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Feynrrtan-Like Diagrams Compatible with Duality. I. Planar Diagrams
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We propose a perturbative approach in which the Veneziano representation plays the role of a Born
term. We interpret Veneziano s formula as describing only the contribution of one-particle intermediate
states. We then add to it the contribution of many-particle intermediate states by means of Feynman-like
diagrams. The rules for writing the integrals corresponding to any planar diagram are given. Crossing
symmetry, duality, and Reggeization are explicitly taken into account. We Gnd the asymptotic behavior
of each Feynman-like diagram. We sum them and prove that the whole amplitude has Regge behavior.
The new trajectory, however, is no longer linear, and it incorporates correctly the elastic unitarity constraint.
We argue that this approach will ultimately provide a framework in which generalized unitarity (in Cut-
kosky's sense) can be imposed.

I. INTRODUCTION

A CCORDING to the recent phenomenologica. l
studies of hadronic reactions, most of the known

hadrons lie on straight-line Regge trajectories and play
a more or less equivalent role' in nature. The validity
of duality' in hadronic reactions also becomes more and
more convincing experimentally. Therefore, we try to
make a dynamical theory of hadrons that incorporates
Regge behavior and duality as first principles, and that
treats all hadrons in an equivalent "democratic" way. '

In the usual field-theoretic perturbative approach,
one ascribes a field for a hadron in the same way as for
a lepton; one is then led to consider some hadrons as
elementary while others (necessarily those with high
spin) are composite. In that formulation one has to add
the two separate I'eynman diagrams for the s-channel
and t-channel elementary-particle exchange, so that it
is impossible to incorporate duality with this approach.
A way out of this difhculty, within field theory, may be
to consider a kind of field-theoretical quark model
where the fundamenta1 fields do not correspond to any
observable particle. However, the present-day fie1d
theory is powerless to provide quantitative results with
this model. Because of these difficulties, another
opposite approach has been proposed: The analytic
5 matrix in which one tries to avoid field concepts and
to formulate the theory entirely in terms of on-the-mass-
shell matrix elements. 4

Our approach lies between these two extremes. We
try to buiM a perturbative series in which the Veneziano
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representation plays the role of a Born approximation. '
In higher-order terms, we include the contribution of
many-particle intermediate states in a way similar to
the usual perturbation theory, i.e., we write Feynman-
like diagrams in which closed loops are to be included.
Nevertheless, in our approach the elementary entity
that propagates off the mass shell is a tower of hadrons,
as required to get superconvergence and duality. '

Our approach stems from the observation that
~eneziano-like formulas violate unitarity in a way
similar to that in which the Born approximation does
in the usual Feynman-Dyson theory. Thus, we expect
in this manner to be able to build a model such that, in
addition to aO the properties satisfied by Veneziano's
representation, it complies also with unitarity.

Notice, however, the altogether diferent situation
that we face here with respect to the usual 6eld theory.
%e do not have any Lagrangian from which to derive
the rules to write the scattering amplitude. On the other
hand, we have the new principle of duality which has
to be taken into account.

In this paper, we try to show how the multiparticle
intermediate state can be described by Feynman-like
amplitudes. We require the same duality property that
appeared in the Veneziano formula for every four-point
part of a diagram, and we show how crossing symmetry
and Regge behavior can be kept. Although our ultimate
purpose is to impose unitarity, we do not discuss it in
general here. Ke calculate the asymptotic behavior of
each diagram, then sum them and thus show that we
recover Regge behavior. Now, however, the trajectory
function has an imaginary part incorporating correctly
quasielastic unitarity.

In Sec. II, we discuss the graphical interpretation of
duality, which is indispensable in writing the scattering
amplitude. In Sec. III, we discuss the method of writing
the scattering amplitudes and establish the relevant
rules. In Sec.IV, we investigate the high-energy behavior
of the four-point amplitudes which are constructed

' G. Veneziano, Nuovo Cimento 57A, 190 {2968}.' H. R. Rubinstein, A. Schwimmer, G. Veneziano, and M. A.
Virssoro Phys. Rev. Letters 21, 491 (1968);P. G. O. Frennd, ibid
20, 285 1968).
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0 b

FK'. i. Duality connected diagrams in the Veneziano
amplitude.

using the rules. It will be shown that the sum of the
leading planar graphs with loops has Regge behavior.

II. DUALITY AND ITS GRAPHICAL
INTERPRETATION

In this paper, we restrict ourselves to the consider-

ation of planar graphs, and for simplicity we take as an

example the four-point function. The Born term is the
Veneziano formula in which we keep only the s- and
t-channel resonances in a dual way; i.e., summing over

poles in the s channel reproduces the formula and is
equivalent to the sum of f-channel poles (see Fig. 1).
The formula is conveniently represented by the integral

dx x '&—'(1—x) (2.1)

where n(s) is the Regge trajectory function, which is
assumed to be a linear function of s. In this expression
the poles in the s and t channels appear as a result of
integration over x near x 0 and x 1, respectively.

In order to clarify the meaning of duality, we consider
next the box diagram of Fig. 2 and apply duality to
each internal line; i.e., we replace lines in one channel

by the corresponding ones in the crossed channel. In
this way we find a certain number of Feynman diagrams
(Fig. 3) that are connected with the box of Fig. 2. fn
the usual approach one should add them. Here we want
all of them to be described by a single expression: An
integral where the diferent propagators of the diferent
diagrams appear as a result of integration over a certain
region just as in the Veneziano form (2.1).

