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Massive Gauge Theory and Weak For~ Factors
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Closely following the theory of Yang and Mills, massive gauge theories are formulated for a four-vector
field which is a mixture of spin-1 and spin-0 particles. The gauge invariance of theories can be maintained
within the present framework even for massive spin-1 particles. Furthermore, interactions can also be
generated for spin-0 particles. The usual gauge transformation for massive electrodynamics is discussed, as
well as the chiral gauge transformations. The interactions so generated are shown to lead to the modified
Goldberger-Treiman relation.

I. INTRODUCTION

T is well known that electrodynamics can be gen-
- - erated by gauge transformations. ' lt is also believed
that the Yang-Mills trick' is the best way to explore
the mystery of interactions among various fields. The
purpose of the present work is to consider the theory
of Yang and Mills through a four-component vector
6eld which is a mixture of a spin-1 particle and a spin-0
particle.

Recently, a number of phenomenological Lagrangian
theories' ' have been proposed within the framework of
mixing A i mesons and pions. Various sum rules of cur-
rent algebra are obtained in these theories in a much
simpler fashion. The idea behind this method is simply
that the interactions obtained for A~ mesons imply
interactions for pions in a unique way.

The idea of interpreting gauge invariance through the
spin-0 part of a vector field is not new. Feldman and
Matthews, ' for example, have successfully presented it.
Although the spin-0 particle responsible for the gauge
transformation is not physical in their theory, it never-
theless provides us with a new look at the gauge theory—in particular, with the idea that exact muss& e gauge
fields can also be established within gauge-invariant
theories.

In the present work, the Yang-Mills trick is
straightforwardly generalized to (axial-) vector 6elds
as well as (pseudo) scalar fields. The invariance of
theories in the weaker sense7 that the equations of mo-
tion are invariant under gauge transformations is dis-
cussed. In this way, a gauge-invariant theory for massive
electrodynamics is developed through the help of a
spin-0 6eld without inconsistency. More interestingly,
interactions are generated for spin-1 particles as well as

' See, for example, J. Bernstein, Elementary Particles and Their
C2frrents (W. H. Freeman and Co., San Francisco, 1968), for
various views of gauge transformations.' C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954};R.
Utiyama, ibid. 101, 1957 {1956);S. L. Glashow and M. Gell-
Mann, Ann. Phys. (¹Y.) 15, 437 {1961).' J. Schwinger, Phys. Letters 248, 473 (1967}.' J. Wess and B.Zumino, Phys. Rev. 163, 1727 (1967).

'L. M. Brown and H. Munczek, Phys. Rev. Letters 20, 680
(2968); T. W. Chen and R. E. Pugh, ibid. 20, 880 (1968); A.
Burnel and H. Caprasse, Nucl. Phys. 88, 65 (1968); M. J. Sweig
and W. W. Wada, Phys. Rev. Letters 21, 441 (1968).' G. Feldman and P. T. Matthews, Phys. Rev. 130, 2633 (1963).

' For detailed discussions on this aspect, see Refs. 1 and 6.
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for spin-0 particles. In the next section, the Lagrangian
theory for a spin-1 —spin-0 mixing 6eld is formulated
within the framework of elementary Lagrangian theory.
The gauge theory for massive electrodynamics is pre-
sented in Sec. III. The chiral gauge transformations are
discussed in Sec. IV. It is shown that broken chiral
syrnrnetry enables us to generate interactions for pseu-
doscalar particles as well. Finally, the modi6ed Gold-
berger-Treiman relation is derived in Sec. V using the
interactions obtained in Sec. IV. The paper concludes
with a brief summary and discussion (Sec. VI).

II. LAGRANGIAN THEORY

zo(a) =—.'(a„„)&—km2(a„)' (2.2)

~o(b) = —
2 (B"b)'—2~'b' (2.3)

where a„„—=B„a„—B„a„.Substituting Eq. (2.1) in 20(a),
we have

~.( ) =~.(~)=--:Q.,)'--: '(s.)'
—-', (Xm)'(B~b)'+XnPy„B~b. (2.2)'

Thus the free total Lagrangian for @& and b is given by'

Z.(y,b) =—.'(y„.)'—', m'(y„)2—', L1+(~~)'j
X (B"b)' ',p'b'+Am'P" —B„-b (2.4).

