only
four variables are needed to span the phase space,
namely, e, P, Pe, PP. Straightforward geometric
considerations show that the linear molecule mo-
menta are

1 BH 8 BH 8 BH

g, Bp Be Bp ap ap ap

for the potential-free linear rotor.
For the spherical-top (Ix= Iy =Iz) and the sym-

metric-top molecule (I„=Iy wI ) the body-fixed
angular momentum components L (j=x, y, z} are
related to the Eulerian momenta as follows:

cosyI. =cosycotpp +sinyp ——.—px y p sinp e '

siny
= —sinycotpp + cosyp + . p

y p sin p e'

L =p
z y

Similarly, for the space-fixed components we
ha.ve

(6)

cose
L = —cose cotp p —sine p + . pe p sinp y'

sineI. =sinecotpp +cosep + . pe p sinp y'

The Hamiltonian for the symmetric-top molecule
will be written as

1 2 2 1K=—(L +L )+ L2I x y 2I z
' (10)

For the spherical top, H is of course given by
Eq. (10) with Iz = I. We will not write down the
corresponding expressions for H in the Eulerian
representation. It is sufficient to point out that
these expressions are independent of the angles
e and y. Consequently the Liouville operator be-
comes

w(r, t)=~ a (t)~ (r),
n n n

(12)

where the u:„(r) are a complete orthogonal set of
eigenfunctions of the operator 2 spanning phase
space. Substituting Eq. (12) into Eq. (2) and
separating variables, we obtain

a (t)=c e p(-xi& t),
n n n

1 aH 8 aH 8 BH a BH a—+ —+ ——— (11)
ap Be Bp ap Bp By ap Bpe

for these potential-free rotors.
We now write the probability density W' as

K= (2I) '(p '+p '/sin'p)
p e (6a) ate (r)=h. w (r),

n n n
(14)

—(2I)-&(L 2+ L 2)
X

(6b)

It then follows from Eq. (6a) that the Liouville
operator becomes

where &n is the eigenvalue to which the eigenfunc-
tion son corresponds. Of course, the explicit
form of these eigenfunctions and eigenvalues will
depend on the detailed form of the Liouville op-
erator 2. Equation (14) is the time-independent
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version of the Liouville equation, the solution of

which comprises most of Sec. II below.
Consider the function W~(r, t; I', t0). This is

the conditional probability density that the phase-
space coordinates and momenta are 1 at time t
given that they were I" at time t'. Sometimes
called the propagator, W is functionally related
to the probability density, 8', as follows:

(D (0(l ) )L,= jW (%,L(t), t; L )

and

x D„
I (aQ)d(en)dL(t)

7 m

in place of Eqs. (19) and (20) we have

(21)

w(r, t) = fw '(r, t; r, t )w(r, t )dr .
It obeys the same equation of motion

The first step in calculating a correlation function
is to carry out the conditional average by inte-
grating over the phase-space variables at time t

'( )&,.
= fw'(r(t), t;r )D I(nfl)dr(t).

This is then followed by an average over the dis-
tribution of initial orientations and momenta

(19)

(Dz (Ml))= f( „D(sIn)) , r(rw)dr . (20)

awe/st = —

ilaw

and satisfies the initial condition

w'(r, t; r, t ) = a(r —r ).

If the system is stationary, then 8'~ is a function

only of the time interval, t- t', and not the initial
time t . Thus W(I"', t') will be dependent on I'
only, and one can arbitrarily set t' equal to zero.

These propagators are particularly suited for
calculating correlation functions. For instance,
let V(t) be some physical vector of interest at
rest in the body-fixed frame of a symmetric-top
molecule. The averaging operation in the defini-
tion of the correlation function (V(t) V(0)) can be
performed in two steps. We will divide by (V'),
thereby making the quantity (V(t) ~ V(0))/(V ') a
function only of the angles 5O between the vector
at time t and at time 0 (as measured by a space-
fixed observer). The physically relevant functions
of the angles of reorientation, M, can generally
be expressed in terms of the D functions of Wigner
(cf. Rose') given by

(D (50))= f(D„(5Q)) o W(L )dL . (22)

In Sec. III correlation functions are explicitly
evaluated for several choices of the indices k,
m7 QO

x5(L —L o)5(L —I, ') (23)

An explicit form for the function gm j will be de-
rived bel.ow. It is the eigenfunction of the con-
figurational part of the Liouville operator, and
is a function only of the angles. Of course, we
could also write

3(L L o)5(L L o}5(L )
X X g P Z

o»(p —p ')(p —p o)~(p )
P P r

in place of the space-fixed arguments in Eq. (23)
but choose not to do so for the present. The ap-
pearance of three momentum 5 functions is not
inconsistent with the dimensionality of the phase
space, I'-e, p, pz, pp. This is because the com-
ponent of L along the internuclear axis is always
zero. Thus integrations over phase space can
alternately be written as

II. LIOUUILLE EQUATION

A. Linear Molecule

In general, a potential-free linear rotor under-
goes uniform rotation in a plane about an axis
perpendicular to that plane. The direction of the
axis is the direction both of the angular momentum
(L) and angular velocity (&u) vectors. The inter-
nuclear axis, always lying in the plane, defines
the body-fixed z axis.

The components of the angular momentum along
the laboratory axes (L~, Ly, LZ} are constant.
This suggests the following separation of variables
for the eigenfunctions w„(r):

~ I(r) =g ~(o, J3)f (L - I, )

In performing the integration in Eq. (19), the
function Dt ~~(50) can be expanded in terms of

7

other D functions of the orientation angles at time
t, A(t), and of the initial orientation angles Ao.

