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A new model for the high-energy (pl,b&4 GeV/c) di6raction scattering of hadrons is presented. This
shadow-scattering model explains, quantitatively, the magnitude and energy dependence of the widths of
elastic-scattering diGraction peaks. An improved approximation for the inelastic intermediate states is
used which emphasizes the role of quasielastic scattering and of optical absorption with energy-independent
opacity. The quasielastic scattering is calculated from Feynman diagrams, while the optical absorption is
constrained by the observed total cross section. Unitarity and one energy-independent scale-fixing param-
eter, then, give quantitative predictions for the widths of diBraction peaks which are only weakly dependent
on the assumed l dependence of the optical absorption.

I. INTRODUCTION

HERE has been quite an extensive study of the
elastic diffraction scattering of hadrons at high

energies. The widths of the diffraction peaks are ob-
served to depend on energy, but this energy dependence
is not yet well understood. Single Regge-pole models
give an indefinitely shrinking diffraction peak for all
processes. When several Regge trajectories are intro-
duced, the widths can shrink, grow, or stay relatively
constant within a finite energy range, but a large number
of parameters are involved. A recent analysis by Rarita
et cL' used four Regge trajectories to 6t all data of total
cross sections, elastic differential cross sections, charge-
exchange differential cross sections, ratio of real to
imaginary part in the forward direction, and polariza-
tion. This 6t required 31 parameters.

It has been suggested by Van Hove' that high-energy
elastic scattering is the shadow of inelastic collisions.
If it is assumed that the average number of particles
produced in the inelastic collisions is large and the
particles in the inelastic final states are uncorrelated
(except for the constraint of energy-momentum con-
servation), Van Hove then shows that indefinite
shrinkage is impossible. The Van Hove model gives a
relation between the width of the diffraction peak and
various average quantities associated with production
experiments, e.g., multiplicities. The width also de-
pends on the (unobservable) structure of the distribu-
tion function for transverse momenta of secondaries.
This last fact prevents using the model for obtaining
the energy dependence of the width in a simple manner.
One observes, however, that growth, constancy or
limited shrinkage are possible with this model. '4

*Work performed under the auspices of the U. S. Atomic
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to be submitted by G. Y. Chow to the Case Western Reserve
University in partial fulfillment of the requirement for the degree
of Doctor of Philosophy.
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In this paper, we propose a uni6ed model for all
small-angle hadron diffraction scattering at high
energies. ' One would require that such a model explain
both the magnitude and the energy dependence of all
the widths of the diffraction peaks.

We begin with the assumption that the elastic scat-
tering is the shadow of the inelastic collisions. Experi-
ment' indicates that the inelastic cross section due to
quasielastic scattering is not negligible at any energy.
Quasielastic scattering is defined as those scattering
events in which the incident particle undergoes an
almost elastic diffraction scattering off the cloud of
virtual particles surrounding the target particle. That
is, the incident particle emerges with nearly all of its
incident energy (in the laboratory system) and very
few low-energy particles are produced from the virtual
cloud. These collisions are evidently highly correlated
and are not taken into account by the Van Hove model.
This last fact is because an uncorrelated model favors
having the production amplitudes strongly maximum
when the produced particles all have nearly the same
energy, namely, the average energy of a produced
particle. Therefore, there would be no significant inter-
ference between quasielastic and uncorrelated ampli-
tudes in the inelastic overlap integral. Our starting
point will be to split the overlap function g(s, t) into
two parts; the quasielastic contribution go(s, t) and the
rest gv rt (s,t), which we .will think of as arising primarily
from uncorrelated production as suggested by Van
Hove. The quasielastic part can be calculated by
assuming it to be dominated by a certain class of
Feynman diagrams as suggested by Drell and Hiida. ~

We will make as few assumptions as possible about
gv rt (s,t). The one .of. these assumptions which is
most basic to the following work is that the average
opacitys of gv H (s,t) is independent of energy (for
ptgb& 4 GeV/e) for all processes, thus indicating a

' We concentrate on pp, pp, ~+p, and E+p at pl,b&~4 GeV/c.' E. W. Anderson, E.J. Bleser, G. B.Collins, T. Fujii, J. Menes,
F. Turkot, R. A. Carrigan, Jr., R. M. Edelstein, N. C. Hien,
T. J. McMahon, and I. Nadelhaft, Phys. Rev. Letters 16, 855
(1966).

' S. D. Drell and K. Hiida, Phys. Rev. Letters 7, 199 (1961).' The average opacity will be defined later,
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Fxo. i. Feynman diagram which is assumed to contribute to ~p
quasielastic scattering. e is the number of pions produced by a
final state interaction, k and p2 are the four-momenta of the pro-
duced low-energy pion and the recoiled proton, and Q represents
the final-state-interaction S matrix.

Fj:G. 2. The overlap function
gq(s, t) due to OPE diagram. The
four-momentum of each line is
labelled by the letter next to it. Py

t'x P,

t

P~

certain universality. If we assume that the total cross
section is known, the energy dependence of the total
cross section and that of the quasielastic scattering will
force gv n (s,t). t. o have a certain energy dependence.
This, in turn, will determine the width of the elastic
diffraction peaks.

In ec. II, we begin by discussing the quasielastic
scattering contribution to the overlap integral. Those
readers not interested in the details of the quasielastic
calculations should go directly to Sec. III, where we
develop the formalism and approximations for calcu-
lating the widths. In Sec. IV, we present the numerical
results and compare them with experiments. A few
remarks and a prediction about mx scattering are made
in Sec. V.

II. QUASIELASTIC SCATTERING

Let us first consider 2r+p quasielastic scattering. We
assume that the main contribution is due to the Feyn-
man diagram of Fig. 1, for which the incident particle
can only lose a small amount of energy due to the phase-
space restriction and the pion form factor. The inter-
mediate pion k and proton p~ can be ofI' the mass shell
when there is a 6nal-state interaction. We approximate
this diagram by putting the virtual particles on the
mass shell. However, it can be shown that the final-
state interaction in the mass-shell approximation has
no effect on g&2(s, t) That is, wh.en the intermediate pion
and nucleon of Fig. 1 are put on the mass shell and the
diagram is put into the unitarity overlap integral, the
resulting formula is exactly what one would have ob-
tained by omitting all final-state interactions from Fig.

1. This is because the 6nal-state interaction just multi-

plies the integrand of the overlap integral by a factor of
St5=1. The 6nal-state interaction, therefore, can only
change the correlation between the emerging low-energy

pion and nucleon, and also change some of the three-
particle 6nal states into more-than-three-particle 6nal
states. Consequently, only the usual one-pion-exchange
(OPE) diagram LFig. 2(T)$ need be considered.

We should keep in mind, however, that we have
calculated go(s, t) due to the whole diagram of Fig. 1.
Therefore, even though only Fig. 2(T) gives a non-
vanishing contribution to get(s, t), one must not imagine
that only three-particle final states contribute to
quasielastic scattering.