Writing the so-called dual diagrams of the usual
perturbation theory Dor instance, Fig. 5(a) is the dual
diagram of the box), r one can easily show that all

diagrams connected by duality are described by
different triangulations of a single skeleton: a deform-

i9iI
FIG. 3. Examples of Feynman diagrams connected by duality

with the box of Fig. 2.

able polygon defined by the external momenta as sides
of the polygon and internal points which correspond to
closed loops. We call duality diagrams those skeletons
that are in one-to-one correspondence with the integrals
to be added (Figs. 4 and 5). All possible propagators
correspond to all possible lines that we can draw be-
tween any two points of the duality diagram. Two lines
that cross correspond to channels where we cannot
simultaneously find resonances; they have the same
connection that the s-t channels have in the Veneziano
formula. These lines can easily be seen in the duality
diagram as diagonals of a quadrilateral which corre-
sponds to a four-point-function part of the correspond-
ing Feynman diagram. Feynman diagrams connected
by duality can also be obtained from Fig. 6(a) through
simple topological deformations, as shown in detail in
Figs. 6(a)—6(d).s However, this description does not
look so useful as the one of Fig. 4.

III. RULES FOR MATRIX ELEMENTS

We begin by writing the amplitude

(3.1)

The number m of independent variables is equal to the
number of internal lines of a given Feynman diagram,
or, equivalently, equal to the number of internal lines
of a possible triangulation of the duality diagram.

+~ I

Fio. 2. De6nitions of
external momenta.

Fzc. 4. Duality diagrams
that are in one-to-one corre-
spondence arith the integrals
to be added.

VFor the de6nition of dual diagrams in usual perturbation
theory, see R. J. Eden et al. , The Analytic S-Aviatrix (Cambridge
University Press, New York, 1966).

8 H. Harari LPhys. Rev. Letters 22, 562 (1968)j and J.L.Rosner
t &Md. 22, 689 (j.969)g have considered similar diagrams, but where
the quantity that propagates is an internal quantum number.
VVe thank Dr. Rosner for interesting discussions concerning this
point.
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FIG. 7. A part of the duality
diagram. Line y is determined
by ag, ag, ag, u4, and x.

FjG. 5. Examples of dual diagrams for the one-loop diagram
and its variations.

All k factors y, (xz. x„) correspond to all possible
propagators. Each y; corresponds to a line in the duality
diagram that joins pairs of points. Since there may be
double poles in a certain variable Le.g. , Fig. 3(f)j, more
than one y; with the same exponent may appear. They
correspond in the duality diagram to topologically
inequivalent lines that join the same two points. Since a
variable, say, y, corresponds to a line in the diagram,
we simply call it the line y.

Let us consider a pair of lines, say, x and y, which are
connected by duality. As explained in Sec. II, they are
the diagonals of a quadrilateral (see Fig. '/). If all the
sides of the quadrilateral correspond to external scalar
particles on the mass shell, the relation of x and y
should be reduced to Veneziano's: y = 1—x. Now
we make the natural hypothesis that even off the
mass shell y is a function only of x and the variables
a~, a2, a~, a4, which correspond to four sides of the
rectangle y= f(x; a&,a2 a3 a4).

One of the justifications of this hypothesis is due to
the X-point generalization of Veneziano's formula. ' In

where

1—Xn2n3 1—Xn2n~a~a4
y=

1—xn2naay 1—xQ2n3a4

1—n2 1—n2aqx
a2=

1—n2ag 1—n2x

1—n3 1—n3a4x
a3=

1—n3a4 1—Q'3x

(3.2)

(3.3)

The following properties are proved in Appendix B:

f(x; aga2a3a4) = f(x; a4aaama&) = f(x; a2a&a4a3) (3.4)

y= f(x; a&a,aaa4) m x= f(y; aja4a3a2) . (3.5)

The same line may appear as a diagonal of diferent
quadrilaterals. For the prescription to be consistent, all
expressions obtained for the same line should be the
same. In Appendix B, we prove that this is, in fact,
the case.

We 6rst choose n independent variables x~. x„
which correspond to a triangulation of the duality
diagram. Then we draw the dependent lines as diagonals
of quadrilaterals and obtain the corresponding de-

fact, as shown in Appendix A, the E-point function can
be constructed once the function f is known. The
function f must satisfy the requirements of duality
that can be stated as the condition that y must go to 1

whenever any variable, say, z, that corresponds to a
crossing line goes to 0. If z is not x, it must cross at
least one side line, so that when z~ 0 some of the a' s
must go to 1. The eight-point function' provides us
with an adequate expression for f While . the explicit
expression for f may be obtained, we prefer to give it
as an implicit function

FIG. 8. Diagram for the E-
loop amplitude. Most internal
lines are omitted here.

FzG. 6. Another vray of getting the diagrams connected by duality.

~ K. Bardakci and H. Ruegg, Phys. Letters 288, 342 (1968);
M, A. Virasoro, Phys. Rev. Letters 22, 37 (1969); C. J. Goebel

and B. Sakita, ibid. 22, 257 (1969); H. M. Chan, Phys. Letters
28$, 485 (j.969); S. T. Tsou, Z. Koba, and F. Nilssen, Niels Bohr
Institute report (unpublished).
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Fio. 9. A set of independent lines for the N-loop amplitude.
This is transformed into Fig, 10 by s ~~ I interchange.

As a final step towards giving a complete expression
for the duality diagram with N loops, we must calculate
the invariant volume elements of the integral to main-
tain the crossing synunetry. For the choice of variables
shown in Fig. 9, the integral volume element should be
invariant under the transformation (x,y,c) —+ (x',y', c'),
where (x',y', c') are indicated in Fig. 10. Since the trans-
formation is self-invertible, i.e., xl, '= g&(x,y, c) m x„
=g„(x',y', c'), the invariant volume is given by the
square root of the Jacobian. An explicit calculation
shows that

pendent variables using (3.2). We now iterate the
procedure, considering quadrilaterals such that one side
is a dependent variable; the diagonal will then cut two
independent lines, and so on. The game could go on
until all possible topologically diAerent lines have been
drawn.

