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A calculation is performed for the ground-state energies of electronic bubbles in liquid neon
and hydrogen as a function of temperature, with the use of (a range of) experimentally deter-
mined electron scattering cross sections. It is concluded that bubbles can exist in liquid
hydrogen and possibly also in liquid neon at elevated temperatures. Maximum stabilitywould
be achieved at about 40' K, but experimental scattering data for Ne are still too uncertain to
allow a definite prediction. Electronic bubbles in hydrogen are predicted to contain bound
excited states, and excitation energies are computed. Comparison is made with an earlier
treatment for liquid neon and hydrogen near their melting points, based on a different ap-
proach to polarization effects, and significant errors in that work are corrected.

I. INTRODUCTION

Electronic bubbles in liquid helium have been
widely studied, both as a tool in the investigation
of excitations of the liquid, and also as one of the
most peculiar imperfections in condensed mat-
ter. "' This work has shown that the lowest-en-
ergy configuration of an extra electron in liquid
helium is in the form of a spherical cavity of ra-
dius 15-20 A, the "bubble" being maintained by
the zero-point kinetic energy of the electron
against the pressure-volume and surface energies
which tend to contract it. The surface tension of
liquid helium is small (-0.36 erg/cm') because
of the low van der %aals attraction among the
relatively unpolarizable He atoms. The potential
well giving rise to the bound state of the electron
exists because of the (Pauli principie) repulsion
between the electron and the He atoms. That is,
atomic helium has a positive scattering length
for electrons of 1.2ao, ' giving rise to a well depth
of about 1.0 eV, where go is the Bohr radius.

There exist other nonpolar liquids in which elec-
tronic bubbles might occur, and in which bubbles
might be investigated under convenient experi-
mental conditions. A general criterion for the
stability of bubbles in such materials near their
melting points has been given' in terms of the
liquid density, surface tension, atomic polariz-
ability, and atomic scattering cross section for
low-energy electrons, the latter evaluated in the
(hypothetical) absence of atomic polarization.
Clearly, a liquid is required in which the con-
stituents repel an electron, and which has a small
surface tension. The surface tension of the rare-
gas liquids increases with atomic number (and
poiarizability), and the electron affinity of the
atoms likewise increases, the scattering length
becoming negative for argon and heavier rare-
gas atoms. Thus, only neon remains as a possi-
ble host for bubbles among the rare-gas liquids.
Its atomic polarizability is about twice that of

helium, hence, its surface tension is several
times as large, and its experimental scattering
length is substantially smaller than that of helium.
Nevertheless, the latter is positive, and bubbles
surrounding positronium have been observed in
liquid neon, so it seemed worthwhile to investi-
gate the possibility of bubble existence in this
medium.

The other obvious possibility is liquid hydrogen,
which appears intermediate between He and Ne
from the standpoint of surface tension and even
better than He as regards scattering length,
though the polarizability is greater than either He
or Ne. Bubbles have been observed around pos-
itronium in this liquid also, e and there are strong
indications that electronic bubbles also exist. '
Accordingly, we undertook a theoretical investi-
gation of bubba. es in liquid H, and Ne to test their
stability under the conditions which prevail exper-
imentally at various temperatures.

Springett, Jortner, and Cohen, ' have discussed
these liquids (inter alia) near their melting points
from a different point of view as regards the
treatment of polarization. In the case of neon,
the conclusions appear to differ qualitatively;
numerical errors in Ref. 5 are responsible for
this apparent discrepancy. A corrected version
of the treatment of Ref. 5 is in agreement with
our results, to the effect that the stability of the
electronic bubble in neon is marginal. Correction
of numerical errors in the treatment of Ref. 5 for
hydrogen leads to an increased stability (by a fac-
tor of about 3), and according to that revised
treatment and the present one, the stability of
electronic bubbles in liquid hydrogen is even
greater than in liquid helium.

