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The complete gauge-invariant matrix element for the decays K+ — #%*vy is derived up to and including
terms linear in the photon energy k. The contributions of order #7! and Z° are evaluated through Low’s
theorem, while the contributions linear in %, which represent the most important structure-dependent
terms, are related to the vector and axial-vector couplings in K+ — I*yy via the hypothesis of partially
conserved axial-vector current (PCAC). It is shown that the spectra and rates from the radiative decay
provide an independent means of measuring the K3 parameters f, (0), £, and .. Results are given for the
rates and photon spectra in both K* — n%*yy and K+ — #%*vy decays for representative values of the
K3 parameters. With improved experimental data, it is then possible to check the predictions of various
theoretical models both for the ¢ dependence of the K;s form factors and for the size of the structure-de-

pendent matrix elements.

I. INTRODUCTION

EMILEPTONIC K-meson decay modes have been
the subject of many experimental' and theoretical?
papers. Although the general picture of these decays
agrees with V' —A theory, p-e universality, and the
|AI| =1 rule, there are still some points which need
further clarification. We mention in particular the ¢
dependence of the form factors fi(f) and f_(¢) and the
different values of Ref, obtained from the rate and
polarization studies. Better data are obviously required
before one can distinguish between the various theoreti-
cal models proposed to explain fi(f) and f_(¢). In this
paper we study the radiative K;3* decay modes with
the aim of obtaining information about f.(f) and the
structure-dependent matrix elements in the K=y
interaction. Radiative K;3° decays will be the subject
of a later paper. Before presenting our calculation, we
would like to discuss the general problem of weak
leptonic radiative pseudoscalar meson decays and
summarize the work done by other authors.
Let us first consider the radiative leptonic weak
decays = — Ivy,* and K — lry.* The two-body weak-
matrix elements are proportional to the lepton mass, so
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the decay rates are much smaller for the electron mode
than the muon mode. When a photon is emitted by the
charged-particle lines (bremsstrahlung), the matrix
element, which is still proportional to the lepton mass,
can be calculated by standard quantum electro-
dynamics, and the decay rate has an infrared divergence
associated with the zero photon mass. Photon emission
from the interaction region has a normal spectrum, and
the matrix element can be separated into a vector part
and an axial-vector part due to parity violation. In
general, the vector amplitude® can be related to the
two-photon decay matrix element of the corresponding
neutral meson, by the conserved-vector-current hy-
pothesis of Feynman and Gell-Mann.® Of course, this
is not trivial for the strangeness-changing vector cur-
rent, because this current is not conserved. Neverthe-
less, some information can be obtained from sum rules
and this point will be discussed in more detail later.
The size of the axial-vector contribution can be roughly
estimated from current-algebra techniques.” As far as
experimental data are concerned, the decay = — ury
is entirely dominated by inner bremsstrahlung radia-
tion and yields no new information. Even though there
is sufficient phase space in K — vy [a branching ratio
T(K — pry)/T(K — all)=1.0X10~* is quoted in Ref.
47, there are no experimental results on this decay. The
experiment® on = — evy yielded a rate consistent with
the conserved-vector-current prediction and showed
the presence of an axial-vector term. Note that there is
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no interference between the terms of different parity.
Considering the small rate for K — er,® it is not sur-
prising that the radiative mode has never been observed.
[Typically T'(K — evy)/T(K — all)=~10-8.]

The situation regarding four-body radiative semilep-
tonic meson decays is entirely different. First of all, the
matrix elements are not proportional to the lepton mass
so there is no suppression of the decay rate into elec-
trons. Indeed, this rate is larger than the muon decay
rate because of increased phase space. Also, because of
the presence of four particles in the final state, all inter-
ference terms contribute to the decay rate. We propose
to study K+ — n%tyy and K*+— w%try but not
m— wery. Experiment!® gives a branching ratio

I'(K* — 7'%tvy, £,>30 MeV)/T(K+— nlety)
=(1.240.8) X 10

and more data, especially on the photon spectrum,
would be necessary to determine the presence of
structure-dependent radiation.!* Note that the present
paper deals only with hard-photon decays, where a
photon is observed by the detection apparatus. The
problem of radiative corrections to the K3 spectra and
rates, where the photon is not detected and its spectrum
is combined with self-energy and vertex corrections, has
been treated in detail by Ginsberg.!? While the rates
for the K3 and K., decays are only sensitive to the
form factor f,(¢), the K 3 and K3, decays depend upon
both f.(#) and £(t)= f_(¢)/f+(f). In principle the rate
for the radiative muon decay could give another
estimate of £(¢).

