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The Breit equation for two Dirac particles in an external magnetic field, with anomalous

magnetic moments introduced phenomenologically as Pauli moments, is taken as the starting

point for a Chraplyvy- Barker-Glover reduction. First-order perturbation theory employing

the nonrelativistic wave function for the 8 ground state is then used to derive expressions for
the diagonal matrix elements of the Hamiltonian which depend linearly upon the field. These

expressions are symmetric in the masses and anomalous moments of the particles and agree

with previous results to relative order n . However, additional higher-order terms arise
due to changes in the anomalous moments (in principle, obtainable from field theory), to re-
duced mass corrections, and to factorization of the moments as free-particle moments times

shielding corrections. Contributions to the shielding expressions are interpreted as arising
from (1) relativistic mass corrections, (2) spin-orbit coupling, and t'3) spin-other-orbit
coupling. In the case of atomic hydrogen the first two effects dominate the electron shielding

and the latter dominates the proton shielding. Similar calculations and interpretations may

be applied to magnetic shielding in larger atomic and molecular systems.

I. INTRODUCTION

Because of the relative ease of performing the-
oretical calculations as well as experimental mea-
surements on the bound electron-proton system,
the hydrogen atom has long provided a fruitful
testing ground for physical theories. In addition,
new concepts which have arisen from successful
theoretical treatments of intera, ctions in atomic
hydrogen have found useful application in dis-
cussing similar interactions in larger atomic and
molecular systems. New precision measure-
ments'y' of the electron-proton g-factor ratio in
atomic hydrogen in its ground electronic state
have made it of interest to reinvestigate the the-
ory behind these measurements, since the experi-
mental precision will soon be beyond that of pres-
ently available theoretical calculations. '

Both the electron and the proton g factors are
modified when the two particles become bound to
form the hydrogen atom. Calculation of bound-
state modifications to the electron g factor, based
on the Dirac equation for the electron in a central
Coulomb field and an external magnetic field,
have been performed. ' Similarly, the modifica-
tion of the proton g factor to order &' (a is the
fine-structure constant) is the well-known Lamb

diamagnetic shielding correction. 4 The results
of these calculations for the '8 ground state are,
to order &',

g (h)=2(1- -'a2Z2)
e y

g (I)=g (1- —,'~'z),
P P

where ge(h) and gp(h) are the electron and proton
g factors for atomic hydrogen, gp is the free pro-
ton g factor, and Z is the proton charge. These
treatments may be extended'y' to higher order in
a' (the next contributions, of order &'Z' and
a'Z', are important for heavy atoms), but they
then ignore important contributions discussed be-
low. For example, it is commonly assumed that
the Dirac result for the electron g factor g =2e
may be replaced in Eq. (1)by the more exact re-
sult obtained from quantum electrodynamics, '

g = 2[1+o.'/2x- 0 328 ~/w2+ 0{o')1 {2)

This replacement is apparently a good approxima-
tion to order &', but not to order &', as is shown
below. Furthermore, the above treatments ne-
glect the effects of the motion of the proton, and
they ignore the possibility of bound-state modifi-
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cations to the "anoma1ous" m~agnetic moments ob-
tained from quantum electrodynamics in the case
of the electron and, in principle, from a more
general field theoretic treatment in the case of the
proton.

Therefore any treatment which hopes to obtain
all the higher-order corrections to a given order
beyond &' must employ a theory which considers
all the corrections mentioned above. Although

a rigorous treatment of the proton anomalous
moment is difficult, it is possible to incorporate
the experimental value of the free proton moment

as a parameter in the theory, thus treating only
bound-state corrections to this quantity. A rea-
sonable starting point for a theoretical discussion
of this problem is the Bethe-Salpeter equation. '
The author is currently investigating a treatment
of the problem employiag this equation. However,
the more approximate but simpler Breit equation'
is chosen for an initial treatment presented here,
since it is much less difficult to work with. Fur-
thermore, since the Breit equation can be de-
rived, ' "with certain approximations, from the
Bethe-Salpeter equation, it is expected that the
results of more refined future treatments can be
presented in a form similar to that of the results
obtained here. In fact, since Brodsky and Pri-
mack have shown' that, except for terms of rel-

ative order (Z&)'me/Mp, the Breit equation gives
the same results for the hydrogen Zeeman effect
as does the Bethe-Salpeter equation, we can ex-
pect the results of our present treatment for any
given order less than (Z&)'me/Mp to be correct
if we introduce correct expressions (which will
include bound-state modifications) for the anom-
alous moments into the Breit equation.