The T matrix is related to the S matrix:

S=1+(22r)4ib&4&(Pt P;)T, — (2.1)

where P; and P'f are the total four-momenta of thy
initial and final states. The unitarity condition for the
elastic scattering amplitude ,T(s&,t) is

ImT. 1(s,t) =-2'(22r)4 p 8&41(P„p, p„)——

X»(n; p.',p, ')T(»; p.,p,), (2.2)

where p, and p„are the four-momenta of the initial
particles, p, ' and p„' are the four-momenta of the final
particles, P„ is the total four-momentum of all the
intermediate particles, T(n; p„p„) is the T matrix
for the transition from a two-particle state to an n-
particle state, s—= (p,+p„)2, and t = (p, —p, ')2. T—he
right-hand side may be decomposed into an elastic part,
a quasielastic term, and the rest which arises primarily
from uncorrelated production.

d2p II d3p II

~ (, ) =l( )' — "'(P"+P"—P*—P.) ~ '(P*",P"' P*',P') ~ (P*",P" ' P*P.)
2Wn, - EPP"lM

+2(2n) Z ~ (P1+~+P2 P& Pii)T (P1I~IP2I P& IPP )T(P1i~&P2i P&IPP)
Q.E.

+2 (22r)4 g b'4'(P„P, P„)T&(n;—P, ',P—„')T(n; P„P„)=g.&(s,t)+tip(s—,t)+gv H (sit) I (2.3). .

where p
"and p„"are the momenta of the elastic inter-

mediate states, Q.E. and V.H. stand for quasielastic and
uncorre1ated states, respectively,

„—(p II2+»2)1/2 g —(p»2+~2)1&2

and p, and 3f are the masses of a pion and a nucleon,
respectively. The last line of Eq. (2.3) defines g,1(s,t),
gq(s, t) and gv. z.(s,t), respectively, as the erst, second,
and third terms of the decomposition. En order to
calculate go(s, t), we will need the T matrix correspond-
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d'pg d'k d'ps
go(s, t) =~ g -,'(2n.)'

Nr, "," 2W» 2W&,. EQMT&" '&(pg, k,pg& pg)p„) =(2&r)'T(p&, k; p~&
—6)

X&(&')(&'—t ') 'T'*" *"(p2; &,p,), (2.4)
X 6 '4'(pi+k+pm —p.—p, )

xT'"' (p,k,p; p.',p, ')

XT'"*"(PikPs P P )

where T'*" "'(p2, h, p„) is the matrix element for the
three-particle vertex with point interaction, and X(A')
is the pion form factor. The spins of the initial and
intermediate protons are denoted by s; and s,. %'e also
assume that the off-mass-shell n.7r amplitude T(p&,k;
p„—6) can be replaced by the mass-shell amplitude
multiplied by a function of 6' only. Therefore,

g2
1

~r'(2, &r)
' ds&d4I$. b($~ M2)—

ing to Fig. 2(T), which is given as follows with the spin sion for the quasielastic overlap function,
indices written out explicitly:

T'" "&(pg,k,p2, p~)p„)= (2&r)'T(s&, t')y(A')
X(t~' —u')-'T(p; t~,p,), (2.&)

where s&=—(p&+k)', t'—= (p, —p&)', and Q(&') is the
product of the o6'-mass-shell correction and the pion
form factor E(Q'). We will also need the elastic overlap
function for xm. scattering,

g.&-(s&,t) =-', (2w)'

where

d'pa d'k
-b &'&(p,yk —p.+a)

2W~, 28'g

XT*(s„t")T(s„t'), (2.6)

t"—= (p*' —p&)', W»= (pi'+u')'"

W —(lt2+u2)1/2

The pion-nucleon vertex satisfies the following relation:

d'p2
Z(2 )' — T'"'(p ~'p')

8$ E»/M

xT'" "'(p., ~,p, )~'"(p, -p.+~)
=Lg'/(2~)'jB(ss —3II')u(p„',sf)

X-',y (6+5')u(p„,s;), (2.7)

YAsxz I. Quantum numbers of quarks.

where s2 —=(P„+6)', E»=(p2'+M')'r', u(P„',sr), and
u(p„,s;) are the Dirac spinors of the final and initial
protons, and the renormalized xX coupling constant
g has the value g'/4&r =14.4. We then obtain the expres-

Xbgs& —(P*—6)')u(P&, ',sr)~y (5+6')u(P, s')

g & (sr, t)X, ~(~*)~(~"). (2.8)
(t~'-t ')(~"-u')

Now assume that s is large, and ignore the spin-Qip
term in go(s, t) Lcf. Eq. (2.8)$. Then we can express
u(p„',sr) ,'y (tt+6')u(p„, )s-in another form as done by
Amati et a/. ' The spin-nonQip part of the overlap func-
tion is as follows:

g2

gg(s, t) = — dS&g~& ($&~t)d 6
(2m-)'

t&(s, —M') hLs —(p.—6)'j
x s(&')e(&")

(~'-u') (~"-u')

(
a'+a" t ts& q

X — + —,29)
4M 4M 4Msl

where

~"=L(p.-p.') -~j'=t+~'-2(p*-p. ') &. (2 «)
For large s, the last term in Eq. (2.10) is s ' smaller
than the other terms; therefore, we will ignore it. Assume
that the correction factor $(tI,') has the form suggested
by Ferrari and Selleri, ' namely,

(2.11)

then we obtain the formula

g2

go(s, t) = — dsrge& ($&,t)d 6
(2n.)'

&ps, —MsjSLs, —(p.—~)mjX--
(6' rr') (6'+t —u')—
0! 0,' tsar

(2.12)
a—tt'+u' a—6'—t+t4' 2M 4M$

Baryon No. Charge Strangeness Isospin

0
0—j.

De6ne the following separation:

go(s, t)=gr& "(s,t)+go—' (s,t), (2.13)

D. Amati, A. StangehUini, and S. Fubini, Nuovo Cimento
26, 896 {1962)."E.Ferrari and F. SeHeri, Phys. Rev. Letters 7, 387 {1961).
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where go"'(s, t) and ghp&"(s, t) are the first and second terms on the right-hand side of Eq. (2.12), respectively.
The d'6 integration of go&i i(s, t) can be carried out with the following result:

g2

gn'"(«) =
(2p-)'

(hhI/~Sf )& ~'+«+h '+Pi+6 h '+~ —« h+—hp'+6+6
dsig, i (si, t) — — ln — + ln

-2Ms h K+t o+hp +4'1—
th p G t— cK—h+hp +lPX —g'2

hi +4 1+4'2 hi t hl h+4'1+fp
In-— + ln, (2.14)

hp +4 1 4'2 Q+h tp t+4'1 4'p

where f&= ,'(s —si+3-P) and Pp=ptss+M'+sis —2ssi
—23Psi —2Mps]'hp. It can be shown that the t depen-
dence of the factor in square brackets of Eq. (2.14) is
very weak compared to that in g„(si,t). Therefore,
we can ignore that t dependence of this factor and
evaluate it at t =0 Furt.hermore, go"'(s, t) is very small
compared to ghti" (s,t) for small t (~5%).