An alternative procedure is to invoke the property'
of the conditional probabilities W~ which states
that these functions actually do not depend on the
initial orientation angles, but only upon 5O. Then

fdI'= fdic sinP PddLdL 5(L )dL
X $ Z Z

= fdo. dpdp dp 6'(p )dpn P y y'

If Eq. (23) is substituted into

Zn (I') = & w. 7(I')
m m m

(28)
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with the operator 2 given by Eq. (7), both sides
can be integrated over the momentum variables
to give

where 5~+ represents the angles of the trans-
formation 5m~, 5P~, 5y~. If these angles are
such as to diagonalize the configurational Liou-
ville operator, one can write

i 8P, aa 8P eP~m
=

m~m (26)
,=R/QR '=&a l (n'), (s4)

where the subscript 0 indicates that the momenta
are assigned their initial values. It is thus seen
that the effect of the term (BH/sp) (8j&pp) in the
Liouville operator operating on the 5 functions,
yields zero after integrating over the momenta.
The operator on the left-hand side of Eq. (26} will
be denoted by 2 0, and will be called the configura-
tional Liouville operator. With the aid of Eq. (6}
for the linear molecule Hamiltonian, this operator
can be written as follows:

l (n'}I'. (n') = my. (n'),
0 jm jm

one finds that the solutions to the eigenvalue
problem are

4

A =mhp
m

(s5)

(s6)

g f(n)=R r. (n').
m j7 m

(3'l)

where n '(= a ', P ') are the angular variables in the
transformed operator. Since

gn "x'lx' r'lr' z lz

1 8 8
where l = —. —cosa cotP——sinn—

X i e~ 8P '

1 . 8 8—sine cotP—+cost-
i 8n 8P

(27)

(26) xD, '(5Q }lm', m w m' (ss)

The functions Yj m are the spherical harmonics.
In order to determine the angles 5A we note

RZQR '= ~ Q D '($, 8 )
m, 0 s' us

m 7 m

and l =v2 "'(l +il ), l =l&.+1 (s I)

» Eqs. 30) the polar and azimuthal angles 8„s,
P~s of the vector (d are measured relative to the
space-fixed frame (X, I', 2) and of course are
constant in time. The eigenvalue equation now

becomes

+1
1

(u Q D (y, 8 )l g 7=& 7g 7. (32)
m, 0 &s' &s m m m m'

m= —1

The operators of Eq. (28) are also the space-fixed
components of the quantum-mechanical angular
momentum operator, apart from a factor of h.
Dropping the superscript 0, the right-hand side
of Eq. (27) can be written as

(-I)"~ I, (29)
P, = —17 07 + 1

where &u =+2 '~'(~ +i(u&)+1
= v2 '~'ur sin8 exp(siP ),

(dS ~S

= w cos8S

The diagonalization is accomplished if

'(y, 8 )D, '(5Q }=5, 0, (39)

but

D, '(5a, 5P, 5y )
m 7m '& Qp

=D*,'(- 5y, —5P, —5a ).
m, m'

It is thus necessary to choose the angles of ~~
such that

, (4 ,,8„,)
,'(-5y, 5P, -5a -)=5, . (40)

m7m (0 4P m 70

The completeness property of these functions
gives the desired result if —5y = P~s, —5P~
= 8~S, and —5m~ can be arbitrary. Thus the
normalized eigenfunctions of the rotational Liou-
ville operator in configuration space are

g 7(, p)=Z, & ,(a, P)D., '(y„, ,8,y), (4l)

where g is an arbitrary angle. The set of eigen-
functions gem&(r) given by

Rl R '=Q, D, '(5Q )l
m m' m', m m'' (33)

Equation (32) is solved most directly by observing
that the operator on the left-hand side is a linear
combination of irreducible vector operators, lm.
Consequently these operators transform as follows
[Rose, ' Eq. (5.1)]:

u 7(r)=g 7(a, p)5(L —L )

are orthogonal and complete, i. e. ,

j~ , '(r)~ '(r)dr

= 5,5,5(LO —Lo')
j7j m7 m

(42)

(4s)
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conjugate to both sets of angles are the same. )
The rotation operator which transforms from the
body-fixed (x, y, z) to the precessing ($, g, z) frame
is given by

= 5(a, —a, )5(P, —P, }5(L,—I„). (44)

[Equations (43) and (44) are proved in Appendix

A. ] ~e can now write an explicit expression for
the probability density for the linear molecule.
It is

ft = e~[~ t(s/sy)].
p

Then

(48)

(48)

j —im(d't
W(rt)= P P c fe

j=0m=-j ™

B. Symmetric-Top (and Spherical-Top) Molecule

Although the space-fixed components (L~, LF,
LZ) of the angular momentum vector for a poten-
tial-free symmetric top are constant in time, the
body-fixed components must satisfy the torque-
free version of Euler's equations of motion,
namely,

———L L,
z

dI.
I L =0

z
(48)

Equation (46) gives the well-known result that the
I.„and L& components precess about the figure
(body-fixed z) axis with frequency

(i i)

whereas the I.z component is a constant of the
motion.