II. CALCULATIONS AND RESULTS

The following is an extremely simple model
which has apparently been adequate for the treat-
ment of bubbles in liquid He: Around an electron
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localized within a liquid, the number density of
atoms (or molecules) makes an abrupt change at
some radius R, the density being zero inside the
cavity and equal to the equilibrium density n out-
side the sphere. The potential energy within the
cavity is taken to be a constant —Ep with respect
to that in the liquid. This model yields results in
good agreement with the results of a more re-
fined calculation in the case of liquid He. '

E, can be estimated from a pseudopotential cal-
culation as was done for helium, and one of us
(T.M. ) has performed such a calculation for ne-
on. ' If we use Born approximation without polar-
ization effects included, Eo becomes Eo(B, no

pol. ), equal to the minimum average energy for
a free electron in a liquid, or simply the average
over space of the pseudopotential Vps(r) multi-
plied by the average density of the liquid

E (B, no pol. )=nf V (r}d7.
ps

For neon, this gives us E,= 1.82 eV at 24.55 'K,
which is even larger than the corresponding value
for He at 1.3 'K (1.26 eV). ' However, the effect
of polarization is much more important for neon
and for hydrogen than for helium, and cannot be
ignored even in a first approximation. This fact
is demonstrated by the smallness of neon's experi-
mental electron scattering length. ' As a result,
the total effective potential is determined by a
balance between the repulsive and polarization
potentials (see Fig. 1}, and its accurate calcula-
tion from first principles will be very difficult,
since the dominant contribution to the polarization
comes from continuum states of the neon plus
electron system. Another effect of polarization
is to lower the energy of the electron localized
in the well, as will be described below.

Accordingly, we compute the well depth from a
Wigner-Seitz and from an optical-model calcula-

&a
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FIG. 1. Schematic dependence of the electron-atom
potential V on distance r, the solid line including the
effect of polarization, and the dashed line without po-
larization. The maximum of the dashed line corresponds

I
to Yf

——1.2ao and Va = 9.5 eV for an s-like electron wave
function; ~2 is estimated to be 3.2ao (see Ref. 8) in the
case of neon.

tion. In the Wigner-Seitz approximation, we re-
place an atom (or a molecule) by a hard sphere
of radius l, equal to the low-energy electron scat-
tering length, and assume that these atoms are
arranged in a periodic array with a Wigner-Seitz
equivalent sphere radius xs given by

r = (3/4nn)'".
s

The lowest energy of a nonlocalized electron is
that for which the s-like wave function of the elec-
tron around a hard-sphere atom of radius l can
be joined smoothly onto the wave functions in the
neighboring "spherical cells" of radius xs, i. e. ,
that for which

d sink(r —t) =0.

This boundary condition yields a condition for the
wave number kp of the electron,

k r =tank (r —t),0 s 0 s

and from the smallest positive value of kp the
minimum energy or the energy barrier Ep can be
computed by the relation

Eo = k'ko' /2m . (2)

E, = 4w n(0 I t 10}= 4m ntf'f/2m . (3)

(As the increase in the electron's kinetic energy
is not taken into account, this method gives an
underestimate for the value of E,. ) Thus, in both
treatments, knowledge of the scattering length
allows the determination of the well depth in the
approximation that this single parameter suffices
to describe the electron-atom interaction.

Thompson' carried out a phase-shift calculation
for electron scattering by atomic neon (and argon)
including the effect of polarization in a modified
Temkin approximation. " From the circumstance
that his computed cross sections for neon were
somewhat larger than some experimental values,
he estimated that only 80% of the polarization ef-
fect is included in his calculations. The scatter-
ing length deduced from his calculation is
l = 0.347ap.

Experimentally, the situation for neon is the
most uncertain among rare-gas atoms. Because
of the small value of the scattering length, evi-
dently as a result of cancellation between repul-

Alternatively, in the optical approximation, ' one
takes the multiple scattering into account by in-
troducing the t matrix, the diagonal matrix ele-
ment of which for an exact wave function IO) of
the electron in the limit of zero energy is related
to the scattering length / by

(0 It I0) = k't/2m.