A word on terminology may be appropriate. Re-
sults obtained for the magnetic moment of a par-
ticle in a modifying environment are commonly
factored into a free-partic1e value times a cor-
rection as in Eq. (1). In the case of the proton
and other nuclei in atoms this is commonly called
a "shielding" correction" implying that the nucle-
ar moment is shielded in some sense by its en-
vironment, usually resulting in a decrease in
magnitude of interaction with the applied field.
This term is seldom used in the case of the elec-
tron. In this work the term shielding is used in
the general sense of an environmental correction
factor for both the electron and proton. Indeed,
the results obtained here show clearly that when
all contributing terms are included, the expres-
sions for the electron and proton g factors are
completely symmetrical and that therefore the
correction factors may be given the same phys-
ical interpretation.

II. THEORY

Our starting point is the Breit equation for two Dirac particles, with electric charges e, and e, and
coordinates r, and r, in a uniform external magnetic field R

[X(I)+X(2)+U(1,2)]e(1,2) = Z~(1, 2),
where X(1) = cn, m, +P,m, c2 —a, (h)(e, R/2m, c)(P,o, ' H, —iP, &, ' E,),

(3)

%, = p, —(e,/c)X„

X, = —,'Hxr„
(4)

(with similar terms for particle 2), and a, (h) is the anomalous part of the g factor for particle 1 in the
bound system. For a free particle g= 2(1+a) as in Eq. (2); an h in parentheses distinguishes quantities
which depend on the bound-state environment (hydrogen atom) from corresponding ones for the free par-
ticles. We have thus introduced the anomalous magnetic moments into the Breit equation phenomenologi-
cally as Pauli moments~; the validity of this procedure in the two-body case has been discussed by Breit
and Meyerott. '4 The other terms appearing in Eqs. (3) and (4) are defined as follows: U(1, 2) is the Breit
operator

U(1, 2) = (e,e2/r)[1 —(a, &2/2) —( o, ' r a~ ' r/2r )]. (5)

Hy E y and H2 E2 are the magnetic and electric fields experienced by particles 1 and 2, respectively,
which may be written'4

H, = H+e, a, x r/r', E, = e,r/r',
H, = H —e, Z, x r/r', E, = —e, r/r',

r=ry r2 and the other quantities have their usual meanings.
In order to solve Eq. (3) for the wave function 4'(I, 2) and energy E for the 'S ground state, we first em-

ploy a Chraplyvy-Barker-Glover reduction, "y "which is essentially a Foldy-Wouthuysen transformation
for two particles. Once this transformation has been performed, the lowest-order terms of the Hamilto-
nian matrix elements which define the g factors may be obtained quite simply from ordinary first-order
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perturbation theory using the well-known Schrodinger solution for the unperturbed wave function. In addi-
tion, since the transformation is unitary, each term in the transformed Hamiltonian is Hermitian, and
thus may be given a simple physical interpretation. Barker and Glover" have applied this transformation
to the Breit equation for the case H = 0, and have obtained terms in the Hamiltonian corresponding to the
rest masses, the Schrodinger Hamiltonian, relativistic mass corrections, spin-orbit, spin-other-orbit,
orbit-orbit, Darwin, and spin-spin terms, plus higher-order terms. With H WO, additional terms are in-
troduced corresponding to the electronic and nuclear Zeeman interactions. The terms of interest in the
present case are those linear in H:

2

][1+a,(h)]a', H+L, ~ H] 1 —
2

'2 2
—

2
{[I+a (h)]52 ' H+L2 ~ H) 1—

2m~c 2m, c' 2m2c 2Pl2 c

4m, c 4m, 'c' r'

These terms are familiar and have the following interpretation. " The term 3C, represents the direct inter-
action of the particle spins with the field times a factor which has the appearance of a relativistic mass
correction. The second term 3C, represents the spin-orbit interactions for each particle, "but with the
canonical momentum p replaced by the mechanical momentum m. Likewise, X, clearly represents the
spin-other-orbit interactions. These are the lowest-order terms contributing to the g factors, "and the
only ones that will be considered here. Additional terms are of order ~ or higher. Also, it is apparent
that similar terms will appear in the treatment of larger atomic and molecular systems, and thus similar
interpretations will apply to these systems.