In solving the Liouville equation for this case,
it will prove convenient to transform into a body-
fixed precessing frame. In this coordinate sys-
tem not only does Lz remain constant, but the
other two components, denoted by L~ and I&, also
become constants of the motion. If 8 (a, P, y}
denotes the Eulerian rotations which carry the
space-fixed into the body-fixed frame, and R (a',
P', y') the same operations for carrying the space-
fixed into the precessing frame, than a moment' s
reflection will show that in fact e'=e, P'=P, but
y'= y+ ~pt. (Furthermore the Eulerian momenta

+j
x 2 [F. (a, P)D ($,8,$)5(L —L )].
r=- j j'

(45)

The initial condition of the problem wi11 enable
one to determine the factors cm explicitly and to
eliminate the arbitrary angle g.

and it can readily be shown that the Liouville
equation in the precessing frame becomes

(5O)

After separating variables [recall Eqs. (12)-(14)],
we obtain

(2'-(u I )w (r')=A w (I"),
pz n nn (51)

where tz = —i(S/&y'), and I"' denotes the phase-
space variables in the precessing body frame.
Since the components of the angular momentum
are constants along these axes, one can write

I

f(r')=g f(a, p, y')5(L L-)
k, m k') m

x5(L —L ')5(I. -L ').
z z (52)

The function g~ m
j is an eigenfunction of the con-

figurational part of the Liouville operator, and
is a function only of the angles. An explicit form
for it will be derived below. L~', L&', and Lz'
are the precessing frame components of L at time
zero. [Observe that L~, L&, and L are related
to the Eulerian momenta through Eq. (8) but with
y'(= y+ ~pt) replacing y. ] If Eq. (52) is substituted
into Eq. (51) and both sides are integrated over
the momentum variables, it readily follows that

i &P &n &P GP BP By ~

a

p „gt, j ("') =Au 'gk '("') (53)

for ~, Eq. (53) becomes

~here 0'= n, P, y'. The subscript zero indicates
that the momenta are assigned their initial values.
It can thus be seen (as in the case of the linear
rotor) that the effect of the term (&H/Bp) (8/8pp)
in Z', operating on the 5 functions, yields zero
after integrating over the momenta. If one changes
from the Eulerian momenta to the precessing
frame components and substitutes
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l +L l +L l g
1 0 0 0 j

'g ««km
=

k, m~k, m ' (54)

L =L =Lcos8
«

with OL, (I|L defined as the polar and azimuthal
angles of the angular momentum vector in the
precessing body frame. Furthermore we have

where f 1=+2 '"(l~ ~il ), lo= l (60)

1 cosy' —+ siny' —+ cosy cotP
i sinP Bn BP By

—y cosy ——siny cotP, , (55)1 siny' B,B

sinP Bn BP By

1
l ~ J ~

« i By' '

These operators will be recognized in quantum
mechanics as the body-fixed components (or, more
precisely, the precessing frame components) of
the angular momentum operator, apart from a
factor of h. In complete analogy with the case of
the linear rotor, the operator on the left-hand
side of Eq. (54) is the configurational Liouville
operator and will be denoted by Zg ~. The super-
scripts 0 will be dropped whenever no ambiguity
arises.

The advantage of working in the precessing
frame now becomes apparent. The time depen-
dence due to the precession of L~ and L& is elim-
inated, and the partial differential equation in six
variables can be reduced to a more tractable
equation in the three angular variables. If we per-
form an analysis for the spherical-top molecule
paralleling Eqs. (50)-(54) above, the eigenfunc-
tions turn out to be

fl( h)
ft (57)

since the angular velocity and angular momentum
vectors are parallel.

Returning to Eq. (54) and continuing with the
analysis for the symmetric-top molecule, one
can write the configurational Liouville operator
as

'(r) =g '(a, P, y )6(L L)-
km sph km ' ' x x

x6(L —L ')6(L —L '). (56)««
This is because all three body-fixed components
L~, L&, and L are constants, (dp being zero.
The configurational Liouville operator can be
written as

The eigenvalue equation can also be written as

(
+1I,O I' L ) k,m= —1

=A jg
k, m k, m

(61)

Equation (61) can readily be solved if we perform
a diagonalizing transformation of the operator
Z& i in a manner entirely similar to the case of
the linear rotor [recall Eqs. (33)-(41)]. The re-
sult is that

Z~ „—- R(6Q )2 RIL(6Q )L (62)

(63)

x D ($,8,$).r, m
(66)

Note that the quantity L'/I is the rate of preces-
sion of the figure axis about the direction of L as
viewed by a space-fixed observer, and is not (dp
(cf. Landau and Lifshitz').

Reverting again momentarily to the spherical
top case, it is immediately seen that the solutions
for this case can be written as

A = —mphj 0

k, m
(67)

where ~"=a", P", y" are the angular variables
in the transformed operator, and 6~L= 6nL, ~pL,
5yL are the angles of the transformation. Thus

(Q It )D 2 (fl Il) D f (g II)
0 k, m k, m

If one continues to apply the arguments used in
the linear molecule problem to this case, it can
be shown that GAL is arbitrary whereas 5pL
= —~Ly ~yL- ~L The eigenvalues and eigen-
functions of Eq. (61) are thus

~=-mL /f, (65)
k, mj, 2j+1

Dq (o, P, r')
r=-j

1
Z~,=—

p= —ly0y +1
(- 1) L l I (58)

xD ($,8,$), (68)
where L = +2 '~'(L siL )

n

= v2 "'Lsin8 exp(siP ), (59}
where e~y and Q ~y' are the polar and azimuthal
angles of the angular velocity vector relative to
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the body-fixed frame. The superscripts zero on

the momentum variables, which were omitted
earlier, are being indicated in the final results,
Eqs. (65)-(68).