From this matrix element we get the well depth



168 T. MIYAKAWA AND D. I . DEXTER 184

=0.714x10 '4cm' ~ =1.028x10 '4 cm'.

Therefore, a hydrogen molecule would tend to
align its axis parallel to the radius vector con-
necting its center of mass with the electron in
the bubble, presumably lowering the value of the

sive and polarization interactions, the experi-
mental values of scattering length show a large
scatter and range from 0.03 a, to 0.39a„. the val-
ues 0.24a, and 0.39a, seem most representative. '

As a result the value of E, also varies according
to which of the values for the scattering length is
chosen. In Fig. 2, we show the temperature
(through density) dependence of E, for two values
of the scattering length l, determined according
to Eqs. (1)-(3).

For the hydrogen molecule, Wilkins and Taylor"
computed by an iterative method a low-energy
electron scattering cross section which is in good
agreement above 0.02 eV with the experimental
data by Golden, Bandel, and Salerno, and by
Bekefi and Brown. " (In this calculation, the po-
larization effect was not taken into account. The
general agreement with experiment led Wilkins
Bnd Taylor to the conclusion that the polarization
effect cannot be large. ) These experimental re-
sults extrapolated to zero energy by the method
of O' Malley et al. " give /= 1.25a„whereas an-
other experiment' leads to the value l = 1.51ao.

The polarizability of the hydrogen molecule is
larger than that of atomic neon, this fact suggest-
ing that the effect of polarization is also impor-
tant in this case. Further, the molecule is not
spherical and the polarizability exhibits anisot-
ropy" perpendicular and parallel to the molecular
axis

—.ioI
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effective repulsive potential for the electron
thereby. That is, the scattering experiments in
the gas perform an average over orientations,
but around a bubble only the lowest-energy con-
figurations would be expected to occur. As a
first approximation, we ignore this anisotropy,
presumably overestimating E, .

By the Wigner-Seitz and optical approximations,
we made estimates of the well depth in liquid hy-
drogen at several values of the temperature, for
both experimental values of l, with the results
shown in Fig. 3.

As shown in Fig. 1 and in the discussion above,
the polarizability of the molecules of the liquid
acts to reduce the value of the barrier E„which
may be viewed as the kinetic energy an electron
at infinity would require in order to penetrate the
liquid. However, an electron at the center of a
cavity of radius A in a medium of dielectric con-
stant K will have its field energy changed (re-
duced) by an amount indicated in Fig. 4

FIG. 3. Temperature dependence of the barrier
height Eo in liquid hydrogen. Curves 1 and 2 correspond
to the Wigner-Seitz method with / equal to 1.51ao and
1.25ao, respectively; curves 3 and 4 result from the
optical approximation with l = 1.51ao and 1.25ao,
respectively.

E = —[(K- I)/K]e'/2R.K (4)
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FIG. 2. Temperature dependence of the barrier
height Eo in liquid neon. Curves 1 and 2 correspond to
the Wigner-Seitz method with scattering lengths 0.39ao
and 0.24ao, respectively. Curves 3 and 4 result from
the optical approximation with / = 0.39ao and 0.24ao,
respectively. The open circles are derived from Ref.
5, corrected ss discussed in the text.

FIG. 4. Schematic representation of the potential en-
ergy for an electron in a cavity. Eo is the barrier height,
and Eg |see Kq. (4}] is the polarization energy at the
center of the bubble.
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In liquid He, E~ is only —0.02 eV at the equilib-
rium radius and can be ignored, but for neon and

hydrogen it is of order —0.1 eV at equilibrium
and represents a sizable correction, particularly
in view of the small barrier E, for neon. Calcu-
lations with the pseudopotential and polarization
potential for neon indicate that the variatinn of
potential energy within the cavity is small (-0.03

eV); this variation will be neglected in favor of
the convenience of dealing with a square-well po-
tential.