The elastic overlap function for xm scattering pre-
sumably has nearly the same shape as that for xX or
Em scattering, the sizes being diferent. In addition, we
anticipate that the shape of the elastic mx overlap func-
tion should have rather weak energy dependence, and
similarly for vrE or Ex. These conjectures suggest that
the quasielastic A)V overlap function should have the
following form:

ghi "(s,t) = I'"v(s, t)g. , (s,t), (2.15)

where I' ~(s,t) is a smooth function of t slowly varying
compared to g„~ (s,t). The function I'~~(s, t) can then
be approximated by its value at (=0,

gpi (s,t) I' (s,0)g, i (s,t) . (2.16)

provided the following condition is satisfied:

d g.p~(si, t) d—In — — (&—lnLg, p~(s, t)j . (2.17)
dh g, i (s,t) i p dh ~=p

This condition t Eq. (2.17)j, which requires that the
width of the elastic diffraction peak to be a weak func-
tion of energy will specify a range of s and s~ for which
I' ~(s,0) as calculated by the following equation can be
used in Eq. (2.16) with small error:

(s&/p-pr)p
g ~x(s 0)I' N(s, 0)=— dsiE ~(s,si) . (2.18)
g.i-(s,o)

The integrand IC ~(s,s&) will be imphcitly defined
later. There is another approximation which we will
use in Sec. III. That is, to de6ne a new final relation

go (s,t) R (s)g, ~ (s,t), (2.19)
where

(s)—= I' "(s0) g. -(s 0)/g. "(s0) (2 2o)

Equation (2.19) should be a good approximation if
the following holds:

d gp~(s t) d—ln (&—1nLg, i ~(s, t)j, (2.21)
dh g,p"(s,t), p dt g p

meaning that the various elastic widths are to be of
similar size. In an exactly similar manner, ghp (s,t)
and gchxN(s, t) can be derived and put in approximate
forms analogous to Eq. (2.16) or Eq. (2.19). One
remark should be made here. It is clear by now that
our intention for this paper is to calculate the sizes and
the energy dependence of all the elastic diffraction
widths. As we will notice later, the width is directly
related to the shape of the overlap function $cf. Eq.
(3.14)j. Therefore, at first sight it seems that in ap-
proximations (2.16) and (2.19) we have already fixed
the sizes and the energy dependence of all the dif-
fraction widths. However, one should notice that our
approach is essentially perturbative, i.e., if the difference
in sizes of all the widths and the energy dependence of
the widths are 6rst-order effects, we can calculate them
by using, as input, the widths with these 6rst-order
effects ignored. Then, in Sec. V, we wil1 indicate that
such an approach is sensible. In the iV~V case, the spin of
the upper "high"-energy vertex, corresponding to
I'ig. 2, is ignored. The introduction of isotopic spin
presents no d~&culties.

The resulting expression for R(s) and I'(s,0) Lvia
Eq. (2.20)j is given by the following integral:

g'3P
R*&(s)=

2m.2

where

C(s,si M ')

Pr&' 2q *s 'tP f(s,s )
dsiD &(si)

(»+~~)' g(s,si,M,P)

XC(s,si,M, '), (2.22)

1 ((Bi—Bp)(Bi+Bp) 2hp'

(1+
2MP 5 2Bp a

(Bi+Bp)(a+Bi—Bp)
Xln ~p2

(Bi—Bp)(a+Bi+Bp)

(Bi—Bp) (B,+Bp)
(hi'+e), (2.23)

(~+Bi+Bp) (pi+Bi Bp)—
Bi= (s+M' si) (s+M' M,')/2s- —

+his —2M' (2.24)

Bp = (1/2s) {t (s+M —si) P —4M sj
XL(s—M' —M ')' —4MPM '1}'" (2.25)
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=42(2M' —t")'s+M2(s —s&+M')'

+M'(s M—' M—')' 4—M'M, '
—(2M' —p')(s —sg+M')(s+M' —Mg')) (2.27)

f(s,sr) =Ps —(s "'+M)')'"(s (s—'"—M)']'", (2.26)

g(s,s„M,')
assumption that the scattering amplitude is just the
sum of quark-quark scattering amplitudes. (b) The
quark-quark amplitudes satisfy the following relations:

(eX) =(6'X) =(6'6') =(XX)=P,
(l'5') =(XX)=(Ã6') =(XK)=—P—8,

and

'Ig*'=(2sr'I') 'fsP+M 4+p4 2g's—g
((p6') =(%X)=P+A. (2.32)

—2M 'sg —2p'M ')"' (2.28)

D*&(s~) =L2o, '* +(s')+o, '* '(s'))/o, p"(s). (2.29)

The superscript x denotes the particular process of
interest, and the corresponding mass is M„. e.g., for
m+p scattering, x is sr+, and M, is p. Eqs. (2.22)—(2.29)
are the ffnal formulas for E(s), the ratio of quasielastic
cross section to the elastic cross section. A number of
assumptions have gone into these formulas. Before
going further, it is worthwhile to recapitulate all of
these assumptions and approximations so that one can
see the basis on which the results rest. For all of the
processes of interest (pp, pp, m+p, and E+p), we have
assumed that the following assumptions are valid when
the total energy squared s of the initial particles is large
compared to the square of the nucleon mass, and the
four-momentum transfer t is small (~ t

~
&0.5 (GeV/c)']:

(a) The quasielastic scattering is mainly due to the
OPE diagram Lcf. Fig. 2(T) and Eq. (2.4)]. (b) The
o6-mass-shell amplitude at the upper vertex of Fig.
2(T) can be replaced by the corresponding on-mass-
shell amplitude multiplied by a universal function
4'(62), given by Eq. (2.11). (c) The spin-flip part in the
quasielastic overlap function gq(s, t) is ignored Lcf.
Eq. (2.8)]. (d) The last term in Eq. (2.10) is ignored.
(e) The t dependence of the factor in square brackets
in Eq. (2.14) is ignored. (f) go"'(s, t), as deffned by
Eqs. (2.12) and (2.13), is ignored. (g) The elastic overlap
functions for mx and E~ scattering are assumed to have
the same functional form with respect to t as that for
m p scattering, although the parameters that enter into
the function can be diferent for the diferent processes.
(h) The shapes of the elastic overlap functions of xn. ,
ICn., xp, and 1VX have weak energy dependence Lcf.
Eq. (2.16)). (i) The elastic diffraction widths for dif-
ferent processes have approximately the same size
Lcf. Eq. (2.19)).This assumption can be relaxed without
affecting the results appreciably, as will be discussed in
Sec. V. (j) For the quasielastic scattering of 1VX, the
spin at the upper vertex of Fig. 2(T) is ignored.

It is an unfortunate fact that we do not have data
on the cross sections for meson-meson scattering. We
will use estimates of these given by the quark model in
Lipkin's version. "This version gives a good agreement
between meson-baryon total cross sections. The as-
sumptions are the following: (a) The basic additivity

H. J. Lipkin, Phys. Rev. Letters 16, 1015 {1966).

where "ext." implies extrapolated from experiment,
while Q.M. implies predicted by the quark model. For
meson-baryon cross sections, we use the quark-model
predictions unaltered. For baryon-baryon cross sec-
tions, we multiply the cross sections predicted by the
quark model by the factor p and for meson-meson cross
sections by & '. Now the predicted total baryon-baryon
cross section (with correction) agrees well with experi-
ments. The meson-meson total cross sections can be
expressed in the following way:

orx'" (4P+ ',A 28)——/g, -—
o rx' +=(4P 28)/y, —

K x0 0- K++~
7

opx + (4P+A———28)/y,

or +"=(4P+A)/y,
or"" 4P/y, ——

or +=(4P+2A)/y,

0 1l x g~% 8 0
0 00 +0

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

We will choose the total cross sections of n-+p and X+p
to determine P, A, and S,

P= ,'(2or"" oz" &), -—
A=(or & —or '&),

S=,'(2or +& or & orx+&). -——

(2.42)

(2.43)

(2.44)

The symbol ((PX) denotes the amplitude for (P- and
X-quark scattering. The three quarks (P, X, and
have the quantum numbers given in Table I. The com-
mon amplitude for the nonstrange quarks and anti-
quarks is denoted by P, while the symbol S represents
the contribution of 5U(3) symmetry breaking in the
strange-quark scattering, and finally A corresponds to
the annihilation contribution.