In Appendix A, it is proved that the set of functions frey ~&(r"')), explicitly obtained upon combining

Eq. (66) with Eq. (52), are orthogonal and complete in phase space. That is,
~ p

J~, , (r')ut& (r')do. sinpdpdy'dL~dL dL
z

5(L '- L ")5(L ' L"-)5(L ' L ")jj' k k' m, m' (68)

j ' 0 0 0
Z Q w (Fl)w (r )dI, dL

ym= j0 k
. km 1 km 2 $ q z

= 5(a —o.' )5(P —P )5(y' —y')5(L —L )5(L —L )5(L —L ), (7o)

If we incorporate Eqs. (56), (65), and (66) into the expression for the probability density function (in the
precessing frame), we obtain

j imL't/I 2j+1 + j(
k, mj=O k, m=-~ r

x D (@ , 8 , P)5(L —L )5(L —I, )5(L, —L ). (71)

Recall that the sextet of Eulerian variables, I"', refers to the coordinates (0') which carry the space-
fixed axes (X, Y, Z) into the precessing frame ($, ri, z) together with their conjugate momenta. This in
fact alters only the third Eulerian angle y. The analog of Eq. (71) for the spherical-top molecule will not
be explicitly given, but can be readily obtained if Eqs. (56), (67), and (68) are combined with Eq. (12).

We note here the resemblance between the solutions obtained for the rotational problem and those dis-
cussed by Prigogine, ' (Chap. 1 and Appendix II), for a freely translating particle. In each case the ap-
propriate momentum is conserved and has a continuous spectrum of eigenvalues. However, the rotational
coordinate eigenvalues are discrete rather than continuous as in the case of translation in a box of infinite
volume. This difference is evidently associated with the fact that configuration space has a finite volume
(8v ) for the Eulerian angles, but can become infinite for Cartesian variables.

III. CORRELATION FUNCTIONS

A. Linear Molecule

We are now in a position to obtain an explicit expression for the propagator Wc(r, f;1"0). Inasmuch as
the equation of motion for this function is the Liouville equation, the general solution given in Eq. (45) is
applicable to Wc(r, t; FO) as well as to W(I', t). Indeed the two distribution functions differ only in the con-
stants c j. In the case of the propagator, these constants are determined by requiring that Eq. (17) be
valid; however, the completeness property of the eigenfunctions allows us to write

w (r, o r )= Q Q~ '(r )~ j(r)di,c 0 t *j 0 j 0',I m
(72)

where the angular momentum Lo' is the common argument in the 5 functions belonging to both ge j(r 0)
and w~&(r). Upon substitution of Eqs. (41) and (42) into Eq. (72), comparison with Eq. (45) gives

(7r' '
(r, f; r ) = 2 2 exp(imra t) exp(ir'P ) exp(-irP )

c 0 0 . , 0 . 0

j=0 m, r, r'
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(v4)

Of course, ~~s = 01 and similarly for the orientations of the angular velocity and momentum vectors in
(ds

the body-fixed frame.
We can now calculate angular correlation functions for the freely rotating linear molecule. In particular

we will consider (D, , (6Q(t))). Of course, any vector of interest must lie along the internuclear axis in
y

this case, so we are actually calculating correlations of molecular orientation. According to Eqs. (21)
and (22) we first calculate a conditional average which is dependent upon the initial angular momentum and

then average over an initial distribution which is just the angular Maxwell-Boltzmann function for an equi-
librium ensemble:

W(Lo) (27dkT) ~exp(- [(L o)o+ (L o)o]/2IkT}5(L o)
X z

(75)

where these angular momenta are fixed in the body frame, and the 6 function is included to handle the inte-
gration over the third component which is along the internuclear axis and is always zero for linear mole-
cules. (It is interesting to note that this is a natural result of taking the limit Iz -0 in the Maxwell-Boltz-
mann distribution for L for a symmetric top. )

In order to calculate a conditional average using Eq. (74) it is necessary to convert angular momentum
from laboratory axes to body fixed in order to utilize Eq.(75) in the average over initial variables. The
shift from the space-fixed to body-fixed frame can be done at time zero to give

exp( irP -)d (8 )=Q „exp(-ira )d „(P )exp(-ir"Q }d „(8 },0 j 0 . 0 j0 . „0 j 0
(ds r m (ds r" ~b r", m (db

(v6)

where p~b', H~b0 are the azimuthal and polar angles of the angular velocity vector relative to the body-
fixed axes at time zero. Furthermore one has

exp(-irn )d „(P )=Q exp(-ira)d (P)exp(ir"5a)d „(5P),
ry j

(77)

where 5o, 5P(=5A) are the changes in o., P during time t. Incorporating Eqs. (76} and (77) into Eq. (74)
and performing several summations (by using the closure property of the Dk &), we finally obtain

W (&&, L, t;L )= 2 Z exp(im&u t)exp(imP )d I(8 )
4n 0, (db

my r
x exp(-irp )d (8 )exp(ir6a)d 0 (5p}5(T —T ) .0 j 0 . j 0

+b r, m vb r, o

(v8)

Note that this conditional distribution depends only upon the momenta and the change in orientation and is
independent of initial orientation as it should be.