This treatment of polarization effects differs
from that of Ref. 5. In that work, the atomic
scattering cross section was calculated without
the inclusion of polarization effects, a Wigner-
Seitz calculation was performed with a fictitious
rigid (unpolarizable) atom scattering length sub-
stantially larger than the experimental value, thus
resulting in a larger ko and kinetic energy than
above, and this result was reduced by a polariza-
tion energy computed for the liquid. The resulting
well depths were estimated to be 0. 75 and 0. 9 eV
(l. 1 eV) for neon and hydrogen (deuterium), re-
spectively, to be compared with those exhibited
in j.'igs. 2 and 3 near 25 and 20 'K, respectively.
Correction of numerical errors in Ref. 5 changes
these well depths to 0.46 and 2.2 eV, respectively.

This approach was not taken in this paper for
the following reasons: (i) The screening of po-
larization (or the local field effect) is smaller for
neon (-10%%u&&) than for argon (more than 20/o). (ii)
In contrast to the case of argon, in which the po-
larization potential makes a dominant contribution
to the scattering length in the zero energy limit,
the effect of polarization on the scattering length
by neon is more difficult to estimate in a reliable
way, and larger error will be expected in such an
estimate. (iii) The value of scattering length
calculated by Thompson' taking into account about
80%%uq of the polarization effect (0.3'14', ) is well
within the scatter of experimental values (the
largest one being 0.39a,).

Therefore, it does not seem to be practical or
convincing to make estimates of the various terms,
which may be in error by more than 10%%up, and
then to take the difference of these to estimate the
value of E,. Rather we preferred to take a larger
range of values for the scattering length L. The
values of Eo for neon estimated according to the
method of Ref. 5 (after correction of numerical
errors) agree with our values, as will be seen,
for the larger of the experimental scattering
lengths.

A term similar to Eq. (4) was also derived in
Ref. 5, but was neglected in the stability criterion
in view of the large values of E,. In our treat-
ment of neon, the term E~ is important in obtain-
ing stability, as shown below.

In the square-well potential, of depth Eo+ e'(K
)/ I2KwRe have computed Ee(E0, K, R), the

lowest-energy (Is) eigenvalue for a localized
electron as a function of R. The dielectric con-
stants for liquid Ne" and H,"were taken from
the literature and scaled with density for different
temperatures according to the Lorentz-Lorenz
relation.

The total energy change upon localizing an ex-
cess electron within the cavity at temperature T
consists of five terms

n(R, P, o, K, E )=E +E +E +E -E0.0 e s (5)

The condition for stability of bubbles is that 6 be
negative. Es (R, a) and Ep(R, P) are, respective-
ly, the surface and pressure energies which are
the work done against surface tension o(T) and
the pressure P(T)

E =4moR', E =&mR'P.
p

with oo: 15 20 Tp 44 38 K and b= 1.216 for
neon, "and Op:6 1 T~ 33 24 K and 6=1 23
for hydrogen. " This formula is known to give a
good fit to the experimental data for heavier rare-
gas liquids. " Of course, this law of correspond-
ing states may not be a good approximation in ne-
on and hydrogen, but the above formula fits the
experimental data for hydrogen up to tempera-
tures close to T~. Unfortunately, the range of
temperature over which the surface tension of ne-
on is measured is limited, and we cannot assess
the accuracy of the formula, in this case.

Knowing all the terms in Eq. (5), we may min-
imize 6 with respect to R so as to find the opti-
mum value of R, Rmjnp as a function of T. This
procedure was carried out using for E, the values
shown in Figs. 2 and 3 computed by the Wigner-
Seitz method for the two indicated values of the
scattering length, and the results for neon and
hydrogen are shown in Figs. 5 and 6, respective-
ly. In these figures, Tg and T~ are the triple
points and critical temperatures.