With this model, all of the total cross sections of
hadron scattering can be expressed in terms of three
total cross sections. Hov ever, the predictions of baryon-
baryon total cross sections by using meson-baryon data
are too small by about 15%%u&. This fact is likely because
the e6ective quark-quark scattering in baryons and in
mesons is not the same. In order to remedy this dis-
crepancy, we introduce a factor y, which is chosen as
follows:

v—= r '(")-./ r "(")n.M. , (2.33)
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One remark should be made here. When we use meson-
baryon cross sections to predict meson-meson or baryon-
baryon cross sections, they should be evaluated in such
a way that the quark-quark scattering has the same
amount of energy. For baryon-baryon scattering, each
quark-quark pair has energy xsgs, for meson-baryon
each pair has (5/12)gs, while for meson-meson each
pair has ~s/s. Therefore, meson-baryon cross sections
at total energy ~'s ~ can be used to predict baryon-
baryon cross sections at (5/4)+s N and meson-meson
cross sections at 6sgs ~.

Now it is possible, using these quark results, to obtain
expressions for D*"( ~$) that involve only observable
processes. The range of s~ in the integration of Eq.
(2.22) extends from threshold nearly to s. However, the
integrand is a function which peaks about a value of s~

which depends on s. For example, when s =20 GeV' for
p-p scattering, the integrand is sharply peaked about
sy=6.2 GeV', while at higher energy, s=52 GeV', the
integrand is broadly peaked about s~=25.8 GeV2.
These facts indicate that even when s is at high energy,
the diBraction scattering prefers to take place at an
intermediate energy. One will obtain an unreliable value
for R*"(s) by making a high-energy approximation for
D*&(s~) unless s is very large (p~,b&15 GeV/c). In
practice, one takes experimental values for a„(s~) if
san& 4.53 GeV' and uses a,~(sq) ~ ar'(sq) if $~& 4.53 GeV'.
This approximation will be discussed in detail in Sec. IV.

We would add that our model for quasielastic scat-
tering implicitly contains absorption corrections. That
is because the correction factor LEq. (2.11)j is adjusted
to agree with experiments. Since the average opacity
is taken to be energy-independent, the absorption cor-
rection will also be energy-independent, and the correc-
tion is then just a scale factor, which can be incorporated
into Eq. (2.11) by a suitable choice of a.

T,i(s,t) = P (2l+1)hi(s)P&(cos8),
8x'q

(3.2)

Qs
gv. H. (s,t)= Z (2&+1)pF'n ($)P&(cos8), (3.3)

26~'q &

gs
gg(s, t) = g (2t+1)pP(s, t)Pt(cos8), (3.4)

26m'q

where the momentum in the c.m. system is q, and
cos8 1—2t/s at p~b&4 GeV/c. According to Eq.
(2.19), pP(s) takes the following form:

pt~(s) 4R(s) i hi(s) i
'.

The unitarity condition is given as

(3.5)

Imh((s) =$1+R(s)]
~
h((s)

~

'+-',ptv ".(s) . (3.6)

The cross sections and the slope of the diGraction peak
b(s) (i.e., width inverse) can be expressed as

4x
nr(s) =—Q (2l+1) Imh((s),

q2
(3.7)

more, we also ignore the real part of the amplitude at
energies p~,b ~&4 (GeV/c), because it is observed experi-
mentally to be small. The real part of the amplitude
always enters in our equations squared. In the special
case that the real part has the same t dependence as the
imaginary part, the real part can be incorporated easily
into the equation for the slope, giving a small improve-
ment to the results.

The elastic-scattering amplitude T„(s,t) and the
overlap functions gv. H. (s,t) and go(s, t), can be expanded
in terms of the partial-wave amplitudes h~(s), p~

n (s),
and pP(s), respectively,

III. GENERAL FORMALISM AND
APPROXIMATIONS

We define the elastic amplitude T,~(s, t) in terms of the
spin-nonfhp amplitude g~(s, t) and the spin-flip ampli-
tude g2(s, t) as

~(s) = Z (2t+1)Lp~ '" (s)+pl~(s) j
q2

dO'g) h((s) 2

(s) =n g (2l+1) Pi(cos8)
l q2

(3.8)

(3.9)

T., (s,t) =g~(s, t) +fe n sin8 g2(s, t), (3.1)

where the scattering angle is given by tI. Predazzi"
has observed from the recent n.+p polarization data'3
that g~($,0) and gg($,0) are of the same order of magni-
tude. Since the elastic diAerential cross section is pro-
portional to

~ g&(s, t) )
'+sin'8

) g2(s, t) (
', the spin-fhp

contribution is smaller by a factor of sin'8 —t/s, which
is negligible for the energies and momentum transfers
in which we are interested. Therefore, we ignore all but
the spin-nonfiip amplitudes in what follows. Further-

"E.Predazzi and G. Soliani, Nuovo Cimento 51, 427 (1967)."M. Borghini, G. Coignet, L. Dick, K. Kuroda, L. DiLella,
P. C. Macq, A. Michalomicz, and J. C. Olivier, Phys. Letters
21, 114 (1966);24B, 77 (1967).

d0 e] 8x
b(s) —=—ln

dt dt g=o 0T($)sg'
XE (2t+1)l(l+1) Imh~, (3.10)

where the real part has been neglected in Eq. (3.10).
Since we have assumed h~(s) to be pure imaginary, the
unitarity condition is satisfied by

(1 p( "'($)$1+R(s)j)'"
Imhg(s) = (3.11)

2L1+R(s)j
Let us assume that pP.H (s) represents grey-sphere

absorption. This is the simplest l dependence to deal.
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p~ "'(s)= P b;, t (3.13)

where 2=nearest integer to qR». n. (s). The range
Ry.H. of the uncorrelated absorption is a function of
energy to be determined. For the grey sphere, the
average opacity pEq. (3.12)) is just «of Kq. (3.13)
which we take as an energy-independent parameter
also to be determined. When one combines the previous
relations into Kq. (3.10), the final relation for b(s)
results:

or(s) L1+R(s))
b(s) xR» H '(s)— (3.14)

8x [1—{1—«$1+R(s))) 't']

This formula will be used in Sec. IV to calculate the
slope b(s). The right-hand side contains only known
quantities: or(s) comes directly from experimental
data, R(s) is calculated according to Kqs. (2.22)—(2.29),
and « is to be determined by Eqs. (3.15)-(3.23). Let
us again recapitulate all of the assumptions and approxi-
mations which have gone into Eq. (3.14). (a) The spin-
Qip part in the elastic-scattering amplitude is ignored
Lcf. Eq. (3.1)).(b) The real part of the elastic-scattering
amplitude is ignored. (c) The partial-wave expansion of
the overlap function pP H (s) has a grey-sphere shape.
Other shapes are discussed in Sec. V. (d) The average
opacity of ptv H (s) is energy-independent. It is one of
the most important assumptions in our model.