Carrying out the prescription of Eq. (21), we obtain

(D (6n) }-,= Q exp(im~ t) (d (8 )) . (79)

This result can be further simplified if we recollect that the body-fixed angular momentum is always
perpendicular to the internuclear axis of a linear molecule so that 8 ko = —,v. Thus Eq. (79) can be
shown to become

(D (50)} PIo(cosv t),l 0
(80)

where I'~ is the lth Legendre polynomial.
The average over initial angular velocities can be performed if one writes the Maxwell-Boltzmann dis-

tribution of Eq. (75) as

Wd'ago = (2v) ' exp(- &u*'/2)&u* d&u*dg ' where &u* = (I/k T )'~'u'
cob '

When Eqs. (80) and (81) are combined, it is seen that'

(81)

(D0 (50)) = f exp(-(u* /2) P (cos(u*t )(o*d(u
0

where the reduced time variable is t*=(kT/I)'"t. Using the explicit representation for the Legendre

(82)
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polynomial Pl given by Eq. (17) of Bateman' (p. 180 in Vol. 2) and performing some algebraic manipula-

tions, Eq. (82) can be integrated in closed form, the result being

l

(D0 0
(60)) =

m=O—
2l —2m 2 *2(I —(l —2m) t exp[- —,'(l —2m) t ]M(~, —,'; —,'(l —2m} t )}.2 +2 2 +2

(88)

The function M(a, b;x) is Kummer's confluent hypergeometric function defined by Eq. (23} of Bateman6

(p. 266 in Vol. 1). This expression for the correlation function of the free linear rotor can be shown to
be equivalent to the one obtained by Agrawal and Yip. '

B. Symmetric-Top (and Spherical-Top) Molecule

I
Using the results of Sec. II we can obtain explicit expressions for the propagators W (I" ', t; I' 0) as-

sociated with spherical- and symmetric-top molecules. The completeness property of the eigenfunctions

sot, m&(I") permits us to write an extended version of Eq. (72):
7

(I",0;I' )= f Z Z ~& (rr, P,y, L,L,L )te (n, P, y, L,L,L )dI dL dL

(84)

Pursuing the same line of argument as in the linear molecule case, but using Eqs. (52) and (66) for the
eigenfunctions rather than Eqs. (41) and (42), we find

2
I

c = [(2j+1)/8v ]
' Q D (0 ) exp(ir@ )d (e ),

where, as earlier, the angles pl', Gg' denote the orientation of L in the precessing frame. When

Eq. (85) is substituted into the general expression for the propagator, the result can be written as

c0
W (F', t; 1 ) = Z g Q, exp(imL't/f)exp[i(rg —r P )]8m2

p0
x D (0 )D, (0')d (8 )d, (8 )6(L —L )6(L —L )6(L —L ). (86)

This expression can be shortened somewhat by employing the changes in Eulerian angles, 50, instead of Q.
A slightly generalized version of Eq. (77) will give

Z&D& (0 )D&, (0'(t)) =D, (60') =D, (60)exp(ir'u t).
k, r k, r' r, r' r, r' p

(87)

The equality on the right appears when we switch from the precessing frame to the molecule-fixed frame.
Observe that the precessing frame is taken to be coincident with the body-fixed frame at t =0.

In calculating angular correlation functions for a symmetric-top molecule, we must treat the case where
the vector of interest is not coincident with the symmetry axis of the molecule, but has (constant) azimuthal
and polar angles 4, e in the body-fixed frame. Denoting the orientation of this vector at time t in the
laboratory axes by 0„(t), one has

D (n (t)) =Q, D, (n(t))D, (e, 8), (88)

where 0(t) denotes, as usual, the orientation of the principal axes of the molecule. Suppose now we wish
to evaluate the correlation function (D«) with argument 60~, the change in orientation of the vector of
interest in time t. One has

D0 0
(60 ) =Z&D 0 (0 (0)}D& (0 (t))= Z D (0 )D (4,6)D, (0(t))D, (4, 8). (90)

With the aid of Eq. (87) this becomes

D0 0 (60 )= Z D, (60)D (4, 8}D, (C, 6)exp(ir'u& t).l l l, * l

pr r
(91}
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in contrast to the linear molecule case, Eq. (86) for the symmetric-top propagator will give conditional
averages directly in terms of the body-fixed angular momenta, which appear in the Maxwell-Boltzmann
distributions for these rotors. In fact, Eqs. (86) and (91) can be combined, and integrations over L and
5Q performed to give

(D (5A )), = Q exp(imL t/I) exp(im "u t) exp[i(m'-m)P ]
p

x d, (8 )d „(e ) exp[i(m' —m" )4]d, (e)d „(e). (92)

In order to complete this calculation, the initial distribution of angular momentum is required. In an
equilibrium ensemble this can be written as

1 1 (L')' 1 1

(2vkT) i'I(I )"' 2kT I I I

where x =coseL'. In Eq. (92) the average over pL~ is trivial, and gives (after dropping the superscript 0)

1

(D (50 )) = [(b+ 1)/2v] ' Z d, (e)d, (6)
m m

x f f exp[--,'(1+bx )(L ) ] e px[i(m+m'bx)L t ]d, (x)d, (x)(L ) dL dx,

(94)

where L* =L'/(IkT)' 2, I* = (kT/I)' 't 5 =I/I —1. (96)

It is possible to analytically integrate this equation with respect to the I.* variable. The integrated ex-
pressions are given in Appendix B for the cases / =1 and 2. The integrations over x from —1 to+1 must
then be carried out on the computer. In this work, calculations were performed for several values of the
parameter b and the reduced time t~.

The parameter b is defined in the range ——,
' & b & ~ (and is the negative of the parameter c employed by

Agrawal and Yip'). The limit 5= —z is obtained when Iz = 2I implying that the molecule has the shape of a
flat disk; we obtain the other limit 5 - ~ when the symmetric top approaches the linear rotor (Iz =0). If
this latter limit b- ~ (or, equivalently Iz-0) is taken in the expression for the correlation function given
by Eq. (94), the linear-rotor result is obtained, i. e. , Eq. (82), if this limit is taken before any integra-
tions over L* or x are performed (otherwise the expression takes on an indefinite form). As a separate
consideration, it must also be remembered that m'= 0 in Eq. (94), since e = 0 in a linear rotor.