III. CALCULATION, RESULTS, AND DISCUSSION

In order to calculate the g factors, we transform the total relativistic Hamiltonian to relative and center-
of-mass coordinates, choosing the center of mass to be stationary. We then choose the leading term

X = [(m, +m, )/2m, m, ]p'+e, e, /r, (8)

as the zero-order Hamiltonian for a perturbation treatment. In the case of the hydrogen atom, the famil-
iar ground-state solution to this Schrddinger Hamiltonian (8) may be written

ms mI
(1, 2) = (v) '(Z/a')'exp[- (Z/a, 'b' ]y (I)g (2)

for charges e, =-e, e, =Ze, and masses m, =m, m, =M. The scaled Bohr radius is

a,' = [(M+m)/Mm]h'/e', (10)

m m
and X

s and X
I are spin functions satisfying the equations

e s sm
= 2m

S

pmr m
X = 2mlX

Using first-order perturbation theory, we find for the diagonal Hamiltonian matrix elements linear in
the magnetic field 0

2 2 1+2a (h) 2

e
e

2 2 1+2a (h) 2
—dE = 2]l+ (h)]ZW H 1 ——,

' 'Z'( ) ~, 'Z' ) ) ~
——', a'Z( )'"p" (12)

where a, = eh/2mc, p„=eh/2Mc are the Bohr and nuclear magnetons, respectively. It should be noted
that these expressions, which define the g factors, are completely symmetrical in the masses and anom-
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alous moments of the two particles. Each expression consists of four contributing terms arising from
Eqs. (7). The first term corresponds to the usual lowest-order Zeeman effect, the second to a relativistic
mass correction, the third to a spin-orbit correction, and the fourth to a spin-other-orbit correction.
Also, the relative magnitudes of m and M determine which terms are most important. For example, if
we set ae(h) = ac = &/2v —0.328 o."/v', ap(h) =ap, and retain only terms up to order o", we recover Eqs.
(1) for the g factors with the Dirac result ge = 2 replaced by the quantum electrodynamic result [Eq. (2)]
for the free electron. Whereas the relativistic mass correction and the spin-orbit coupling term combine
to give the correction in the case of the electron, the spin-other-orbit term is the only contributor to this
order in the case of the proton. It is interesting to note that the two corrections turn out to be equal.

The above expressions (12), which apply to the 2S ground state of atomic hydrogen, are correct to (at
least) relative order o.' . It can be easily shown that no off-diagonal contributions occur to this order, and
that the next contributions are of relative order a'. However, Eqs. (12) also contain three types of con-
tributions of higher order than u' (but lower than ~). The first of these involves reduced mass correc-
tions, primarily of order &'m/M. A second type of contribution arises because the spin-orbit terms have
factors involving the anomalous moments. This introduces a correction of order Z' for the electron,
for example. A third type is due to changes of the anomalous moments from their free-particle values.
Such a correction has been calculated for the electron" to be —(26/15v)a'Z'. Additional corrections" to
the transformed Hamiltonian, due to the motion of the center of mass, appear when an external electric
field is present but do not contribute in the present case. Nuclear polarization effects" are expected to be
of order n~(m/M)s here, and therefore they are ignored.

Now, if we write the bound-state corrections to the anomalous magnetic moments in the form of a small
additive correction to each free-particle moment

a(h) = a+5,
then Eqs. (12) give the following expressions for the two g factors:

2

g (h) =g 1 ——,'a'Z +5
p p

' M+m p
(14)

which are good to orders cF and o.'m/M if 6e and 5p are of order &' or higher. The g-factor ratio for Z
= 1 is then given by the expression

g (h) g 12v M+m e p
'1+ — a' +5 (1-5 ). (15)

If we can now find values 6e and 6p for the bound-state corrections to the anomalous moments of the
electron and proton which are correct to order &', we can then calculate a numerical correction to the
above g-factor ratio to that order. Since there is no way of calculating 5e and 5p within the formalism of
the Breit equation, one must employ a field theoretic treatment of the hydrogen atom in an external mag-
netic field. Fortunately, such a treatment has been performed by Lieb, "who finds for the electron 5e
= —(26/15m)o Z . However, since Lieb's result is obtained by approximating the proton as a fixed Cou-
lomb source, possible additional reduced mass and nuclear recoil corrections to 6e should also be inves-
tigated. Thus, as a first approximation, we recalculate 6e from Lieb's Eq. (11),"after replacing the
electron mass m by the reduced mass mM/(m+M) in the nonrelativistic hydrogenic wave function. We
find, in addition to the original a term, corrections of order o. m/M clearly negligible. Also, it is dif-
ficult to imagine additional Feynman diagrams which would contribute corrections of order &m/M to 5e,
although contributions of order a'm/M, which are of somewhat higher order than a', may be possible.
Thus Lieb's result appears to be correct to order &'. Similarly, applying the Lieb treatment to the pro-
ton in hydrogen, we find bound-state corrections to the proton anomalous moment of order a Z'm/M and
higher. Although this treatment neglects the strong interactions, it seems unlikely that strong interac-
tions are responsible for changes in the proton anomalous moment to the order we are considering. Thus,
it appears that 5p = 0 to order &'.