These four assumptions are expected to be valid when
Pi«b&4 (GeV/c) and ~t

~
&0.5 (GeV/c)'. All of the as-

sumptions that are necessary for obtaining the formulas
of Secs. II and III have been summarized in the para-
graphs after Eqs. (2.29) and (3.14) except those con-
cerning the applicability of the quark model to meson-
meson scattering which appear in Eqs. (2.30)-(2.33)
and those concerning the calculation of e, which appear
in Eqs. (3.19)—(3.23). In the absence of the quasielastic

with. In Sec. V, we show that the resulting predictions
for b(s) are insensitive to the choice of t dependence for
p~

. . provided that pP H is subject to several con-
straints, to be discussed below. In addition to the
important assumption of shadow scattering jEq.
(3.11)),we will assume that the a»erage oPacity of pP H

is a constant function of s for all processes for p&.b&&4

GeV/c. This represents the first constraint on p P H. and
is a very important aspect of our model. The average
opacity ~ is de6ned as follows:

(s)—=EZ (2t+1)p
". (s))'/

2

L2 Z (2t+1)t(i+1)p~'" (s))

const for Pi,b&4 GeV/c. (3.12)

Furthermore, we assume that the p~v H 's have the same
shape for all processes except that the parameters may
be different. For the case presently of interset, p~

has the form NN~b «N~b KN~b ««~b K« (3.16)

We will assume that at inftnite energy all the b's would
be the same if the quark model were exact, that is, if
p=1, or, alternatively,

ar"~(~)/or ~(~) =or~~(~)/or~ (~)=,', (3.1-7)

and
rN(~ ) —o KK(~) ) (3.18)

However, the quark model is not exact, i.e., p/1.
Consequently, or~~(~) is modified by y and or (~)
by y '. We assume that the breakage affects the b's
but does not aGect the e's. This point of view results
because we associate the ranges Rv.H. (and consequently
b) with masses whose degeneracy a,re significantly
affected by the breakage induced by changes in binding
energy, while the e's are presumed to be dependent on
coupling constants which are less affected by breakage.
We can calculate the e's and b's at inhnite energy by
using this last reasoning. Notice that the calculated
quasielastic factors R~~(00), R~~(~), and Rx~(~)
are equal. The e's must satisfy the relation

*"(")LI+y'R*"("))b~= (3.19)
8~{1—[1—«(1+ 'yR~(~)))'~')

where R*«(~)=R(~), o*« is given by exact quark
relations LKqs. (3.17 )and (3.18)) in terms of ar ~(~)
extrapolated. from experiment which fixes the scale, and
b~ is the universal slope parameter that one would ob-
serve at in6nite energy if the quark model were exact.
Equation (3.19) used in conjunction with Eqs. (3.17)
and (3.18) gives

1—j1—«~~(1+y'R(~ )))'t'

=2{1—L1—-N(1+&' (")))'") (3 )

6KÃ E«N y (3.21)

contribution (R=O), the energy dependence of b(s) is
governed by or(s). Since all or(s) appear to decrease
to constant values, one would obtain decreasing b

(growth of the diffraction peak) for all processes. The
factor R(s) also decreases to a constant value with
energy, and if or were constant (e.g. , PP and X+P
scattering for p~,b &&6 GeV/c), b(s) for that process would
increase for any value of «(shrinkage of the diGraction
peak).

Evidently, the observed behavior of the di6raction
peaks at high energies depends on a balance between
these opposing sects. Let us now discuss the average
opacity parameter e.

It is known that the size of the interaction region of a
nucleon is roughly the same as that of a meson. There-
fore, we expect that

R» H NÃ~R +NEER KN~R vv~R xx (3 15)

or
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and, inserting numerical values,

&.rr (4——.64bo 6.8—6)/(ho) 2, (3.22)