When b =0, the equations of Apyendix B reduce to the expressions obtained by Steele' who derived correla-
tion functions for a spherical molecule by first directly integrating the equations of motion for the angular
velocity P, and then averaging cosP and (z cos P —z) over the initial distribution. As expected these correla. -
tion functions become independent of the polar angle 8 because of spherical symmetry.

IV, DISCUSSION

The conditional distribution functions derived
here for a classical ensemble of freely rotating
molecules can be used in a variety of problems. '~"
Although the assumption of free rotation is not
strictly correct in any physical system, one can
use this model to describe not only the behavior
of molecules in gases at low densities, but also
in some liquids. When the full Liouville operator
is written out, it is apparent that the potential
energy terms omitted here involve the torques
on the molecules of the system. If the angle
dependence of the intermolecular interactions is
small so that torques are small, and if molecu-

lar moments of inertia are large, rotational mo-
tion can be described as "inertial" even in dense
fluids'~"; in this ease, the angular momenta
undergo small fluctuations about their initial
values as the time variable evolves, and a free
rotation treatment is a good approximation to the
actual situation, at least for time intervals that
are not too long.

Many kinds of experimental data have been ex-
pressed in terms of angular correlation functions.
Nuclear and electronic spin relaxation times in
liquids" were among the earliest to be treated in
this way, and it is well known" that dipole-dipole
interactions of pairs of syins on the same mole-
cule and quadrupole-electric field gradient cou-
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plings give rise to relaxations expressible in

terms of angular correlation functions of rank

2; that is, the problem involves expressions of
the form of Eq. (94) with l =2. The inertial (or
free rotational) model has previously been applied
to this problem only for spherical top mole-
cules, " "and the results obtained here for the

symmetric top can be used in a significant gen-
eralization of this approach. Since these relaxa-
tion times are often inversely proportional to the

integral of the correlation function over all tiraes,
it is necessary to somehow treat the loss of cor-
relation occurring at long times. (Among other
difficulties, angular correlation functions for free
rotors generally approach a constant, nonzero
value as t- ~; unless correlation is somehow
destroyed, the integrals of such functions are
clearly infinite. ) Such difficulties can be over-
come merely by approximating the function as a
Gaussian in time. ' The evaluation of the constant
in the Gaussian is straightforward; if one has a
function f(f) normalized to unity at t =0, which is
represented by exp(-at'/2), the constant a is
given by

a = (d'f/dt ') (96)

In fact, the Gaussian approximations to the angu-
lar correlation functions for a symmetric top are
particularly convenient. In the cases of / = 1,2,
Eqs. (B.2)-(B.6) and (B.8)-(B.20) are differen-
tiated twice with respect to time. When the time
variable is set equal to zero in the results, the
integrations over x can be analytically performed
to give the desired constants. With the aid of
Eqs. (B.1) and (B.7), one eventually finds

(cos6P (f))

pip. ' For long times (t" - ~) curve 1 approaches
the time-independent constant cos'8 [(b+ 1)'~'/2]Z,
[(cf. Eqs. (B.1) and (B.6)] which equals 0.056.

Figure 1 shows that there is a considerable
discrepancy between the correl. ation function as
calculated in this work and that obtained by Agra-
wal and Yip. ' In our notation, their result can be
written as

(D '(60 (t*))) = cos'8g(t+)
0, 0 v

+ —,
' sin'8 exp[(b/2)t* ][1+g(f*)], (102)

where g(t*) is the correlation function for a
linear molecule. Their derivation consists in an
evaluation of the classical limit of the exact quan-
tum-mechanical correlation function. In doing

so, these authors correctly treated the expressions
in the limit of large values of the quantum num-

ber J, but unfortunately only considered small
values of the projection quantum number If'.
Although this procedure may be allowable for an
almost linear molecule, it is clearly in error
as the molecule approaches spherical-top be-
havior, since all values of K between +J and
—J are equally probable in this case. Among
other defects, Eq. (102) predicts that the correla-
tion function for a spherical top (b =0) is still de-
pendent upon the angle e; however, the orientation
of the principal axes (and thus 8) is arbitrary for
the spherical top.

More curves illustrating the behavior of
(cos60„(t*))with time are shown in Fig. 2.
Curve 1 is the computer result based on Eqs.

= sin'8 exp(- At*') + cos'8 exp(- f*'), (97)
I.O

where A = (2 + 35 + 5')/2(1 + &) (98)

and

(2 cos'6P (f) —
~ ) = —,

' sin'8 exp(- &t~')

+3 cos'8 sin'8 exp(- A~')

+ —,'(3 cos'8 —1)' exp(- 3f*'),

where B= (3 + 5b + 25')/(1+&),

C = (6+ 7b+ 5')/2(1+5) .