It should be noted that the Lagrangian (2.4) is
achieved merely by rede6ning the spin-1 6eld e&. The
last term alone, which is responsible for the mixing
property of p&, does not give rise to interactions be-
tween spin-1 and spin-0 fields. The quantizations can

The same Lagrangian as a model has been studied in Ref. 5.
161'3

We shall begin with the formulation of a Lagrangian
theory for a four-component vector (or axial-vector
Geld) Q&(x), which consists of a spin-1 meson a" (x) of
mass m and a spin-0 meson b(x) of mass p. We shall
assume that P& has the natural local form

(2 1)

where X is a constant. In the absence of interactions, a&

satisfies the usual free Proca equation of mass m, and b

satis6es the usual free Klein-Gordon equation of mass p, .
The Lagrangians for free u& and b are then the usual
ones:
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be carried out consistently either through p" (and b) or
a" (and b). To see this, the Euler-Lagrange equations
for qP and b can be obtained directly from Eq. (2.4) by
varying @& and b. That is,

(( m—2)g"" 8—"8"P,+Km'8 "b =0, (2.5)

L1+ (Xm)'7 b p'—b Xm—'8"P =0. (2.6)

The coupled equations above are obviously equivalent
to the Proca equation for a& and the Klein-Gordon equa-
tion for b, which follow immediately from the I.agran-
gians (2.2) and (2.3).

Thus, we see that in the absence of interactions the
fields P& and b describe a spin-1 and a spin-0 field as well

as the fields u& and b do. The field p&, however, provides
us with a different view of the theory of interactions. In
the next sections we consider gauge transformations in
terms of&& and the interactions so generated. Here we
merely note that the equations of motion for @&and b

in the presence of the interactions Zr(qP, b) are

tained even in the presence of the mass term of the
spin-1 particle, and interactions can be generated for
the scalar field as we11 as for the vector field. The in-
variance of the theory can be seen easily from the free
equations of motion (2.5) and (2.6). We see that if

p =0, then they are invariant under the changes (3.1)-
(3.3) even though mWO. Thus the invariance of the
theory (in the sense that the equations of motion are
invariant) is preserved with the help of the massless
scalar field b.

The interactions follow as usual from the replacement
(with a constant n) of

B„~D„=B„ig[ay—„+X(1 n)B„b—7 (3.4)

in the free Lagrangian of the charged particles. Clearly,
the replacement (3.4) is a straightforward generalization
of the Yang-Mills trick. The Lagrangian 2'(f,L "f) is
invariant under the transformations (3.1)—(33) if

BZ' BZ' BZ' BZ' )
B„y y —B—„y (=0 (3.5)

Bijou 88piP BlP 88pP]

where

and

L1+(Xm)'7 b p'b —Xm'B—l'y = jg

~&r ~r
j~~=a„

88+@, Bfy,

8ZI BZI
Jb=~v

88b Bb

(2.8)

(2 9)

(2.10)

Equation (2.8) can be further reduced if Eq. (2.7) is
used. Ke have &0(4) = k(v"8.+m—)4. (3.7)

az' 8z' Bz,' 1 Bz'
ig 4-k — + +- =o (3 6)

88pg BBpl/ Bgp X BBpb

The second condition LEq. (3.6)7 is obviously satisfied
by 2', which is generated according to the replacement
(3.4). The first condition, which is actually the gauge
condition of the first kind, is also satisfied if 2 is gen-
erated by the usual free Lagrangian for the matter
field, viz. ,

Cl —~')b=i~ —»"i'
III. GAUGE TRANSFORMATIONS

(2.11)
The interaction so generated is then

Zi=iag/ry&PP„+iX(1 n)~QB„b.— (3.8)
Ke consider one-parameter gauge transformations,

closely following the well-known theory of Yang and
Mills. Ke begin with a consideration of the gauge theory
of massive electrodynamics.

Our gauge transformations are the usual local in-
finitesimal transformations: For the matter field f(x)
(i.e., spin--', charged field),

P(x) ~ $1+igh. (x)Q(x); (3.1)

for the vector field p'(x),

y~(x) ~ y~(x)+8~A(x); (3.2)

and, in addition, the transformation for the scalar
field b(x),

b(x) —+ b(x)+ (1/X)A(x), (3.3)

where A(x) satisfies A(x) =0.
The purposes of the additional transformation of b(x)

are twofold: The invariance of the theory can be main-

See the pion gauge transformation in M. Gell-Mann and M.
Levy, Nuovo pimento 16, 705 (1960); G. Kramer and %. I'.
Palmer, Phys. Rev. 182, 1490 (1969).