where bo is in units of (GeV/c) '. Using the values of

~~~, e ~, and e~~ calculated in terms of the universal
slope parameter, the slopes at infinite energy extrapo
lated from experiment, bnn(~), b~n(~), and bxn(~)
can be calculated as

ar*"( )[1+&(")3
b*"(")= (3.23)

8m[1 —]1—e,„[1+X(~)j]'"]
where ax*"(aa) are the total cross sections at infinite

energy extrapolated from experiment. Notice, for ex-
example, that bxn(~)=b~ n(~) [asxn(~) /ar v(~)j
because 6~pg=6 g. We see that all of the b's at infinite

energy and the constant e's are determined in terms of
one scale Axing parameter b and the extrapolated
total cross sections.

IV. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTS

The total cross sections'4 and the low-energy elastic-
scattering cross sections" for different processes will

be used as input information in addition to the single
universal slope parameter, which is chosen for a Gt to
all processes at high energies. We will approximate the
elastic cross sections in Eq. (2.29) for D(s~) by

a ](sq) =[ay(s~)$'/16mb(sg), (4.1)

which we expect to be valid for values of s~ large enough
so that the upper vertex of Fig. 2 is diffractive. That
limit for s~ will be described later in this section.

Using Eq. (4.1), our expression for D*"(s&),

b'&(s) -2ar*~+(s,)' or~~' sg '
Dzp(s )~ +

ar*"(s)'- b*"(»)
()

(4 2)
b* '(sg)

can be treated in an iterative fashion. Evidently, it
contains the quantities we wish to calculate, namely,
the b's. However, when Eq. (4.2) is substituted into
Eq. (2.22) for R*&(s) and that, in turn, is substituted

'4 Total cross sections for pp: K. J. Foley, R. S. Jones, S. J.
Lindenbaum, W. A. Love, S. Ozaki, E.D. Platner, C. A. Quarles,
and E. H. Willen, Phys. Rev. Letters 19, 857 {1967);for m+p:
K..J. Foley, R. S. Jones, S.J.Lindenbaum, W. A. Love, S. Ozaki,
E. D. Platner, C. A. Quarles, and E. H. Willen, ibi4t'. 19, 330
(1967); for E+p and pp: W. Galbraith, E. W. Jenkins, T. F.
Kycia, B. A. Leontic, R. H. Phillips, A. L. Read, and R. Rubin-
stein, Phys. Rev. 138, B913 (1965).

~~Elastic cross sections for ~+p: G. Bizard, J. Duchon, J.
Sequinot, J. Yonnet, P. Bareyre, C. Bricman, G. Vallades, and
G. Villet, Nuovo Cimento 44A, 999 (1966), J. A. Helland, C. D.
Wood, T. J. Devlin, D. E. Hagge, M. J. Longo, B.J. Moyer, and
V. Perez-Mendez, Phys. Rev. 134, B1079 {1964);L. W. Jones,
W. L. Kwan, M. L. Perl, S. Ting, V. Cook, B. Cork, and %.
Holley, in Proceedings of the International Conference on High-
Energy Physics, Geneva, 1962, edited by J. Prentki (CERN,
Geneva, 1962); for ~~: G. Wolf, Phys. Letters 19, 328 (1965);
for E~: S. G. Wojcicki, Phys. Rev. 135, B484 (1964).

into Eq. (3.14) for b'&(s), one finds that the result is not
sensitive to the input b's of Kq. (4.2). Therefore, one
can begin by approximating b*~(s) =ho(~ ) in Eq. (4.2).
This lowest-order approximation is satisfactory for
calculating b(s) for m+p and X+p. That is because the
b's have weak energy dependence and nearly the same
size. For pp, the slope is very much larger and more
energy-dependent than the others, so that one must
iterate for accuracy. For x p and pp we must iterate,
because Kq. (3.14) develops an imaginary square root
(for pub&7 GeV/c) in lowest-order approximation.
This problem is eliminated by iteration or self-consistent
solution. In this paper, we will not iterate the ~ p
solution beyond the lowest order because it will not
be as simple as the iteration for pp and pp. This last
fact is because the input b (s~), which needs to be
used in Eq. (4.2) to calculate D "(s~), is energy-
dependent. As explained at the end of Sec. V, our model
could be used to predict b (sq) given a r (s~); however,
this cross section is only known at present via the quark
model.

The approximation (4.2) differs appreciably from the
actual D»(s&) for s&&4.53 GeV', i.e., the laboratory
momentum at the upper harp vertex is smaller than 2
GeV/c. Therefore, in that region, the experimental data
for mp elastic cross section will be used. The constant
a, appearing in the correction factor Q(d, '), is taken to be
90@,', which is determined by 6tting the reaction cross
section of one-pion production at low energies. "
Similarly, the D(s&) function for ~p and ECp can be
obtained, except that the energy at which the approxi-
mation analogous to Kq. (4.2) breaks down will be
lower, i.e., the experimental data on xx and Em elastic
cross sections will be used when sq( (25/36)(4. 53) =3.14
GeV'. The factor 25/36 is introduced to ensure that the
quark-quark pair will have the same amount of energy
in vrp, ww, and Zm scattering. That is to say, we will use
Eq. (4.2) for D*"(s&), when the quark-quark pair has
energy greater than s+3.14 GeV. Unfortunately, the
available data on ex and Xx elastic cross sections do not
extend up to si=3.14 GeV . A linear extrapolation is
used to connect the data points to the region where
sj~&3.14 GeV'. The data on Kx scattering are still
rather prilnitive. We assume them to be dominated by
a I'-wave resonance [i.e., IC~(891)j in order to obtain

from the experimental cross section of E m' —+
Zan . The elastic cross section for IC 7r is chosen to be
3 mb up to s~=3.24 (GeV/c)' which is obtained by
%ojcicki et al."by assuming that all the events with
small momentum transfer are produced by the OPK
diagram. Furthermore, whenever the elastic-scattering
cross section for a neutral particle in the low-energy
region is needed but not available from experiment, we
assume it to be the average of the elastic-scattering
cross sections for its corresponding positive- and
negative-charge particles. Other constants used in the
calculation are a rnid(~ ) =39 mb and as x+"(s)
=asx~(aa) =17.2 mb (obtained by averaging over the
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TABLE II. The calculated ratios R(s) for different processes at various energies.

s (GeV') 10 12 20 24 28

Z(s) pp 0.687 0.671 0.660 0.602
pp 0.472 0.466 0.454 0.438
m+p 0.753 0.708 0.667 0.548
m p 1.325 1.202 1.100 0.826
E+p 0.659 0.617 0.577 0.464
X p 0.487 0.447 0.412 0.329

ph,b(s) (GeV/c) NE 4.29 4.83 5.38 7.53
4.85 5.38 5.91 8.05

EE 4.70 5.24 5.77 7.91

0.559
0.426
0.476
0.678
0.404
0.305
9.67

10.18
10.05

0.515
0.419
0.430
0.590
0.370
0.299

11.81
12.31
12.18

0.497
0.408
0.400
0.534
0.350
0.287

13.95
14.42
14.31

0.475
0.402
0.378
0.495
0.338
0.279

16.09
16.57
16.45

0.461
0.400
0.362
0.468
0.330
0.271

18.22
18.71
18.58

0.448
0.396
0.351
0.447
0.324
0.265

20.36
20.84
20.71

TABLE III. Energy dependence of the slopes in the range of total energy squared s from 10 to 40 GeV'.

Process

db(s) (GeV/c) '
Gross behavior

+1.38
Shrinkage

—3.09
Growth

—0.40
Constancy

+0.21~
Constancy

+0.52
Shrinkage

—0.84
Growth

& The variation in 5 " is in the range of s from 15 to 40 GeW.

R'+p total cross section in the pi,b range from 6 to 20
GeV/c). The R's can now be calculated and are listed
in Table II.

The universal slope parameter is chosen to be 8.44
(GeV/c) '. Then the observed slopes at infinite energy
for &VA, mX, and ES elastic scattering have the values

b ~(~) =10.1 (Gev/c) ' b~ (v~) =. 8.61 (GeU/c) '

(4.3)
bx" (~)=6.4 (GeU/c) ',

while the opacities f~~ ~ ~ and f~~ are 0.592,"0.446,
and 0.446, respectively. The slopes at finite energies are
shown in Figs. 3(a)—3(f) along with those obtained by
fitting the observed diGerential elastic-scattering cross
sections at small angles. ""The shrinkage or growth of

"The value 0.592 is the result from the lowest-order approxi-
mation while the second iteration gives 0.584.

'7 Unlike all the other data, the pp slope has been fit to the form
do/dt=exp(a+bt) rather than do/dt=exp(a+bt+ct2). Different
values of b result from these different fits. These pp b values have