(99)

(100)

(101)

0.4

Lm I ~ I ~ L ~ J
I 2

The behavior in time of (D0 0'(6Q~)) is shown
graphically in Fig. 1 for the following situation:
b = —0.365 and 0 =68 . Curve 1 is the numerical
result based on Eqs. (B.1)-(B.6); curve 2 is the
Gaussian approximation based on Eqs. (97) and
(96); and curve 3 is the result of Agrawal and

FIG. 1. Rotational correlation function (Do 0 ) for a
symmetric molecule corresponding to b = —0.365 and

e = 68'. Curve 1 is the numerical result obtained using
Eqs. (B.l)-(B.6). Curve 2 is the Gaussian approxi-
mation based on Kqs. (97) and (Ss). CurvÃ3 is the
result of Agrawal and Yip. The dashed line is the. as-
ymptotic value (0.056) approached by curve 1 as t
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(B.1)-(B.6) with 6=0 and b =10. This value of
the parameter b indicates that the molecule is
almost linear (in fact, that I =11Iz). The asymp-
totic value approached by curve 1 as t- ~ is
equal to 0.096 and indicated by the dashed line in
the figure. Curve 2 is the classical correlation
function for the linear rotor, which was seen to
agree with the results of Agrawal and Yip' and
Sears. " These curves both show a pronounced
dip below zero; this dip disappears as the mole-
cule becomes more spherical (see Fig. 1) and
presumably is to be associated with the rapid
precessional velocities found in nearly linear
molecules. Curve 3 is the Gaussian approxima-
tion to curve 1, and shows two important dif-
ferences from the exact curves: It does not dip
below zero, and it vanishes at long times. Cer-
tainly the effects of collisions which are omitted
here will cause the correlation functions for real
systems to vanish as t* - ~, but there is no rea-
son to suppose that the dip in curve 1 is physical-
ly unreal. Thus it appears that the Gaussian
approximation will not always reproduce the fea-
tures of interest, ~specially for correlation func-
tions of linear or nearly linear molecules.

The time behavior of (-', cos'6P„——,
' ) is illus-

trated in Fig. 3. Curve 1 is the numerical re-
sult based on Eqs. (B.7)-(B.20) for the parame-
ters b = —0.365, 8=68; curve 2 is the corre-
sponding Gaussian approximation using Eqs.
(99)-(101)and curve 3 is the numerical result
for 5 =10, 6=0. The Gaussian approximation to
curve 3 closely follows the numerical result for
t* &1, and so was omitted from the figure. The
numerical results of curves 1 and 3 are based on
Egs. (B.7)-(B.20). The time-independent con-
stant approached by each for long times is
—,'(3cos'e —1)F„[cf.Eq. (B.20)] which equals

FIG. 2. Rotational correlation function (Do o ) . Curve

1 is the numerical result for a symmetric molecule

corresponding to b =10 and 8=0 using Eqs. (B.1)-(B.6).
The dashed line is the asymptotic value (0.096) approached

by curve 1 as t ~. Curve 2 is the time correlation
function for a linear molecule. Curve 3 is the Gaussian

approximation to curve 1 using Eqs. (97) and {98).

0.018 for curve 1 and 0.186 for curve 3.
In addition to the magnetic relaxation times,

which are dependent upon correlation functions

with l = 2, neutron scattering cross sections can
be expressed in terms of a sum of correlation
functions over all values of l. Since this appli-
cation is discussed in detail by Agrawal and Yip, '
we will not consider it further here. Another

rather important application of this formalism is
in the evaluation of rotational band envelopes in
jnfraredi7- xe and Ramaniv, ~o spectroscopy. For
exmnple, shapes of vibrational infrared lines for
symmetric tops are given by Fourier transforms
of correlation functions with l = 1, and with e
denoting the angle between the vibrational transi-
tion moment vector and the principal axis of the
molecule. Similarly, depolarized Raman band

shapes are observed by inelastic light scat-
tering, ")" and are the Fourier transforms of
correlations of the anisotropic part of the molecu-
lar polarizability tensor (angular functions with

l = 2). Alternately, one can inversely transform
experimentally measured bands to obtain cor-
relation functions. Comparison of such functions
with calculations such as those presented here
for the free rotor can then be used (and are pres-
ently being used) to obtain information about the
time dependence and magnitudes of the inter-
molecular torques on the molecules of the sys-

23 )24

Finally, it might be noted that Prigogine and
co-workers4 have developed a quite rigorous
approach to the nonequilibrium statistical mechan-
ics of monatomic systems which is based on the
application of perturbation theory to the eigen-
values and eigenfunctions of the classical Liou-

l.0
08

04
———(3)
——0)

-0.2—

FIG. 3. Rotational correlation function (Do o ). Curve

1 is the numerical result for a symmetric molecule

corresponding to b = —0.365 and e = 68', obtained using

Eqs. (B.7)-{B.20). Curve 2 is the Gaussian approxi-
mation to curve 1 based on Eqs. (99)-(101). Curve 3 is
the numerical result for a symmetric molecule cor-
responding to b=10 and e=0. Curves 1 and 3 approach
the asymptotic values (0.018) and (0.186), respectively,
for long times.
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ville operator for free particles. If one were to
attempt to extend this approach to more complex
molecules with rotational degrees of freedom,
it is evident that the corresponding eigenfunctions
for the potential-free rotational Liouville operator
will be needed as basis functions. The results
derived here can thus be viewed as the first step
in such a treatment. at least for linear and sym-

metric- top molecules.
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APPENDIX A

In this appendix we will prove the properties of orthogonality and completeness first for the set of
functions w~&(1) belonging to the linear rotor, and then for the corresponding set wf, ~&(1'}of the
symmetric-top molecule.

Reverting to Eq. (43) and denoting the left-hand side as F„we can write

= f Z Y, , (Q) D, , (@,e,g) Y. (Q)D (4,8,$)'5(L —L )5(L —L )dQdL dL di.rr' ''
(A1)

Of course, the space-fixed polar and azimuthal angles of the cu and L vectors are identical. Orthogonality
of the spherical harmonics yields

f Y, , (Q) Y. (Q) dQ =6,5.
3"',r' j,r r, r' jj'

We then obtain, in turn, that

,~(@,e,~)D '(@,tl, q) = &
r, P'l (dS 40S

' r, 1% (dS NS Pl p
Pl

(A2)

and f 5(L —L')6(L- L")dL = 5(L' —Lo') .