Inspection of Fig. 6 shows that for either value
of scattering length of H„ the bubble is stable at
all temperatures of the liquid, stabler and smaller

Note that E„K, and & depend on the density,
and therefore change with T, as does the equilib-
rium vapor pressure. It should be emphasized
that all our calculations are performed for values
of Eo & K and P consis tent with equilibrium
conditions at temperature T.

Liquid densities and equilibrium vapor pres-
sures were taken from the literature. "~" In some
cases, interpolated or extrapolated values were
used (without significant error, we believe).

For the surface tension we used "experimental"
bulk values computed from the temperature de-
pendence

o(T) = o0(1 —T/T ) erg/cm,b 2
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than in liquid helium. The value of 6 near 20 'K
obtained by the corrected version of Ref. 5 is ap-
proximately —1.9 eV, about —0.6 eV with the
original well depth. (The value of kinetic energy
7 in Ref. 5 should be changed from 2.0 to 3.60 eV,
and the polarization energy Up should be changed
from -1.1 to —1.38 eV, and the total from 0.9 to
2.2 eV). Neglect of the term Eff in Eq. (4) is
seen to decrease the absolute magnitude of 6 by
about 0.1 eV, and increase the bubble radius by
about 2 ao.
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FIG. 6. Temperature dependence of 4 and equilibrium
radius of an electron bubble in liquid hydrogen. Curves
1 and 2 are based on the %'igner-Seitz calculation of
curves 1 and 2 of Fig. 3. The dashed curves result
from the omission of E~ of Eq. (4).

FIG. 5. Temperature dependence of b, and equilibrium
radius of an electron bubble in liquid neon. Curves 1
and 2 correspond to the results of the signer-Seitz
calculation shown in curves 1 and 2 of Fig. 2, respec-
tively. Curve 1' results from omitting E~ of Eq. (4).
The open circles correspond to those of Fig. 2, with
and without the inclusion of E~.

Because of the large values of surface tension
at low temperature, and small values of barrier
height, the bubbles in neon are barely stable or
unstable. Although the electronic part of the en-
ergy difference E~+ E&- E0 increases as the tem-
perature is raised, the surface tension decreases
its value more rapidly. Thus, the higher the
temperature the more favorable are conditions
for bubble formation until, above about 40 'K, the
increase in Ep+ E~ more than compensates for
the decrease in E~.

The lowest-energy curve, labeled 1 in Fig. 5,
is computed with a well depth Eo taken from curve
1 in Fig. 2, equal to 0.46 eV at low temperatures.
It is clear that an increase of well depth to 0.75
eV, as deduced in Ref. 5, would give rise to
stable bubbles at all temperatures, with an ener-
gy below the range of this figure. However, there
is a numerical error of 0.27 eV in the evaluation
of the polarization potential in Ref. 5. (Instead
of —1.17 eV in Table I of Ref. 5, it should be
—1.44 eV. The kinetic energy should also be
changed from 1.92 to 1.90 eV. ) We have repeated
the calculation for neon by the method of Ref. 5
with the results shown by open circles in Figs. 2
and 5. The agreement with the calculated curve
for a scattering length /= 0.39ao may lend support
to this larger value of l.

An electron-injection experiment should readily
settle the question of stability in neon. It is en-
tirely possible, if the energy should lie between
curves 1 and 2 of Fig. 5, that the mobility of an
electron will be found to be large at low and high
temperatures, exhibiting a sharp minimum (a de-
crease of several orders of magnitude) near 40'K
where bubbles are stable.

For comparison only, we note that the measured
radii of the positronium bubbles' at the normal
boiling points in Ne and H, are 18.5a, and 24.5a„
respectively, as contrasted with our calculated
values for the electronic bubble of about 18g, and
20a„respectively, at the temperatures of their
greatest stability. (Positronium is neutral, of
course, and polarization effects are less pro-
nounced. Furthermore, different scattering
lengths are involved, so that one would not expect
equal bubble radii. )

In the case of liquid neon, even at the most sta-
ble predicted configuration at 40 'K, there exists
no bound excited state. For liquid hydrogen,
there do exist bound excited states. Figure 7
portrays two configuration coordinate diagrams,
based on the parameters leading to curves 1 and
2 in Fig. 6 at T = 20.5 K, as described for elec-
tronic bubbles in liquid helium by Fowler and
Dexter. ' For scattering length 1.51a„ the 2p
state is bound at all temperatures. For l= ).25a„
it merges with the continuum at low and high T,
being bound between about 23 and 31 K.