This number is infinite for all diagrams with more
than one loop, because of the fact that a line may
make an infinite number of circles around any pair of
loops without crossing itself. Ho~ever, it may not be
necessary to include all the lines. To maintain duality,
we must include all the lines needed to construct the
triangulations corresponding to all Feynman diagrams
connected by duality. Crossing symmetry also puts
some restrictions on the number of lines. In our example—the four-point function with spin-zero identical
external particles —crossing symmetry means s ~ t
symmetry (we are considering only planar diagrams).
This can be imposed most easily by requiring invariance
of the integrand with respect to the transformation
(see Fig. 8) pr~~ p4, pz~+ pz. Since in this transforma-
tion a line from 0 to 1 goes into a line from 0 to 4, we
conclude that we need both of them to have crossing
symmetry.

Finally, we expect unitarity to impose severe con-
straints. From the limited point of view of this paper—
that is, with the idea of constructing a framework where
unitarity can ultimately be imposed —we try at this
point to leave as much freedom as possible. However,
we will show in the next sections how the imposition of
some kind of limited unitarity is possible and provides
further restrictions on the number of lines to be
included.

K+1

g {$1—c;(x;+x; r)+x;x, rj' —4x;x; x(1—c~)'} '"

)&{L1—c;(y;+y; &)+y,y; &j'—4y;y; r(l —c;)'}

(xo —xN+1 y0 yN+y
——0) . (3.6)

We can still multiply the whole integrand by an
arbitrary function, provided this function is symmetric
with respect to the previous transformation
(x,y, c)~ (x',y', c'). However, once more we expect
unitarity to make some restrictions on this arbitrari-
ness, as will be borne out subsequently.

Example: box diagram Here we a. pply the preceding
rules to construct the box diagram. Let us first choose
as independent variables the x; shown in Fig. 11. The
dependent lines z; can be written at once from the
prescription of the previous section:

1 x 1 XX gx+i
z(= f(x&, x, gOOx, +g) =

1—xx; g 1—xx+j
(3.7)

In the second step, the y;, can be written, for instance,

y4z= f(x4,.xzzzOx)).

Replacing z3, we obtain

1—x3x4 1—x3x4xyx2
y43

1 x3x4xg 1 x3x4x2
(3.8)

Finally, the u; lines can be considered. Notice that
these lines correspond to no dynamical variable. It con-
tributes a factor that is a function only of the x;. The
exponent is cz(0) —1—, where a is a trajectory with the
quantum numbers of the vacuum. To compute it we
have to extend the prescription, because only in a
generalized sense can we consider this line to be a
diagonal of a rectangle. Analogy suggests

u, = f(xz, x,s,z4x,) . . (3.9)

FIG. I0. Another set of independent lines for the E-loop function.
This is transformed into Fig. 9 by s ~+—t interchange.

The invariant metric is

I= L(1—x~xz)(1 —xzxz)(1 —x,x4)(1—x4xq) 1 ', (3.10)

and the arbitrary function may be, for instance,
(1 xfxzxzx4) ", because this is zero when all other
variables are indeterminate.
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IV. HIGH-ENERGY BEHAVIOR OF ELASTIC
SCATTERING AMPLITUDE

In this section, we calculate the asymptotic behavior
of the E-loop amplitude. Our purpose is to find out
how the sum of all terms goes at high energy. We
suppose that the leading asymptotic behavior of the
sum will be given by summing the leading asymptotic
behavior of each term. "

A. Integral Representation of N-Loop Function

To obtain the high-energy behavior, it is convenient
to choose a set of independent variables (x;,y;,z;) in the
integral representation diR'erent from those of the
preceding section (x, ,y, ,c;). The new set of variables is
shown in Fig. 12(a), and is obtained from the old set
by the transformation

FIG. 11.Diagram for the box diagram; y43 is the self-energy
correction to an external particle, and u1 is a tadpole line.

amplitude IN is given by

N 1

IN=( —zg')N+' g d'ks dXdFdZ gN
J=l

z;= f(c;;y;y; &x, &x;),

with the Jacobian

N+1 8Zs
—1

Bc;

(4.1)

(4.2)

XG~(XVZ)D~ ~»((»»&') '

X(g g —p(s)((kg»)~}—&)(gg —4( ((kg—»)&)—&)

J J

where xo=yo= xN+&=yN+&= 0. The explicit form of the
Jacobian is rather complicated, but the following
asymptotic form is useful later:

XG~—R4((»—»&')—'( g Xs)r—'~x'((&'J—)r&')—') (4 4)
J&E

where 0,;;, u& ~, and e;& ) are Regge trajectories in

(p, —p,)', (ks k&)', and —(ks —p;)', respectively. X, F,

as s;~0. (4.3)

The Feynman diagram which should be associated
with Fig. 12(a) is shown in Fig. 12(b), which is of course
equivalent to the X-ladder diagram or its various
variations, as discussed before.

In the following, we assume that all external particles
are scalar, with a common mass nz. In terms of
p& p2 p3 p4 the invariant variables s and t can be
expressed as

s= (p~ —p4)' t= (p&
—pa)'.

For convenience we choose p4= 0. To write the integral,
it is convenient to introduce a notation for the products
of all variables that correspond to the same Regge
trajectory (i.e., those that have the same exponent).
I.et us denote by A J, A J, BJ, BJ, and XJ~
(J,X= 1 . E) the product of all variables, dependent
as well as independent, that correspond to lines con-
necting the loop momentum kJ with the points of
momentum p&, p4, p&, pa, and k)r, respectively. Let us
further denote by CN the products of those between
p2 and p4, and by DN the products of those between p~
and p, .