If we substitute the values 5e = —(26/15v) ot', 5p = 0 in Eq. (15), we obtain, to order a',

g (h)/g (h) = (g /g )[1—(99/60m)a ]= (g /g )(1 —2.04 x10 ').e p e p e p
(16)

For reasons discussed above, it appears likely that Eq. (16) is correct to order &'. Even so, the author
is currently reinvestigating corrections to orders &' and higher by means of a full field theoretic treat-
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ment of the two-body problem.
The ratio gs(h)/gp(h) has been measured with a fractional uncertainty of 3 x l.o ', and experiments are

hei' performed to even greater precision. '~' Thus, correction terms of orders cP md n'm/M wing be
important. On the other hand, if experiments on the free proton g factor reach a precision comparable to
that of the free electron experiments, "a direct experimental test of these theoretical results may be pos-
sible.

IV. SUMMARY

It has been shown that shielding corrections to
the electron and proton magnetic dipole moments
for the ground state of atomic hydrogen may be
obtained in a very straight forward and simple
manner from the Breit equation. These correc-
tions agree with previous theoretical results to
order 0", and give higher-order terms which are
within the range of present experiments. In addi-
tion, a utilization of the Chraplyvy-Barker-
Glover transformation has made it possible to
give each of these correction terms a simple
physical interpretation, according to which the
shielding of both electron and proton arise from
the same three effects: relativistic variation of
mass, spin-orbit coupling, and spin-other-orbit
coupling. To lowest order, the first two effects
are unimportant for the proton, the latter effect
is unimportant for the electron. However, for
particles of equal or nearly equal masses, all

three effects are important for each particle.
The theory may be extended, in principle, to ex-
cited states and to larger atomic and molecular
systems, where similar results and physical in-
terpretations apply. In particular, the usual dia-
magnetic shielding of nuclei in atoms and mole-
cules emerges naturally from the term in the
transformed Hamiltonian which describes the cou-
pling of the spin of the nucleus with the orbital
motion of the electrons in the presence of a mag-
netic field.

ACKNOWLEDGMENTS

The author is grateful to Professor Norman F.
Ramsey for suggesting the topic of this research
and for helpful and stimulating conversations.
The author also wishes to thank Dr. Jon H. Shir-
ley for reading the manuscript and for making
some helpful suggestions.

National Science Foundation Postdoctoral Fellow,
1967-1968. National Hesearch Council-National Bureau
of Standards Postdoctoral Research Associate, 1968-
1969. Address after September 1, 1969: Department
of Chemistry, Wake Forest University, Winston-Salem,
North Carolina 27109.

~Work supported in part by National Science Founda-
tion Grant No. GP-10775.

T. Myint, D. Kleppner, N. F. Ramsey, and H. G.
Robinson, Phys. Rev. Letters ~17 405 (1966).

¹ F. Ramsey (private communication).
G. Breit, Nature 122, 649 (1928); H. Margenau, Phys.

Rev. 57, 383 (1940).
W. E. Lamb, Jr. , Phys. Rev. ~60 617 {1941).
F. D. Feiock and %'. R. Johnson, Phys. Rev. Letters

21 785 (1968); S. H. Lin, Mol. Phys. ~12 91 (1966).
J. Schwinger, Phys. Rev. ~73 416 {1948); C. M.

Sommerfield, ibid. 107, 328 (1957); A. Petermann,
Helv. Phys. Acta 30, 407 (1957) ~

E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232
(1951).

G. Breit, Phys. Rev. ~34 553 (1929).
E. E. Salpeter, Phys. Rev. 87, 328 (1952).
S. J. Brodsky and J. R. Primack, Phys. Rev. 174,

2071 (1968).
R. A. Hegstrom (unpublished).
N. F. Ramsey, Phys. Rev. 78, 699 (1950).

13%. Pauli, Handbuch der Physik (Julius Springer-
Verlag, Berlin, 1933), Vol. 24, Part 1, p. 233.

G. Breit and R. E. Meyerott, Phys. Rev. ~72 1023
(1947). An additional term may be added to the Breit
operator to describe the interaction between the bvo
anomalous moments [see Eg. (16a) of Ref. 16]. This
term is important in calculating the hyperfine inter-
action, but does not contribute to the magnetic field-
dependent Hamiltonian matrix elements to the orders
considered here, and thus we ignore it.