The coordinate R is meaningful for s states,
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FIG. 7. Configuration coordinate diagram for elec-
tronic bubble in liquid hydrogen, exhibiting the ground

(1s) and excited p states according to the Wigner-Seitz
calculation leading to curves I and 2 in Fig. 3. The
solid curves are for l =1.51ap, the dashed curves for
/ = 1.25ap.

being just the radius of the spherical bubble. The
calculations for p states are also performed in a
spherical potential. There would actually be ex-

pected to occur a nonspherical Jahn- Teller dis-
tortion which would lower the energy further.
This point is discussed by Fowler and Dexter' for
the generally similar case of bubbles in liquid
helium.

Figure 8 exhibits the predicted 1s - 1P and 1s
-2p excitation energies as a function of T for
electronic bubbles in liquid hydrogen for the
larger value of scattering length l = 1.51a,. It also
shows the 1p-1s emission energies predicted
following a (hypothetical) spherical relaxation.
(Since no Jahn-Teller distortion has been allowed
for, these emission energies are not to be con-
sidered as realistic. ) The curves dealing with the
ip state are essentially the same for the smaller
scattering length (1.25a, ), and it seems safe to
predict an intense absorption line at 0.27 eV near
20 'K, decreasing to 0.18 eV at high tempera-
tures.

The oscillator strength for the 1s —1p transition
of the electronic bubble in liquid hydrogen is pre-
dicted to be 0.971, 0.025 for the 1s -2p transition,
near 20 K, on the assumption of the larger scat-
tering length. These figures compare with 0.97

TIoKI

FIG. S. Transition energies for absorption 1s —1p
and 1s-2p and emission 1p-1s of electronic bubbles

in liquid hydrogen as a function of temperature. The

solid and dashed curves are for l = 1.51ap and 1.25ap,

respectively.

and 0.025 for liquid helium. (For the smaller
scattering length the strengths are 0.975 and
0.022. )

Finally, we comme:&t on possible sources of er-
ror in these calculations. First, we have used
the macroscopic value of the surface tension
throughout, and ignored the curvature and struc-
ture of the surface of the cavity. A much more
detailed theory would be required to eliminate
these simplifications. Secondly, our treatment
of polarization effects is only approximate, since
we have used the total free-atom scattering
length, which includes polarization for the free
atom, and have not corrected the well depth (ex-
cept for E&) for a change in polarization in the
liquid resulting from overlap in the polarization
fields of the environment. This effect exists,
and is important in the case of liquid argon. '
For hydrogen we believe that these possible er-
rors will not change qualitatively the conclusion
that electronic bubbles can occur. In the case of
neon, the uncertainty arising from that of the ex-
perimental atomic scattering length is amplified
by these considerations, and can be t be resolved
by experiment.
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Explicit expressions are obtained for the classical rotational time-correlation functions for
free rotation of the following: the linear, spherical-top, and symmetric-top molecule. This
is done by deriving the eigenfunctions and eigenvalues of the potential-free rotational Liouville
operator for each case. Conditional distribution functions for orientations and angular mo-
menta are then constructed, and correlation functions are computed by evaluating phase-
space averages with the distribution functions. The results obtained agree with those of
Sears for the linear molecule and Steele for the spherical top, but differ somewhat from the
calculation of Agrawal and Yip for the symmetric top molecule. The reason for this discrep-
ancy is discussed briefly.

I. INTRODUCTION

In classical statistical mechanics the behavior
in time of a system point in phase space is gov-
erned by Liouville's equation,

dW
dt

&W
+iZW,