Then the integral representation of the E-loop

Nfl

XN

N

(b)

P~ ~T

' Compare with the calculations done with ladder diagrams, FIG. 12. (a) A set of independent lines (x;,y, ,z;) for the 3T-loop
Ref. 7. function. (b) Feynman diagram associated with (a).
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Pz and two E-dimensional vectors k and a:

A = (as}r),

ass=in(AsAsBsBs Q Xs}r),

(4.9)

(4.10)

aJ~ ———lnxJg, K~J
k={ks}, J=1, , V

a={—(ps lnAq+pt lnBq+ps InBs)}, (4.11)

FIG. 13. Lines included in the X-loop amplitude. A J,Bg ~ ~ repre-
sent products of aH possible lines from kJ to pg, p1. and

J=i, X

(4.12)brr=ln(At A)r), err =lnCy

In going from the first line to the second in (4.8), we
have diagonalized A; XJ are the eigenvalues of A, and
{ks} represents the stationary vector of the bilinear
form F

Substituting (4.8) into (4.5), and performing the
integration over kJ, we obtain

(4&} r~=( -)G~D "(" ' exp(I&), dXd YdZ

and Z stand for sets of variables x& x&, y&. .y~, and
zy ' ' z~+y. The function G~ is a regular function at
z; 0. The invariant volume V~ obtained in Sec. III
and dependent variables which correspond to the
self-energy diagrams are implicitly included in G~."

To make integrations with respect to kJ, we rewrite
the integrand of (4.4) in an exponential form (we take
do(/dt = 1):

where

P = —g [(ks—p.)' lnA s+(ks p4)' lnAs—
J

+Q (ks —k}r)' lnXsx+(ks pt)' lnBs— where

XDN !t

Edet! AI)

Xexp[ —sF(XYZ) —H(XVZ)), (4.13)

+(kq —ps)' lnBs j (ps p4)' lnC}&r, —(4.6—)
F(XIrZ)

( N=( —&g')"+'g}&r

XG}r(gBs "'" ')(gBs '"' ')
J J

X( g X }r " '"' ')(gA '"' ')
J&E J

1
{P —s'Csx[lnA s ln(A rcBrcBx)

detIAI s,x

+lnA}r ln(A sBsBs)]
—[ln(At .AN)+InCN 1 det

I
A

I }, (4.14a)

1sr(XFZ)
X(gA —a&~(0}—1)C —»&4(0}—} (4 7)J t

P Crcz lnBs lnBrc
det!AI J,x

Cs}r ln(BgBs) ln(B}cBrc)—m2F= —(k,Ak)+2(a, k) —pss(b}&r+c}&r)
detIAI

The expression (4.6) is further rearranged to a
compact form:

—p
' ln(g Bs) p' ln( gBs)—

= —Q 7(skis+(a&A 'a) s(brr+crr)—

—p, ' ln(g Bz) —ps' ln(g Bs), (4.8)J

~here we have introduced a Hermitian E)&$ matrix A

"The constant g' is the normalization factor of I0 (Veneziano
amplitude). The normalization of I& is determined in such a way
that it reduces to (10)~+' when lines xJ and yJ are put on the mass
shell of the lowest recurrence of n;J.

lnBJ lnBJ—ln(g B,B,) ~g t
1n(Bus)

as s,~0 (4.14b)

and CJ~ is the cofactor of the matrix A. Notice that to
integrate over /cJ we erst perform a Kick rotation so
that kJ' becomes negative deinite. "
"Ke have performed this rotation formally without taking into

account any possible contribution from ~ko~ = &e. One of us
(M.A.V.) thanks S. Fubini for interesting discussions concerning
this point.
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Equation (4.14a) can be further simplified:

F(X,V,Z) = { P Czxazx inAz
detlAI s„x,~

—Q 1nA gCgx lnAx

—Pln(A~ A~)+InCN) detlAI)

( P InAgCgx InA»
detl AI

~inc detlAI), (4.14c)

where we have used

ln(&z&rr&x) =Q aux »&&r. —

A careful investigation of (4.14b) leads us to the
following graphical rules that allow us to write at once
the expression for the coeScients of the diferent
invariants in the exponent. "

VVe consider the diagram drawn in Fig. 13. To write
detl Al, we proceed in the following way: We consider
a subset of lines of Fig. 13 such that (i) Either among
themselves or when considered together with the
external momenta, no closed loop can be formed; and
(ii) it is a maximal set with property (i)—that is, if we
add any new line to the set we violate (i).

Then each subset so constructed contributes to
det

I
A

I
a term equal to the product of all logarithms of

the variables corresponding to lines included in the
subset. The complete expression for detlAI arises from
adding all possible products corresponding to all
possible sets of lines.

To construct the numerator in the exponent, we
proceed similarly: (i) We consider a set of internal lines
such that when considered together with some external
lines they form a closed loop. (ii) We then add to this
set aH possible lines such that no new loop is formed,
and (iii) such that if any new line is added, then (ii) is
violated.

Each set so constructed contributes to the coeKcient
of the square of the sum of external momenta which
were needed to form the loop. Its contribution equals,
as before, the product of the logarithms of all lines
included in the set. The sign of this contribution is
always negative, so that an over-all minus sign is
present in the exponent.

This construction still does not include the contribu-
tion of the lines corresponding to poles in s, t, or any
other invariant that is not a function of the loop
momenta.

"These rules are similar to the Symanzik rules for Feynman
diagrams LProgr. Theoret. Phys. (Kyoto) 20, 690 (1958)j; C. S.
Lam and J. P. Lebrun, Nuovo Cimento 59A, 397 {1969).

F(X,Y,Z)= —(s s~+) g f(xg,y )+. , (416a)
J 1

where

f(*,y) = *(1-y)'+y(1-x)'
(1—xy)'

(1-x)'(1-y)'

ln(xy)
(4.16b)

The proof of (4.16a) and (4.16b) is given in Appendix C.
We are now ready to get the hnal formula for I~ in

the high-energy region. Substitution of (4.16) into (4.13)
leads us to

g'~+' ' & (1—xq)'(1 —yz)2 dxz dye
lnr =

(2x)- 0 &-& (1—xzyz)'in'(xzyz) xz yz
%+1

Xg dz;GN(X&Y) (s, sN+, ) ~»&'&

Xexp s(z&. s&~&) g f(x&,y&)
J

1nxJ 1nyJ
+a&&~'(0) lnxz+a3& J'(0) lnyz

ln(xgyg)

(4.17)
'4 The z; lines are not the only ones joining pI and p3. If we take

another set of e lines we can consider the contribution to the
integral from the region where these lines are zero. However, we
have been able to show that these new contributions can be con-
sistently regarded as nonleading contributions multiplying the
integrand by an appropriate function. It is an open question
whether this will be the case when unitarity is imposed.