Z. V. Chraplyvy, Phys. Rev. ~91 388 (1953); ~92

1310 (1953).
W. A. Barker and F. N. Glover, Phys. Bev. 99, 317

(1955).
Similar interpretations have been given previously in

the case of electron-electron interactions in many-
electron atoms See, for example, A. Abraham and
J. H. Van Vleck, Phys. Rev. ~92 1448 {1953); W. Perl,
ibid. 91 852 (1953).

This includes the Thomas precession factor. It is
interesting to note that the Dirac part of the moment is
modified by the $ factor, whereas the Pauli part is not.
There is a good reason why this is true, which can be
seen by considering the classical expression for the en-
ergy including the kinematic Thomas precession

~1S1 (H-v1x E1 1 ~T' where y is the gyro-
m~etic ratio and coT is the Thomas precession fre-
quency. If we write 71=71 Dirac+71 Pauli ——e1/m1c
+a1e1/m1c and substitute this into the above expression,
we find that since ~ = (v1 x a1)/2c = (e1/2m]c )v1



22 ROGER A. HEGSTROM 184

the Thomas precession term cancels exactly half of the

Dirac moment term in the v1 x E1 expression while

leaving alone the Pauli term, resulting in the expression
for X2 in Eq. (7).

Of course, the terms involving the canonical mo-
mentum p do not contribute here to the field-dependent

energy, but are included in 3.'2 and X3 to emphasize the
interpretation of these terms as spin-orbit and spin-
orbit interactions. In the case of molecules, however,

terms involving p contribute due to the departure from

spherical symmetry (see Ref. 12).
E. H. Lieb, Phil Nag. 46, 311 (1955).

Reference 10; Hugh Osborn, Phys. Rev. 176, 1523
(1968).

K. W. Ford, V. W. Hughes, and J. G. Wills, Phys.
Rev. 129, 194 (1963).

D. T. Wilkinson and H. R. Crane, Phys. Rev. 130,
852 (1963).

5 AUGUST 1969PHYSICAL RE VIEW VOLUME 184, NUMBER 1

X-Ray Yieids in the K and L Series of Low-Z Muonic Atoms

M. B. Stearns
Eord Scientific Laboratory, Dearborn, Michigan 48121

Rlld

G. Culligan, B. Sherwood, and V. L. Telegdi
Department of Physics, University of Chicago, Chicago, 1/linois 60637

and

M. Stearns
Department of Physics, 8'ayne State University, Detroit, Michigan 48202

(Received 12 May 1969)

Experiments are reported which remove the discrepancies between the earlier observed K
and L x-ray yields from low-Z muonic atoms and those calculated from theory. We have
made direct measurements of the K/L yield ratios for targets of 4 ~Z &8 and a determination
of the absolute K x-ray yield for Z= 3. They agree excellently with the calculated values.

I. INTRODUCTION

A long standing discrepancy in the field of
muonic x rays was the anomalously low yield of
x rays with energies below approximately 100
keV. '~' In muonic atoms, this corresponds to Z
&8 for p, -Kx rays and Z&15 for p, -L x rays.
Because of the low energies of these x rays, the
pulses produced in the sodium-iodide detectors
used in the experiments would necessarily be
small, and could give rise to electronic inefficien-
cies in the coincidence circuits which might pro-
duce such effects. Realizing this, the investi-
gators took many precautions to greatly amplify
the low-energy pulses and tested for experimental
inefficiencies by using low-energy y rays from
radioactive sources. These tests indicated that
no apparent inefficiencies were introduced which
might cause coincidence losses due to ti,me jitters
resulting from clipping the sodium-iodide pulses
or inappropriate discriminator settings. However,
the yields given in Ref. 2 were somewhat higher
than those given in Ref. 1, although both were
considerably lower than the calculated yields.

When a new type of fast discriminator was de-
veloped which used the crossover yoint of an am-
plifier pulse rather than the front end of the pulse
to generate a coincidence pulse, we decided to
repeat the yield measurements for low Z materi-
als. ' Using this new apparatus we found no dis-
crepancy between theory' and experiment. Fur-
thermore, the experimental ratios of the higher,
transition yields (i. e. , Kp to K ) can be compared
to theory and they favor an initial capture dis-
tribution which is more strongly peaked than the
2l + 1 distribution.

EXPERIMENTAL PROCEDURE

The experiment was performed with the muon
beam from the Chicago cyclotron. The experi-
mental arrangement is essentI. ally the same as in
Refs. 1 and 2 except for the coincidence instru-
mentation and the refinement of the detection ap-
paratus. The pulse from the sodium-iodide crys-
tal was amplified by a Model-101 nonoverload
linear amplifier and sent into a Model-501 fast
discriminator which generated a fast coincidence