been increased by 1 {GeV/c) ~ to put them on the same footing
with the slopes for other processes."Slopes for pp: M. L. Perl, L. W. Jones, and C. C. Ting, Phys,
Rev. 132, 1252 (1963); D. Harting, P. Blackall, B. Eisner, A. C.
Helmholz, W. C. Middelkoop, B.Powell, B.Zacharov, P. Zanella.
P. Dalpiaz, M. N. Focacci, S. Focardi, G. Giacomelli, L. Monari,
J. A. Beaney, R. A. Donald, P. Mason, L. W. Jones, and D. O.
Caldwell, Nuovo Cimento 38, 60 (1965);K. J. Foley, S.J.Linden-
baum, W. A. Love, S. Ozaki, J. J. Russell, and L. C. L. Yuan,
Phys. Rev. Letters 11, 425 (1963); 15, 45 (1965); for pp: O.
Czyzewski, B. Escoubes, Y. Goldschmidt-Clermont, M. Guinea-
Moorhead, D. R. O. Morrison, and S. De Unamuno-Escoubes,
Phys. Letters 15, 188 (1965); K. J. Foley, S. J. Lindenbaum,
W. A. Love, S. Ozaki, J.J. Russell, and L. C. I . Yuan, Phys. Rev.
I.etters 11, 503 (1963); for w+p: M. L. Perl et a/. , Phys. Rev. 132„
1252 (1963);K. J. Foley et a/. , Phys. Rev. Letters 11,425 (1963);
for E+p: W. De Baere, J. Debaisieux, P. Dufour, F. Grard, J.
Heughebaert, L. Pape, P. Peters, F. Vrebeure, R. Windmolders,
R. George, Y. 'Goldschmidt-Clermont, V. P. Henai, B.Jongejans,
D. W. G. Leith, A. Moisseev, F. Muller, J. M. Perreau, and V.
Yarba, Nuovo Cimento 45, 885 (1966); J. Debaisieux, F. Grard,
J. Heughebaert, L. Pape, R. Windmolders, R. George, Y. Gold-
schmidt-CIermont, V. P. Henri, D. W. G. Leith, G. R. Lynch, F.
Muller, J. M. Perreau, G. Otter, and P. Sallstrom, iNd. 43A, 142
(1966);W. Chinowsky, G. Goldbaher, S.Goldhaber, T.O'Halloran,

the slopes in the range of s =10 (GeV/c)' to s =40 GeV'
(i.e., pi,b from ~4 to —20 GeV/c) are shown in Table
III. In general, the curves agree well with experiments,
except for the early termination of the x p curve, which
has been pointed out previously, and for the energy
dependence of E+p. For E+p, the energy dependence of
the slope is too weak, and is probably due to an under-
estimation of the quasielastic cross section. We cannot
remedy this discrepancy until the low-energy E7r. and
m.x elastic scattering are better understood.

The energy spectrum of the pp scattering has been
measured by Anderson et al. ' In order to check our
R»(s) qualitatively, we can obtain the ratio of the
experimental quasielastic cross section to the elastic
cross section, R,„~ii'&(s), by assuming that the quasi-
elastic scattering has the same t dependence as the
elastic scattering and has the spectral shape shown in
Fig. 4 which, in principle, can be determined by our
OPE diagram. However, in this paper, we do not actu-
ally calculate the shape but simply choose it as indicated
in the graphs of Drell et al. ' and of Islam. "The ratios
R,„~p&(s) are shown in Table IV along with the theo-
retical calculation, R»(s). There are some uncertainties
which lead to the discrepancy between R,„~i»(s) and
R~"(s). At p~,b&6 GeV/c, the distinction between the
quasielastic scattering and the uncorrelated production
will not be so clear as at higher energies. Consequently,
the uncorrelated production region may extend signifi-
cantly into the quasielastic region and leads to an
overestimation of R,„~p&(s).Second, the shape we chose

and B. Schwarzschild, Phys. Rev. 139, B1411 (1965); K. J. Foley
et a/. , Phys. Rev. Letters 11, 503 (1963);for E p: Aachen-Berlin-
CERN-London-Vienna Collaboration, Aderholz et al. , Phys.
Letters 24B, 434 (1967);K. J. Foley et a/. Phys. Rev. Letters 11,
503 (?963);15,45 (1965);M. N. Focacci, S.Focardi, G. Giacomelli,
L. Monari, P. Serra, and M. P. Zerbetto, Phys. Letters 19, 441
(1965); J. Gordon, ibid. , 21, 117 (1966); J. Mott, R. Ammar, R.
Davis, W. Kropac, A. Cooper, M. Derrick, T. Fields, L. Hyman,
J.Lorken, F. Schweingruber, and J. Simpson, ibid. 23, 171 (1966)~"M. M. Islam, Phys. Rev. 131, 2292 (1963).
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to determine E, rp'(s) has an uncertainty. On the
other hand, it is always our belief that the correction
factor used in the OPE diagram has, at least, a weak
energy dependence. Such an energy dependence may
have already manifested itself even at lower energy
p&,b~2 GeV/e, as indicated in the work by Ferrari and
Selleri. '0 We notice that R, ,p&(s) has a stronger
energy dependence than E»(s). The slope obtained
by using E, ~p~(s) in Eq. (3.14), therefore, will have
a somewhat stronger shrinkage.

V. REMARKS

ln our analysis, we assumed the scattering amplitude
to be pure imaginary. As experiment indicates, the
differential elastic-scattering cross section for small
momentum transfer can be 6tted satisfactorily by the
foITIl

dn/dt = fear(s)/16m j$1+X2(s)]e~'+"', (5.1)

where X(s) is the ratio of real to imaginary part in the
forward direction. This suggests that the real part of the
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Tom IV. Ratios of pp obtained by direct calculat'on LR»(s) jand by fitting the energy spectrum I R, »(s)j
P~ (GeV].)
R»(g)
R ~t»(s)

6.1 9.9
0.64 0.555
0.734 0.4y5

)5.&

0.485
0.3355

20 00

0.45 0.32'
0.29 0.25

scattering amplitude has the same small-angle ~ de-
pendence as the imaginary part. Bellettini e~ al."
studied pp scattering at p&a, =10, 19, and 26 GeV/c in
range of very small angles, extending into the Coulomb-
interference region. %ith the same t dependence for

~4 G. Sellettini, G. Cocconi, A. N. Diddens, E. Lillethum, J.
Pahl, J. P. Scanlon, J. %'alters, A. M. Wetherhell, and P. Zanella,
Phys. Letters 14, 164 (1965).
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both real and imaginary parts, a very good 6t to the
data was obtained. If we assume this fact to be also
true for small angles, our formula for the slope becomes

oz(s)(l+R(s))$1+X'(s)j
b(s) = (52)

g~[1 —{l—$LI+g(s)$LI+X2(s) jl't2l

Experimentally, only X»(s) is not negligible. If we

take X»(s) into accost, a slightly better Qt to b»(s)
will result.

If we do not approximate the relation go ~(s,t)
"g«(st) by gq (s,t) ~g« "(s&t) Lcf. Eqs. (2.16)—
(2.19)j, we can proceed in the following way: Choosing

as a parameter, b (s) can be determined by the,
'

tota1 cross sections which can be obtained by means of
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FIG. 4. The spectral shapes used to evaluate E pp p(s) are
represented by the dashed curves. The doubly differential cross
sections from Ref. 6, d'e/dIt dW, as plab varying from 6.1 to
20 GeV/c and [t) fixed at 0.042 1GeV/c}' are denoted by the solid
curves. The invariant missing mass is 8'.

the quark model. With known b (s), we can determine
b ~(s) through Eq. (3.10) and the ir.V unitarity con-
dition, that

Imht ~(s) = lhi N(s) I'+I»i (s) I'I' (s,0)
+spt(s) " (53)

and then determine bNN(s) through Eq. (3.10) and the
cV V unitarity condition

Im»i (s) = lhi""(s) I'+ lhi "(s)I'I'""(s,0)
+rp (s)lvN (5 4)

Because the pp total cross section stays almost constant,
it can be shown that the PP peak shrinks even if b 'v(s)
is a constant and different from b~~(s). Thus, approxi-
mation (2.19) can be relaxed without signi6cantly
affecting the results.

In our calculation, we have used a grey-sphere shape
for p, . It is important to inquire whether the slopes are
significantly affected by choosing other shapes for the
Van Hove overlap function. One basic fact about p, (s)
to bear in mind is that this function cannot be wholly
arbitrary but must satisfy several constraints: first, a
modi6ed unitarity constraint from Kq. (3.11) that
p,(s)([1+R(s)] ' for any I or any s in the range of

interest; second, that p, (s) has I dependence such that
the slopes at infinite energy have the desired values.
For example, a two-parameter Gaussian shape will not
satisfy these first two constraints simultaneously. Next
we require that the average opacity as defined in Kq.
(3.12) be independent of energy for pi,b&4 GeV/c.