B. Asymptotic Form of N-Loop Diagram

Let us now consider the limit s-+ —co in (4.13).We
know the integral in terms of the A JA JBJBJ and XJQ
because of the rules of Sec, IV A. We must now express
these variables in terms of the Z,X,I'. From the explicit
expression (4.14a) for F(X,Y,Z), or from the rules we

have given, it is obvious at once that F is a negative
de6nite quantity. Therefore the behavior of the integral
at s~ —~ mill be given by that region of integration
where F(X,Y,Z) =0. In particular, when one of the s;
variables is equal to zero, because of duality at least
one of the variables included in any set of lines that go
from p2 to p4 is 1, i.e., its logarithm is zero. Since

F(X,Y,Z) is equal to the sum of products of logarithms
of the variables that complete at least one uncut path
from p& to P4, F(X,Y,Z) is equal to zero when any
s;=0. That is, we have

F(X,Y,Z)= —z, . zg~, fg(X, Y)+ . (4.15)

Therefore the high-energy contribution comes from the
region where at least one of the 2: is zero. We expand the
whole integrand around that point and keep only the
6rst term. '4 Then we have
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Re e (t) where
(1—x)'(1—y) 22)(x,y)

J(x,y) =
(1—xy)' ln'(xy)

(4.22)

The highest-power term of ln's in I~ is

e (o)

I e(o) I

I

Ie ~o)I+ Ie(0)I)
f with

g2N+2i„~r(—(2»(t)) Ls(t) Insj"2 "('), (4.23)
SI

0)=(',)
' ' J(x,y)

dxdy t f(x,y)]

Fio. 14. Chew-Frautschi plots; the old a{/) and o! {t)
are illustrated.

In obtaining (4.17), we have used (4.3) and set z; equal
to zero in the nonsingular factors in the integrand.
Then GN turns out to be the product of the invariant
volume factor and the self-energy factor of xJ and yJ
lines, which can be taken as

lnx lny
Xexp —t —OI~ 0 1nx —OI3 0 lny . 4.24

ln(xy)

In (4.23) and (4.24) we have assumed that n)(~)(0)
=(21(0) and no( '(0) =no(0), for all J.

If n(0) and 1( in (4.19) are negative enough, the
expression (4.24) converges. For t going to —0, we
obtain (from x=1)

with

G„—+ II 0(xz,yz), as z;~0 (4.18) ~()
27K 0

(1 y)a(0) —2—2

y
—e (0)—1

ln'y

51=Z2 ''ZX+ly

ZK+1 ~

Using the well-known formula

(4.20)

(1—xy) " ' (1—x)(1—y)
0(x,y) = (4.19)

(1—x)'(1 —y)' (1—xy)'

Integration (4.17) over z; is easily performed by the
transformation from (z; z~+1) to

$0 Z1Z2' ' 'ZN+1 y

&&(1—x) (" ' exp( —2t(x —1)$

I'(—(2(0))
27r2

1(1 y)a(0) —2—1

X( y '" 'dy)( —0 "'. (4.25)
0 ln'y

C. Total Amplitude

The summation over the number of loops can easily
be taken in (4.23) to give the total amplitude

g'(E~)dbr g'(b)d h &($0)dko
2 = CI (—(2»(t))Za)2(&)+022(&) (4.26)

we get
A 0

0 where C is an over-all normalization constant.
The most interesting point about (4.26) is the Regge

behavior with a new trajectory

(2--(t) =(2»(t)+g2~(t) (4.27)

xJyJ

g2N+2 1 dxJdy J
II J(x~yy~)

!V!(2m') 0

where Z(t) is given by (4.24). The analytic properties
of the trajectory n(t) can be seen from (4.24). Making
the transformation

lnxJ lnyJ
)(exp —P t

z ln(xgyg)

+ "'(0)) *+ "'(0)) y)
1

d]( !n])X]—a)0(t)—1

we obtain

&(t) =
2Ã 0

lnx= —I ', lny = —v

J(u 0)
dudr, (tf(u 0)1»("

u2V2

(4.28)

&«xpL&& II f(» y~)j, (4») t 2)o(1(0)+u(22(0))
Xexp — +( (4.29)

u+0 u2)
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The Landau method tells us that the location of
singularities is at

&= Cv'(I oi(0) I)+v'(I ~s(0) I)3' (4 3o)

which are the threshold and the pseudothreshold of
two-particle states with the mass Q(Ia~(0)I) and

Q(Ia, (0)I), the firs tintercepts of the trajectories
(Fig. 14). (Note that we have taken da/Ck= 1.)

The new trajectory u„„(l) approaches the straight
line n(t) asymptotically as III ~~ because of Kq.
(4.25), if n(0) is negative.

V. DISCUSSION OF RESULTS

In this paper we have tried to build a framework in
which unitarity might be superimposed on an amplitude
which has the correct analyticity and crossing-symmetry
properties. As originally stressed by Mandelstam" (and
more recently by Veneziano"), the idea of building a
bootstrap of the hadrons on superconvergence in the
narrow-width approximation" implicitly assumes that
unitarity corrections are small and that they will be
provided by a scheme of approximations where the
narrow-width solution will correspond to a zeroth-order
approximation. However, the way to impose unitarity
remained an open question. An on-the-mass-shell
approach has been tried by Veneziano. '~ This method,
nevertheless, is not manifestly crossing-symmetric.
Therefore we cannot know u priori whether in imposing
unitarity we are not losing crossing symmetry. It is
dificult to imagine a crossing-symmetric on-the-mass-
shell approach.