Kith the interaction Lagrangian above, the equations of
motion for @& and b now become

$( m') g&" —8&8"Q„—+Am'8"b = m~&f —(3.9)

and
b =iligB~(AV) =o. (3.10)

Because conditions (3.5) and (3.6) are exactly satisfied
the vector current ia~Q—is strictly conserved
(CVC). Consequently, the scalar field b is left noninter-
acting. The parameters P and n are not of interest in
this case, since ng is just the usual coupling constant
between the vector field and the matter field. Thus we
are back to the usual massive electrodynamics with
exact CVC. The scalar field b is there only to maintain
the gauge invariance of the theory of the @sess& e gauge
field.

IV. CHIRAL GAUGE TRANSFORMATIONS

The chiral group is believed to exist only in a broken
form. The interactions generated by the chiral trans-
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P(x) ~ [1+igyQ(x) P(x) (4.1)

formation are therefore not unique but are more in-

teresting, since interactions for pseudoscalar field can
also be generated.

Here we consider only the simplest chiral gauge
group, which is exact only when nucleon-mass and pion-
mass terms are all absent. Our gauge transformations
are now

the pion mass is absent:

b ~ b+(Fg/XeP)s,
(5.1)

Qll ~ qp

where v is a constant and F~, as will be clearer later, is

the leptonic decay constant of the A~ meson. The cur-
rent generated by transformation (5.1) is thenN

for the nucleon field,

b(x) ~ b(x)+ (1/~)~(x)

for the pseudoscalar Geld, and

(4 2)

Fg
J„~= = (m'y~

88ps s1

—(1/X)[1+(Xm)'$8 &b+ig (1 a)—Py "pre} . (5.2)

y~(x) ~ y~(x)+8~A(x) (4.3)

for @&, which is now a combination of an axial-vector
field of mass m (i.e., A ~ meson) and a pseudoscalar pion
field b of mass p. Here A(x) is a pseudoscalar c number
function satisfying

Neglecting the mass terms for P and b, exactly the same
procedure as in Sec. III can be followed. The interac-
tions are

gr=iayPy"y5fP„+iX(1 a)ygy~yyP—B„b. (4.4)

After reestablishing the mass terms, the equations of
motion for b and P& are now given by

[( m') g""—8"8"Q—,+Are'8 b = —iay/ry "gyes (4.5)

and

( ] ')b =ega (—yv„~,y). (4.6)

This, of course, is essentially the gradient coupling of a
pion to nucleons. We note that the interactions for b

become meaningful only after the chiral group is broken.
The axial-vector current responsible for the chiral gauge
symmetry is

This current has, first of all, the favorable properties of
the usual gradient-coupling model. In particular, it has
the notion of partially conserved axial-vector current
(PCAC), ' viz. ,

Note that the equations of motion (4.5) and (4.6) are
used in arriving at Eq. (5.3). Furthermore, the current
(5.2) also allows an interesting role for the axial-vector
A~ meson: The parameter X can be determined, if
J&& is identified as the weak current. F& is then clearly
the leptonic decay constant of the A& meson. From
Eq. (5.3) we see that the leptonic decay constant for a
pion is

F,=Fg/XeP.

Thus, from the well-known sum rule"

F =F~/ra,
we conclude that"

X = 1/m.

The current now becomes

(5.4)

(5.5)

a&J "= —(1/X)Clb
8'

+ig~" (4v vs4) = v'b (53)
)m~

=m'P" —(1/X)[1+P m)' j8&b iagPy "y;P— (4.7).
Its divergence is

J~" F~$g& (2/m) 8"b+i——g(1 a)P—y~g—Pj
=F~ [a~ (1/m) +ig (1 a)~~y——,g5,

where a&—=P"—(1/m) 8&b is the A ~ field satisfying

(5.6)

8~A „=—(1/X) b, (4.8) [(Q m') g&' —8"8"]a„=—iay17y~gk. —(5.7)

which vanishes only if the pion and the nucleon masses
are all absent.