Before concluding this general discussion, it would be
appropriate to discuss the effects of time-reversal-
violating interactions in these modes. MacDowell'3

°D. R. Botterill, R. M. Brown, I. F. Corbett, G. Culligan,
J. McL. Emmerson, R. C. Field, J. Garvey, P. B. Jones, N.
Middlemas, D. Newton, T. W. Quirk, G. L. Salmon, P. Steinberg,
and W. S. C. Williams, Phys. Rev. 171, 1402 (1968). Recently
N. J. Carron and R. L. Schult [University of Illinois report 1969
(unpublished) ] have argued that structure-dependent contributions
to this decay may raise the branching ratio to ~10-.

E. Bellotti and A. Pullia, in Proceedings of the Heidelberg
International Conference on Elementary Particles (North-Holland
Publishing Co., Amsterdam, 1968), p. 278.

1 C. S. Lai, Indiana University Report, 1967 (unpublished);
J. S. Vaishya and K. C. Gupta, Phys. Rev. 165, 1696 (1968).

2E. S. Ginsberg, Phys. Rev. 142, 1035 (1966); 162, 1570
(1967); N. P. Chang, ibid. 129, 399 (1963); 131, 1272 (1963).
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and Gervais ef al.'* have already considered the mode
K — ury with possible complex structure-dependent
amplitudes. However, no experimental data are avail-
able. K;; decay has been fitted with a complex value of
¢ but so far all evidence is consistent with Im&=0.
However, if there is a C-violating electromagnetic
interaction with hadrons,'® it would give rise to an
asymmetry of the type pr-p.Xpy in K3, decay. Such
terms are probably very small and there is a problem of
separating these events from K — wmery. The new
value of the upper limit for the neutron dipole moment
(|d] <4X10~28 cm) reported by Dress ef al.' indicates
no appreciable C violation in electromagnetic inter-
actions with hadrons. Chu et al.'” recently considered
time-reversal invariance in K — uvete~ decay. In the
present paper we do not consider any effects of time-
reversal violation.

The outline of this paper is as follows. Section II
contains the derivation of the matrix element based on
Low’s theorem. This derivation is given in considerable
detail so that we do not need to repeat this disscusion
in a forthcoming paper on K° decay. The hypothesis of
partially conserved axial-vector current (PCAC) is
used in Sec. IIT to relate the structure-dependent form
factors in K+— w%try to those in K+— etyy, which
are known from vector-meson dominance and dis-
persion theoretic sum rules. A discussion of some
technical details regarding the evaluation of the spectra
and rates is given in Sec. IV, and our conclusions are
given in Sec. V. Appendix A contains the results of the
spin and polarization sums, and a tabulation of phase-
space integrals is given in Appendix B.

II. MATRIX ELEMENT FOR Kt — =ttvy

The matrix element for the process K+(P) — x°(Q)
+1*+(p)+v(¢)+v(k) shown in Fig. 1is given by

M= oue(mlry | K¥)in=—i(2m)64(P —Q—p—q—F)
mm, 1/2 G sinf
X<8P0Q0poqok0V5> V2
where T is defined by

(k) —m _ .
T=—a(p)iy- eT[fl(f)17'P+f2(t)17‘QJ

T, (2.1)

X (1475)v(g) +{ry | V,+5(0)4-4,45(0) | K+)
== (P—Q)r=—an Xa(pyr(1+vs)e(g), (2.2)

1 J-L. Gervais, J. Iliopoulos, and J. M. Kaplan, Phys. Letters
20, 432 (1966). I Thop J v, T

15 J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139B,
1650 (1965); S. Barshay, Phys. Letters 17, 78 (1965).

18W. B. Dress, J. K. Baird, P. D. Miller, and N. F. Ramsey,
Bull. Am. Phys. Soc. 13, 1380 (1968).