From a different viewpoint, i.e., trying to keep
crossing symmetry and duality in each step of approxi-
mation, we regard Veneziano's formula as a Born term
and generate the higher-order approximations by means
of an off-the-mass-shell approach similar to the
Feynman-Dyson expression. However, we stress that
this is a rather unorthodox interpretation of Veneziano's
formula. In fact, in our approach all the experimental
successes of Veneziano's formula should be reproduced
only if the corrections (after renormalization) turn out
to be small. This is not evident a priori, given the fact
that the effective coupling constant is still the strong
coupling constant.

In particular, we now have a background, and only
if this background turns out to be small will we have
"duality" in the experimental sense that resonance
contributions dominate in the FESR.

'~ S. Mandelstam, Phys. Rev. 166, f539 (f968}.The same kind
of approach (but without discussing unitarity) was proposed
independently by M. Ademollo, H. R. Rubinstein, G. Veneziano,
and M. A. Virasoro, Phys. Rev. Letters 19, 1402 (1967); Phys.
Rev. 176, 1904 (1968); and references therein.

'~ G. Veneziano, in Proceedings of the Sixth Coral Gables Con-
ference on Symmetry Principles at High Energy (unpublished).

» G. Veneziano, M.I.T. report (unpublished); see also P. G. O.
Freund, Phys. Rev. Letters 22, 565 (1969).Notice that @re are not
ruling out the possibility of an on-the-mass-shell calculation once
we knower that a crossing-symmetric theory compatible with duality
and unitarity exists.

FIG. 15. Box diagram showing examples of lines to be added.

Although there is no experimental evidence as yet in
favor of our approach, we have the following rather
impressive theoretical evidence. Ke 6nd that the model
is Reggeized, and furthermore that the output Regge
trajectory has the correct threshold behavior and
incorporates crossed-channel semielastic unitarity, at
inhnite energy. The fact that it does not include multi-
resonance unitarity effects is just a result of keeping
only the leading contribution in s for each order. This is
equivalent to keeping all orders of g'lns, neglecting
lower orders in g' alone. For this reason, we did not get
any correction to the Regge residue either.

Another feature of this model is the apparent absence
of cuts in the angular momentum plane. Although our
proof is not rigorous, a rough consideration of all
possible contributions to the asymptotic behavior
seems to indicate that they will essentially give more
corrections to the Regge-pole behavior. On the other
hand, we expect cuts from nonplanar graphs. The com-
plete Veneziano representation I including the (s,u)
term] has fixed poles at wrong-signature points. In
principle, these fixed poles could begin to move (as
happens with weak-interaction fixed poles). However,
Mandelstam" has recently given convincing arguments
against such a possibility. As an immediate consequence,
cuts will appear imposed by unitarity.

An outstanding feature of the model is that there is
no place for the Pomeranchukon. The number of Regge
trajectories is "conserved" in the process of unitarizing
the amplitude. Consistently with Harari's" theory, we
have not included the Pomeranchukon in the Born
term; therefore we have not found any output contribu-
tion corresponding to it. Ke may conjecture that the
Pomeranchukon is a cut in the angular momentum
plane and so will appear when nonplanar graphs are
included.

Finally, we mention that internal quantum numbers
may be ascribed to the lines of Fig. 6. Then a very
interesting connection with Harari and Rosner's'
graphical analysis of duality appears. In fact, it is our
feeling that if unitarity corrections turn out to be small,
this model will possibly become a relativistic justi6ca-
tion of the quark model.

EoIe. When this work was in an advanced stage of
preparation, we learned from Fubini and Veneziano

"S.Mandelstam, Berkeley report (unpublished)."P. G. O. Freund, Ref. 6; H. Harari, Phys. Rev. Letters 20,
1385 (1968).
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that they were trying a program similar to the one
proposed here. They have written an integral expression
for the box diagram essentially equivalent to the one
written in Sec. III, and have proved several properties
about it. One of us (M. A. V.) thanks them for interest-
ing discussions-

Note added in proof. In collaboration with Veneziano
we have imposed factorization of the residues of reso-
nances that appear in the Feynman-like diagrams. We
assume that the same resonances necessitated to ensure
factorization for the X-point Born term~ must appear
as intermediate states and with the same couplings. "
For the case of the one-loop diagrams, our conclusions
are the following:
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APPENDIX A: N-POINT GENERALIZATION
OF VENEZIANO FORMULA

In this appendix we prove that the prescription of
Sec. III, when it is applied to the E-point tree diagram,
gives the usual expression.

As indicated in the corresponding dual diagram
(Fig. 16), we choose the lines yo, ;=x; as the independent
variables. The lines that cross only one independent

(a) The lines that we have previously included are
given correctly by our prescription.

(b) More lines have to be added corresponding to
lines crossing themselves, as shown in Fig. 15.

A line that turns around the loop k times is obtained
from the one that does not turn around by multiplying
the product of the xi that appear in the rational ex-
pression by g"= (g&"x;)'. Furthermore, the exponent
is equal to the exponent of the original line minus kn.

Exansp/e. In the example in Sec. III we have taken

~I-I,1+k+ I

Il

XI I

(
1—x3 1 —x3x2x4 '4 '

1—x3x2 1 —x3x4

for the Z3 line, and now we multiply this by the follow-
ing factor.'

1 X3$ 1 X3X2X4$

1—X3X2g 1 —X3X4g

It can easily be proven that these lines are never zero
in the range of integration. They do not correspond to
any propagator. That is the reason why we could not
discover them by duality considerations.