V. GOLDBERGER-TREIMAN RELATION

The invariance of the Lagrangian under the trans-
formations (4.1)—(4.3) is badly broken after reintro-
ducing the nucleon and pion mass terms. It is interesting
to observe, however, that the Lagrangian so generated
js invariant under the following transformations, if only

We note that the interaction reduces to the usual
gradient model for a pion only if a=0, since the A~

"For the method of obtaining currents, see Bernstein (Ref. 1)
or Gell-Mann and Levy (Ref. 9)."This sum rule can be derived from the sum rule of S. Weinberg
t Phys. Rev. Letters 18, 507 {1967)g, together with that of K.
Kawarabayashi and M. Suzuki [ibid. 16, 255 (1966)J and Riazud-
din and Fayyazuddin /Phys. Rev. 147, 1071 (1966)J. See Ref. 5
for the details.

"The value 1/&n for X, which is essentially the A1-~ coupling
constant, is widely used to produce many successful results. See
Ref. 5.
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J &=FA/a& (1—/m)8"b j, (5.8)

meson is left noninteracting in this case, as is apparent
from Eq. (5.7). In the following we shall restrict ourself
to the choice n = 1, i.e., the case in which the interaction
Lagrangian Zz is a function of pl' only. Vhth +=1, we
have the current

i.e.,

ol
HA (k') 1 —(zz/m)'

2tÃQ

GA(0) (k'+zz') (1+k'/m')
(5.18)

Ii g„m' —p,
'

HA (kz) = — 2mN (5.17)
VAN (k'+zz') (k'+m')

as well as the equations of motion

5Cl —mz)g~" —8~8"ja„= z~—"ygp, (5.9)

( z')b =—z (g/m)~" (6"7A) (5 1o)

It should be noted that the current (5.8) also turns
out to be a linear combination of a" and 8"b, just as @",
but interestingly it differs from p& in sign. This diGer-
ence in sign becomes significant in the form factor for
the weak axial-vector current below.

Consider the matrix element of the weak axial-vector
current J~& between one-nucleon states. The axial-
vector part of the weak Hamiltonian is

H„=i (G/v2) A~L„+H c. , (5.11)

where LI' is the leptonic current. From Eqs. (5.8)—(5.11)
it follows that

P (p) I ~ "(0)l&(q)) =F W (p)

X
g""+k"k"/m' 1 k "k"

v.v»(q), (5 12)
$2+~2 —jq m2 P2+p, 2 —jg

where k =p —
q, and where g=gA, NN, the A z-nucleon

coupling constant which by Eq. (5.10) is related to the
m-nucleon coupling constant g, by"

g = (m/2mN) g, . (5.13)

Comparing with the conventional weak form factors
defined by

&((p)l ~ "(0)l&(q)&
=zz(p) [GA (k')p p, +iHA (k') k„yz]u (q), (5.14)

we have
~xgr

GA(k') = — (5 15)
V2mN 1+k'/m'

v2
HA(k ) FAgANN 2mN, (5.16)

mz kz+p2 kz+mz

"This is not new. See H. T. Nieh, Phys. Rev. 164, 1780 (1967);
Sweig and Wada (Ref. 5).

Equations (5.15) and (5.18) are the modified Gold-
berger-Treiman relations" which reduce to the well-
known Goldberger-Treiman relations" as k'~ 0. The
diferent signs in front of the A~-meson and pion con-
tributions in Eqs. (5.12) and (5.16) should be noted. "
The behavior at infinity of the pseudoscalar form factor
IIg,"i.e.,

(5.19)lim k'HA(k') =0,

is entirely due to this difI'erence in signs.
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'~ One could make use of the field-current identity assertion and
let the weak current be proportional to the field @&, as was done
by Sweig and Wada (Ref. 5). But then the form of Hz(k') as given
by Eq. (5.18) would not be obtained, although the Goldberger-
Treiman relation for Gg could still be achieved."It is interesting to note that the Goldberger-Treiman relations
were obtained in Ref. 14 under an assumption equivalent to Eq.
(5.19).

VI. CONCLUSION

%'e have demonstrated that the gauge transforma-
tions through the mixture p& have many attractive
properties. The difIj.culty associated with the mass of a
vector field in maintaining a gauge-invariant theory can
be overcome through the help of the spin-0 field in qP.
Moreover, some useful interactions can be generated for
spin-1 and spin-0 particles simultaneously. As an ex-
ample, the modified Goldberger-Treiman relations are
derived.

An extension of the idea presented in this paper to
three-parameter gauge groups is worth investigation.
Studies of this possibility, as well as of other applica-
tions, are in progress.