" W. T. Chu, T. Ebata, and D. M. Scott, Phys. Rev. 166, 1577
(1968). See also W. Flagg, ibid. 178, 2387 (1969); E. S. Ginsberg,
ibid. 135B, 792 (1965).
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In Egs. (2.1) and (2.2) e (¢>0) is the electric charge, G
is the Fermi constant (GMp2=1.02X10-%), and 6 is
the Cabibbo angle (sin 6=20.21).!% Throughout this
paper, M, u, m, and m, denote, respectively, the masses
of the kaon, pion, lepton (e or ), and neutrino. [ The
factor m, appearing in Eq. (2.1) cancels against the
factor m, in Egs. (A8)-(A12) when computing |917|2,
so that the limit m, — 0 is well defined.] The two terms
in Eq. (2.2) correspond, respectively, to bremsstrah-
lung from the external lepton [Fig. 2(a)] and to radia-
tion from the hadrons. [The minus sign in the first term
of Eq. (2.2) arises from our convention for the electro-
magnetic vertex: For emission of a photon by a particle
of charge e the vertex factor is —ey,.] f1(t) and fs(¢)
are the usual K3 form factors defined by

(@(Q)| V,4=5(0) | K*+(P))

=@PQoV ) AL f1() P+ f(0Q.]. (2.3)
In the limit of exact SU(3), f+(0)=3[/1(0)+f2(0)]
=1/V2, f_(0)=3[£1(0)— f2(0)]=0. The AS =1 semilep-
tonic weak Hamiltonian density is assumed to be given
by the conventional Cabibbo model

G
JC(x) =— sinb[ V4 %(x)+ A4, (x) T*.(x)+H.c.
V2
(2.4)
X (@) =[Vi(2)+4,(0) T* =(— git(x),94' (%)),
1=1,2,3
where /, is the lepton current and
ViA=5(x) = 5,4 (x) —iF,%(x)
A P(x) =54 (x) —1F5,5(x) .

In Egs. (2.5) the F-spin currents will be assumed to
obey the usual SU(3)®SU(3) commutation relations'?
[0%(x,0),F0*(x’,0) =1 fabcFo" (x,0)83(x —x’)
[F0°(x,0),F50°(x',0) ] =1 fapeFs0®(x,0)8%(x —x')
[F50°(x,0), Fso®(X',0)] =1 a0 Fo(x,0)8%(x —X') .
For later purposes we note that the two terms in Eq.
(2.2) are not separately gauge-invariant. The decom-
position of Eq. (2.2) is, however, useful since it permits
us to extract from 7 a contribution which can be
directly evaluated, namely, the lepton bremsstrahlung.
The significance of this will become evident later. To
proceed further we must analyze the radiation from the
hadrons. We begin by performing a Lehmann-

Symanzik-Zimmermann (LSZ) reduction on the photon
giving

(o | V,=5(0)+4,4-5(0) | K+) =ie, f iy ek (—0.)

(2.5)

(2.6)

X | T(@u(x)[ V= 5(0)+4,45(0) )| K)

= ie,,(M‘,,,V—i-M,,,,A) , (2.7)

18 N. Brene, M. Roos, and A. Sirlin, Nucl. Phys. B6, 255 (1968).
19 M. Gell-Mann, Physics 1, 63 (1964).
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where €, is the polarization vector for the emitted
photon, and @,(x) is the operator which annihilates the
photon field. [Note that the normalization factor
(2kV)~1/? in the LSZ reduction has been absorbed in
the definition of T in Eq. (2.1).] M,V and M ,,* may
be covariantly decomposed as follows:

M,V =A8,~+Bkk,+C0,0,+DP.P,+Ek,P,+FP,k,
+GPQ,+HQ.P,+1Q,k,+Tk,Q,, (2.8)

M = €uwap(bP kst cQaks+dPaQs) - (29

In Egs. (2.8) and (2.9), the coefficients 4, ---, J, b, c,
and d are, in general, functions of the variables v=2P-k,
t=—(P—0)? and u=—(k—(Q)? and we have retained
only those structures which are at most bilinear in the
particle momenta in Eq. (2.9). In order to establish
that it is M 4 (rather than M, ") which is proportional
to €uwas, We can examine the transformation properties
of the effective Lagrangian density

LK — 7lry) = (g1F p+goF )10 ,Kl,,  (2.10)

where
Fu=0,@,—9,Q,

~ 2.11
an =%€uva6Faﬁ . ( )

Evidently the term ﬁ,‘,vr‘g,‘K has the transformation
properties of an axial vector (since eu.3 is a tensor
density) which gives Eq. (2.9). We set aside for the
moment the problem of calculating b, ¢, and d in Eq.
(2.9) and turn to the form factors 4, ---, J in Eq.
(2.8). The procedure we will adopt in obtaining informa-
tion about these form factors is the following: We will
relate M,V to the matrix element for K;; decay via a
Ward identity, and to the matrix element for K — lyy
by PCAC. It will be shown that in the soft-pion limit
this is sufficient to determine the structure of M,,". To
derive the Ward identity, we begin by letting —0O,
in Eq. (2.7) act to the right, giving?®

MY =i / di ek (0| (G0 (6) V,+5(0))| K*)

—8(x0)(m°| [00@u(), V,4—*(0) ]| K*)
—00(8(x0) (m° | [@u(x), V. #(0) ]| K1)}, (2.12)

where 7,7(x) =F,%(x)+(1/V3)F,8(x) is the electro-
magnetic current. It is claimed?® that the second and
third terms in Eq. (2.12) will cancel against Schwinger
terms which arise from the first term in the process of
deriving the Ward identity. Let us assume this for the
present and retain only the first term in Eq. (2.12).
Differentiating Eq. (2.12) with respect to x, we obtain

ik,M“,V=i/d4x e—ik-z
X (@0 8(e)[ jor (), V,45(0) ]| K+).  (2.13)

% See for example, S. L. Adler and R. F. Dashen, Current
Algebras (W. A. Benjamin, Inc., New York, 1968), p. 218.
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If we neglect possible Schwinger terms arising from the
commutator of 7o” with V; (i=1, 2, 3), we have from
Eq. (2.6)

d(xo)[jo?(x), Vi, 3(0)]=—8'(x)V,\(x)  (2.14)
whence
BuM 7 = —(x0| V,&=5(0) | K+)
=—[AHOP+ 0], (2.15)

which is the desired Ward identity. [As before, all
normalization factors in Eq. (2.15) have been absorbed
in the definition of 7.] Next we return to the alleged
cancellation of the Schwinger terms. To proceed,?!
we note that since 7' must be linear in the photon
polarization vector, we can write

T=e,M,, (2.16)

with M, defined implicitly by Eq. (2.2). Gauge in-
variance (i.e., masslessness of the physical photon) then
requires that 7" be invariant under the transformation
€, — €,+Mk, where N\ is some scalar, which in turn
requires that M, satisfy the condition

EM,=0 at k2=0. (2.17)

From Egs. (2.2) and (2.7), we can write k.M, explicitly:

0 =ann=d(P)’Y “k(y- (P+k)+1m)/217 k
XLA@iy - P+ f2(t)iv-Q1(1+vs)v(g)
+huM VAR M A
=k M/ +EM,VEARM AL, (2.18)

where I, =i#(p)y,(1475)v(g). From Eq. (2.9) we note
that M,,4l, transforms differently under parity than