(c) Finally, a line that may be depicted by a circle
around the loop must be included (see Fig. 15, line w).
Its expression is

Fzo. 16. Independent lines x; and dependent lines yi.

line, say, x;, can be written by the prescription of setting
ci= xi 1, a2= x;+1, and u~= a4= 0. We then have

1 xi 1 xixi 1xi+1
Pi—l, i+1

1 xixi 1 1 xixi+1
(A1)

1—Xi Xi+k

Pi+k+1,i—1
1—Xi' ' 'Xi+kxi —1

1 Xi 1xi' ' 'Xi+kxj+k+1
X

Xj+kXi+k+1
(A2)

where we define xo= x&=0. Now we prove by mathe-
matical induction that a line that crosses xi -xi+k can
be expressed by

As is the case with the X-point function, no arbitrary
invariant function is allowed if we do not modify all
Born terms correspondingly.

With the inclusion of these lines, unitarity is pre-
sumably satisfied (to second order in the coupling
constant). Unfortunately the integrals turn out to be
divergent. We have not yet succeeded in renormalizing
out the divergences.

We suppose this to be true for k and we prove it for
4+1.For this purpose we consider the rectangle formed
by x; &, y;+q+&, ; &, y;+&+&,;+&+2 (=—0), x;+&+2. Then the
prescription implies

1—xk+i+ 1(x 1 xk+i+1&xi—1xi+k+2
y; i„+...——— (A3)

1—xk+igglxi 1 1 xk+j+lofxi+k+2

~o S. Fubini and G. Veneziano, Nuovo Cimento (to be
published).

~'This problem has also been discussed independently by
K. Bardakci, M. B. Halpern, and J. A. Shapiro, Phys. Rev. (to
be published). They take the Ward-like identity into account.

where 0. is dehned implicitly by

1—& 1—&Xi 1X;+k+1
Pi—l,i+k+1

~i-1 1 &Xi+k+1
(A4)
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From (A2) and (A4) we obtain obtain the formula

Qf = X ' ' X .+Ic

When this replacement is made in (A3), the theorem
follows. The formulas (A1) and (A2) agree with the
solution obtained in Ref. 9.

APPENDIX B: UNIQUENESS OF EXPRESSION
OBTAINED BY PRESCRIPTION

OP SEC. III

Let us suppose that a line can be regarded as the
diagonal of two dii8erent quadrilaterals. In Fig. 17,
y can be suggested as the diagonal of a~a2a3a4, dual to x,
or as the diagonal of a~'a2'a3'a4', dual to x'. In turn,
a and x' may be determined in terms of the same
variables that a; and x can depend on. Then we want
the same expression for y irrespective of the manner of
construction. To prove this, we first notice that the two

Fzo. 17. Two possible ways
to determine the line y.

quadrilaterals, together with all the lines needed to
express y as a function of certain variables, are iso-
morphic to a corresponding set of lines appearing in a
certain X-point function. This is due to the fact that
the prescription of Sec. III specifies that the quadri-
lateral cannot enclose any loop. Thus, the loops being
external to the relevant part of the diagram, the latter
is topologically equivalent to a certain part of an
X-point function. Now we prove that the expressions
(A2) imply the prescription of Sec. III for any quadri-
laterals that one can imagine. Referring to Fig. 18, we

1 xxI, ' ' 'x
y=

1—xxy' ' 'x ay

1—xxj ' ' 'x aptly

1—xxj. ' x rta2

1—xg XI, 1—xy -.XI,a2X
ay=

1—xg. . .xI,a2 1—xg XIX

APPENDIX C: PROOF OF (4.16)

Throughout this Appendix we assume that all zJ are
small, so that in the following equations higher-order
terms of z's are always disregarded. We first prove the
following four lemmas:

I.emma I. The shortest line" from the point kJ to
kJ & is given by

(1—xr p)(1 —yg i) (1—xr)(1—yg)
XJ J y=1— zJ)

1 XJyJXJ—1yJ—1

J= 1,2, . . . ,X+1 (C1)
where

Xi,o= Ai, XN+s, N= AN

xo= yo= xN+1= yN+1= 0.

Proof. The line X~ r & is determined from xr, yz, xz &,

yr &, and sz (Fig. 19) by the use of the duality function

f introduced in (3.2):

&z.r r= f(sJ, xz,yz, yz i,xz i) (C2)

The power-series expansion of (C2) with respect to s~
leads us to (Ci).

1—xk+g . .x 1—XI,+y. x xay
a4=

1—XI,+y x ay 1—XI,+y x x

Identifying x; . .XI, with n3 and XI,+& x„with n4, we
recover the formula of Sec. III.

Finally, the symmetry properties $Eqs. (3.4) and
(3.5)j are trivially proved from the symmetry properties
of the eight-point function.

r

XI

4
I

'~

Xi,

g o
c

P

OI

FIG. 18. The line y as a function of a1, a2, aa, a4, and x.

Fzo. 19.The shortest line XJ,g I as a function
of xz, yJ, xJ I, yz I, and sJ.

""Shortest line" is any line that does not cut any s; line twice,
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K,J+I

tf)
KJ

approach unity. The same is true for P. Therefore the
substitution of Xq+l, q into (C5) gives

XJ+1
X&r,J 1 (1 Xrr, J+1 )

(1—xi+1)'

(1—»+1)(1—y~+1) (1—»)(1—y~)
X ZJ+1 ~

XJ+lyJql XJyJ

FzG. 20. A nodeless line fxom K to J; XEJ&+).

Lemma Z. The line from E to J passing above all
points L (K)L)J), i.e., the line crossing xz (K&L)J)
(Fig. 20), is given by

(1—xrr) (1—
y&r) &r x;(1—y;) 3)

Xx.J&+'=1— II
1—

x&ry&r ~'-&+1 (1—x;y;)')

This proves (C3).
Lemma 3. The line from X to J passing under all

points L (E&L)J), i.e., the line crossing yz, (for all L
of E&L&J), is given by

X&r, r, & '= {interchange of x;~y; in (C3)). (CS)

Proof. From the syn&metry of the dual diagram and
Lemma 2, this is obvious.