Finally, we require that p, (s) be chosen so that Kqs.
(3.7) and (3.11) give the observed total cross section.
These constraints are quite restrictive. For example,
they guarantee that the difference between slopes
calculated by two different two-parameter shapes of

p, (s) will be proportional to dR(s)/ds and also to the
difference of the p's averaged by an integration. In the
case of pp scattering, where dR(s)/ds is very small, any
acceptable shape will give the same slope as a function
of s.

Let us consider the special case of two-parameter
shapes for p, in greater detail. Ke will work, for con-
venience, in the impact parameter representation' where
partial-wave sums are replaced by integrals. The most
general two-parameter shape is

p (d,s) = ff(d/Rv n(s)), . (5.5)

where d is the impact parameter. This form has the
property that e(s) from Eq. (3.12) is a constant if the
parameter g of Eq. (5.5) is constant. The total cross
section is determined by Rv z. (s), which fixes that
energy-dependent parameter. Then the slope is just

o r(s) [1+R(s)]
b(s) =

X dx x'{1—[1—)f(x)(1+R(s))]"')
0

00 —2

dx x{1—[1—Pf(x)(1+R(s))]'"), (5.6)
0

where the variable x is equal to d/Rv. @.(s). The 6nal
parameter P is 6xed by using Eq. (5.6) as s ~ee and
the scale-fixing value b(eo) as determined by Eq. (4.3).
Now let us investigate a shape which is quite different
from the grey sphere but for which the integrals in-
volved in calculating the total cross section and the
slope can be carried out explicitly. A shape linear in x'
is chosen,

p'".(d,s) =81—[d!Rv.n. (s)]')e(Rv. .(s) —d) (5 /)

Consider x+p scattering in particular. The parameters
p and Rv. rr.s(~) are found to be 0.5'/9 and 54.3
(GeV/c) ', respectively. The respective grey sphere and
linear shapes, fixed to satisfy the preceding constraints,
are shown in Fig. 5. The slopes are shown in Fig. 6.
The maximum difference between slopes calculated by
the linear shape and the grey-sphere shape in the range
of pub shown in Fig. 6 is approximately 5%%uo. We believe
that the actual shape of p,v " (s) cannot differ from the
grey-sphere shape by as much as the linear shape.
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Therefore, we believe that the slopes are not signi6-
cantly affected by choosing different shapes for p,v H (s)
which satisfy the preceding constraints.

%e expect that our model, without modi6cations, will
break down at p~,b& 2 GeVjc. Among various reasons,
the most important ones are the following: First, the
real part of the scattering amplitude becomes important,
and the elastic scattering is not just simply the shadow
of the inelastic channels. Second, the average trans-
parency cannot be a constant in the low-energy region
since it must drop to zero at the inelastic threshold.

In conclusion, we believe that the energy dependence
of the widths of the diGraction peaks for hadron elastic
scattering at small l is an interplay between the energy
dependence of the total cross section and the quasi-
elastic cross section, while the magnitude of the widths
is a manifestation of the size of the interaction radius.
At high energies, the diffraction elastic scattering does
not require complicated dynamics for explanation.
Similarly, we believe that the total cross section also
does not depend on detailed dynamics. It may only
depend on general properties of the interaction, e.g.,

lo-

FIG. 6. x+p slopes for
pP ~.(s) to be linear (dashed
curve) and a grey sphere
(solid curve).

V

as 9-
C9

b ()~N

7 Perl et al.

Foley et al. (1963)

I

15
I

17 19 21

/c



1728 G. Y. CHOW AND J. RIX

coupling constant, number of inelastic channels, phase
space, statistical counting, etc. Dynamics may then be
needed only for explaining a particular channel whose
contribution tends to vanish as energy increases,
Therefore, it would appear that the low-energy reso-
nance region has greater dynamical content than the
high-energy domain studied in this paper. Our model
also suggests that the analysis of inelastic collisions will

be simplified if the quasielastic part is removed. Con-
cerning experiments in the future, it is desirable to
measure the energy spectra for z~p, E+p, and pp
scattering so that our calculated E(s) can be checked,
at least qualitatively, by experiments. Finally, we notice
an interesting prediction on the width of x~ elastic
diffraction scattering. According to our model, the
quasielastic scattering for all processes is mainly due to

the OPE diagram. However, such a diagram is forbidden
in em scattering by 6 parity. We expect that the con-
tribution due to other diagrams is very small. As a
consequence, the quasielastic cross section for vrx will
be very small. If the x7r total cross section behaves like
all other total cross sections (i.e., does not increase
with increasing energy), we predict that shrinkage of
the ~m digractiorl, peak is impossible.
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Gauge Theory of Strong Interactions*
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A generalization of gauge invariance in strong interactions is given. This leads naturally to a structure
of I U(3)j' with the gauge fields corresponding to the quantum numbers J = 2++, 2+, 1,1 +. Currents
of both first- and second-class types are present. A tentative assignment of the gauge fields to possible
resonances is made.

1. INTRODUCTION

N important method in considering the sym-
~

~

metrics of strong interactions has been to use
gauge invariance of a Lagrangian to infer the existence
of conserved currents. The gauge invariance is then
broken by mass terms for example, resulting in partial-
conservation laws. When these conserved or partially
conserved currents are assumed to be the currents
which describe the electromagnetic and weak inter-
actions, several deep results follow. ' The spin-1 gauge
fields that are inferred by a local gauge invariance of
a Lagrangian have been considered to be important
because they must belong to the regular representation
of the symmetry group. With the recent work of Kroll,
Lee, and Zumino and of others, ' they too have been
shown to be important in a dynamical sense in describ-

*Supported in part by the National Research Council of
Canada.

' S. Adler and R. Dashen, Current A/gebras (W. A. Benjamin,
Inc. , New York, 1968).

~ N. M. Kroll, T. D. Lee, and B.Zumino, Phys. Rev. 157, 1376
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T. D .Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters 18,
1029 (1967).

ing the electromagnetic and weak interactions of the
hadrons. Since broken SU(3) is well established as an
algebraic symmetry, it would seem important to in-
vestigate the full consequences of an approach based
on successive approximations to a completely exact
local gauge invariance. Not only is such a method an

important and fundamental way of arriving at the
interaction of fields, but it has, in the past, also been
used to infer the existence of pionic resonances which
are identified with the gauge fields. 4

In this paper, we examine a generalized application
of gauge invariance, ~~ and arrive at an underlying
group structure of LU(3) O'. A tentative assignment of
the gauge fields to possible resonances is made.

4 J.J. Sakurai, Ann. Phys. (N.Y.) ll, 1 (1960).
'The group )U{3)j' obtained here is not the same as the

group obtained previously by the authors listed in Refs. 6 and 7.
The transformations which these authors considered may still
be applied along with the generalization given here and would
result in a doubling of the number of gauge fields.' P. G. O. Freund and Y. Nambu, Phys. Rev. Letters 12, 714
(2964).

~ A. Salam and J. C. Ward, Phys. Rev. 136, B763 (1964). We
shall follow the notation of these authors.