Incorporating Eqs. (A. 2), (A. 3), and (A. 4) into Eq. (A. 1) we finally obtain

(A4)

, ~(L'- L"') .
1 jj' m, m'

Revert now to Eq. {44) and denote the left-hand side by I", . We then have that

(A5}

OO +J
= f Z Z Y. , (Q )D, (Q g}Y. (Q )D (Q, g)5(L —L )5(L —L )sing dI.

(A6)

If we first integrate over the momentum variables, the angular arguments 0 s1 and A~2 become equal,
which permits us to write

+2

V2= j
(A7)

Furthermore using the completeness relation

+g

Z Y. (Q }Y. (Q ) =5(o. —n )5(cosP —cosP ),
=0 1 (AB)

we can write that

(A9)

(A10)
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There remains to be proved the orthogonality and completeness properties for the eigenfunctions

sob ~j(1) of the symmetric-top molecule as given by Eqs. (69) and (70). The procedure followed is

similar to that given by Eqs. (A. 1)-(A. 10) for the linear rotor, and so will not be repeated in depth. It

is sufficient to point out that in place of Eqs. (A. 2) and (A. B), we use, respectively,

fD» (a, p, y')D (o. , p, y')dn sinpdpdy'=6, 6,6,(6& )/(2j+ ) (A11)

and
+g

Z Z, D (o.', p, y )D (n, p, y ) =6(o. —o. )6(cosp —cosp )6(y —y ) . (A12)
'=Ok, = . 8m k m 1 1 1 km 2 2 2

Furthermore since the functions svb ~ (1 ') for the symmetric-top molecule can be specialized to include
the case of the spherical top, proofs for this case need not be given.

APPENDIX B

Restricting ourselves here to the special cases /=1, 2, the result of carrying out the 2* integration for

/ =1 in Eq. (94) can be written as

(cosbP (t~)) = sin'8(b+1)' '
8 (Z + Z +Z )+cos'8(b+I)'~' —,'(Z +Z ) . (B1)

where

Z, = f '(1+x)'U-'" [U- ( I+ bx)'t~' ]exp[- t~'(I+bx)'/2U] dx,

Z, = 2f (1 - x') U "' [U- b'x't ~ '] exp[- b'x't~ '/2U ] dx,
1

'
Z, =(1—x)'U "' [U (1 —bx)'-t*'] exp[- t~'{I —bx)'/2U] dx,

Z f+ (I x&)U-5I2 [U te ] exp[-te'/2U]dx

Z, = —2/b(1+ b)"' + (2/b"') ln[(1+b)"'+b"' ] if b &0

(B2)

(Bs)

(B4)

(B5)

= 2/g(I —s)~& —{2/s &"
) sin g ~ if b&0, (B6)

and where a =
( b (, U= 1+bx'. For the case when l = 2, the correlation function becomes

(—cos 6P (t~) ——) =sin 8(1+b)' 8 (Y, + Y + Y + Y + Y )

+ cos28 sin 28 (1 + b )'~'
z ( Y,.+ Y, + Y, + Y, + Y,o) + (3 cos'8 —1)' (1 + b }"'—,'( Y» + Y» + Y»),

where

Y, = f+ [(1+x)/2]'U-'" [U-4(1+bxPt*'] exp[-4(1+ bx}'t*'/2U] dx,

Y, = f",'(1 —x2)(—1+x)2U ' 2 [U —(1+2bx)2t~2] exp[- (1+2bx)2t* /2U] dx,

Y = f (1 —x')'(8)U "'(U —4b'x't*')exp(-4b'x't"/2U)dx

Y, = f 4(I —x')(1 —x)'U "[U- (1 —2bx)'t~'] exp[- (1 —2bx)'t*'/2U] dx,

Y, = f [(1—x/2)]'U '~' [U —4(1 —bx}'t*'] exp[- 4(1 —bx}'t*'/2U] dx,

Y, = f —,'(1 —x')(1+x)'U '~' [U —(2+bx)'t" '] exp[- (2+bx)'t*'/2U] dx,

Y, = f ~(1 —x —2x')'U '~' [U —(1+bx)'t*'] exp[- (1+bx)'t~'/2U] dx,

+1
Y, = f' —,'x'(I- x') U-M'(U- b2x't~'} exp(- b'x't*'/2U) dx,

Y9= f 4(1+x —2x')' U '~' [U —(1 —bx)'t+'] exp[- (1 —bx)'t*'/2U] dx,

(B7)

(B6)

(B10)

(B11)

(B12}

(BI2)

(B14)

(B16)
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&„=f ~(1 —x')(1 —x)'U '/'[U- (2 —bx)'t*'] exp[- 2 —bx)'t*'/2U] dx,

f=" -'(1 —x')'U '/'(U-4t~') exp(-4t+'/2U)d x,

r = f"-'(1—x2)x2 U ~/2 (U —t+2) exp( —tw2/2U) dx

(2b'+ 2 lb + 27) (6.75 + 3b) t( ),
13 6b2(1 + b)l/2 2b2(b)1/2 L ]

(B17)

(B18)

(B19)

(B20)
(2a' —21a+ 27) 1.5~,( ),/, +,

( ),/, (a —2.25) sin 'a'/', if b &0.
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