Lemma 4. The shortest line" from E' to J crossing
xl. and yz, (E&L,L'& J, and LWL') is given by

1—XJyJ

(1—xz) (1—yz) « —**)«-)*) *,« —)')
)X st+1 z&r. (C3) X&r,z" o' =1—

1—x~y~ 'ec 1—x,y;

Proof. This is proved by mathematical induction. The
formula (C2) is true for K= 5+ 1 because of Lemma 1.
Let us assume (C2) to hold when J is J+1. Then
XQ,J&+ is expressed in terms of XJ+1,J xJ xrf, xJ+1,
and X&r,~+,&+& (Fig. 20) as

X&r J'+'= f(xi+1 j XJ+1,JpJpKyXE, J+'1 ') . (C4)

The right-hand side of (C4) is expanded in powers
around XJ+],J 1 and Xg,J+1&+~= 1 to be

npx J+1
1— (1—Xg~l g)(1—X&r ~~,&+&), (C5)

(1—uPxg+1)'

where n and P are given by

1—n 1—nXJ+1XJ+1 J
XJ—

1—nxJ+1 1—nXJ+1 J
(C6)

1 p 1 pxJ+IXK, J+1 +
XQ—

1—pxg+1 1—pX&r, g~ 1'+'
(C7)

3

tn)

K, J

Fxe. 2T. A. shortest Hne arith s nodes X~,J&"&.

Since (1—XJ+1 J)(1 X&r,Jql&+&)=O(ZJ+1' ' 'sir), we
take the zeroth order in a and P of (CS). In (C6), be-
cause XJ+1,J~1 as zJ+1—+0 and XJW1, n should

y)(1 —xr)') (1—»)(1—yz)

(X II I ". ', (C9)
1—

x~yq ) 1—xJyJ

where C (C') are a class of lines x; (y;) which are crossed
by the line Xz,J{:~

Proof. Equation (C9) is true for arbitrary E and J if
either the set C or C' is "empty" due to Lemmas 2 and 3.
Let us call such a line the "nodeless" line. The line which
crosses some of Xz,z 1(K&L&J) n times is called the
line with n nodes. We assume that (C9) is true for the
line with n —1 nodes or less and for arbitrary E and J
(Fig. 21).Then we prove (C9) for the line with n nodes.

Let us consider a hne X~,J~"& with e nodes, which
has the nth node between L+ 1 and L (K)L)J) (bold
line in Fig. 21). We want to determine X» g~"& from
a1a2aia4 and XL+1,q in Fig. 21. The lines a1 and a2 are
nodeless. The line a3 (a3) goes from E to L (L+1),
crossing the same lines (x and y) that X&r,J&"& does.
Therefore, a3 (a3) has n 1nodes (—n 1or n—2) Ou-r.
problem is to prove that

xi+1(1—y~l)

(1—xz+lyz+1)'

yz(1 —xz)'
X Bzgil z&r (C10)

(1—xzyz) '

under the following assumptions:

yz, (1—xg,)'
a1= 1—8

(1—xz,yz,)'
(1—xz+1) (1—y~l)

X zg~l zz+1, (C11)
XI+1$~1
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a2 ——1—8
(1—xr,)(1—yr, )

1—XI,yl.
zJ+1' ' 'ZI ) (C12)

where
$;= 1—u; and 8= 1—Xg+i g.

x~i(1—y~i)'
a3=1—3

(1 xlr+ly I+i)

(1—xr,)(1—yr)
X sr+i. . sz, (C13)

and

(1—x~i)(1—y~i)
a4=1 —A — — ZL+g. . z~,

1—x~yy~g
(C14)

(1—xn-i)(1 —y~i)
XI+l,I, =1—

&L+lyL+1

(1—xr.)(1—yr, )
X s~i. (C15)

1—Xl.yI,

By careful consideration of the order of magnitude
of $; and 8, O($3) O($48), etc. , we can show that

a —+x~i, P —+ 1, (C19)

x;(1—y;)'+y. (1—x.) ')—l c =.,"' „n i. (C20)
(1—xy)'

as the z's —+ 0.'

Substitution of (C19), (C11), and (C14) into (C16)
leads us to (C10), which guarantees Lemma 4 for the
line with n nodes. Q.E.D.

Proof of (4.16). To prove (4.16), we first substitute
(C9) into (4.14a). Lines other than the shortest, ' which
cross a certain z; t~ice or more, can be disregarded in
the evaluation, because the shortest line is the higher
order in z;. Note that such a line has a structure like
1 —O(sx s;2 sg+&). The second term in (4.14a) is

The summation is taken over all possible I. s and m
suchthat X+1)L )L i) )Li)0for ting=1, . . . ,
E. Substituting (C9) into (C21), and replacing
In(BrBr) by ln(xlyr), we write (4.14a) in terms
of xI,, yI, , and z&.

Next we compare the result so obtained with

Xir,J =f(XJ+1,J j ulyu2yu3+4)

~1 (1—ui) (1—u4) .
(1-aP)'

(C16)

The first term in (4.14a) is the sum of the following
Here A and 8 are known functions of x; and y; from
(C9) for the n —1 nodes or less, factors which correspond
to lines from E to I.+2 and from I.—1 to J, respec- lnX++l, l.„lnXI.„,L, , lnXL, 1 0

tively. Using the duahty function f, we write X&,&&"& (C21)
in terms of u; and Xz+i,z, and expand it in powers n(Br Br ) ln(Br -i r -1) ln(BrlBrl)
of (1—ui) and (1—u4):

Since the factor (1—ui)(1 —u4) is of order ski sx,
we may take the limit as the z's~ 0 for aP/(1 —aP)'.
The explicit formulas of a and P are

a= 26/
(2b+ (4&—54b —bb)

+L44$4&+(k4& hb &6—)' —h&$ '7'—") ( )
P=(b+ 6 54+ 6) (C18)

n
xg(1 —yg) +yg(1 —xg)

J~l (1—xzyz)'

(1—xg)'(1 —yg) '
Zl ' ZN+$ p

1n(xpyp)

term by term. This proves (4.16). Q.E.D.