2 Our argument closely parallels that of Ref. 20. See also L. S.
Brown, Phys. Rev. 150, 1338 (1966); D. G. Boulware and L. S.
Brown, bid. 156, 1724 (1967); R. P. Feynman, in Proceedings of
the 1967 International Conference on Particles and Fields (Inter-
science, New York, 1967), p. 111.
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M,! and M,,"],. Hence by use of the Dirac equation we

deduce that M,V must satisfy

kuM;n Vlr = ___k”M“l = —a(P)[fl(t)i'Y : P+f2(t)1’y : Q]
X (1+y3s)v(q)
—LAGOPA (00,1, (2.19)

which just gives Eq. (2.15).22 We conclude from Egs.
(2.12)-(2.19) that the Ward identity of Eq. (2.15) must
be exact in the sense that the Schwinger terms which
were dropped from Eq. (2.14) must exactly cancel the
divergence of the second and third terms in Eq. (2.12)
which were also dropped. Note that in order to exhibit
this cancellation, it is unnecessary to assume anything
about the detailed structure of the terms which were
dropped from Eq. (2.12). [In fact, as the preceding
argument indicates, k,M,," could have been evaluated
directly from Egs. (2.2) and (2.7) by use of gauge in-
variance alone.] Proceeding in an analogous manner,
we deduce from Eq. (2.18) the gauge condition for
M .4, namely,

kM AL =0, (2.20)

and hence that d=0 in Eq. (2.9). Equation (2.20) is
the result we would expect had we derived a Ward
identity for M ,,4. Proceeding as in Egs. (2.12)-(2.15),
we would have found

kuM = — (x| 4,4-%(0)|[K+)=0  (2.21)

by parity arguments, which then gives Eq. (2.20).
Returning to the problem of evaluating the form factors
A, -+, J we have from Egs. (2.8) and (2.15)

E M,V =(A~+BE+FP-E+I1Q-k)E,
+(DP-k+ER*4-HQ-k)P,+(CQ-k+GP-k+JTk*)Q,
=—fi(t)P,— f2()Q,. (2.22)

Equating coefficients of the independent vectors &, P,
and Q, we find

A+BR*+FP-k+I1Q-k=0,

DP-k+Ek*4+-HQ k= —f1(1), (2.23)
CQ-k+GP -k+Jk*=—f5(1),

and solving for D, F, and G we can write

MMVV=A (6pv—P“ky/P . k) +Bk’,‘ky
+C(Qu0y—Q-kP,Q./P-k)
+Ek,P,+H(Q.P,—Q-kP,P,/P k)
+I1(Quky—Q-kP,k,/P-k)
+Jkar—[fl(t)Pv+ fZ(t)Qv]P“/P'k. (224)

From Egs. (2.2), (2.7), (2.9), and (2.24) we can then

2 Evidently had we considered the decay of K~ instead of K,
the sign of the commutator in Eq. (2.14) would have changed as
would the sign of the first term in Eq. (2.2), so that the Ward
identity argument would go through as before.
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write

T=u<p)(;%’;+

cey-k
o e PAin-01

X(1+vs)v(q)+A(e:l—e Pk-l/P-k)

+C(eQQ-1—Q ke PQ-l/P-k)

+H(e-QP-1—Q-ke-PP-1/P-k)

+I(e-Qk-1—Q-ke- PE-1/P-E)—[ /()P I+ f2()Q- 1]
X e P/P-k+emaseuls(bPaks+cQuks). (2.25)

In choosing to solve for D, F, and G from Eq. (2.23)
we are motivated by the desire to exhibit explicitly the
kinematic singularities arising from the kaon pole
diagram Fig. 2(b) which we know contributes to M ,,".
Since this diagram can be calculated explicitly, it is
advantageous to do so at this point before discussing
the consequences of PCAC and the Q=0 limit.

Before exhibiting the contribution of the kaon pole,
it would be useful to state explicitly what we are driving
after. By virtue of Low’s theorem,?*2* the sum of the
known contributions from the kaon pole diagram
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[Fig. 2(b)] and the previously considered electron
bremsstrahlung diagram [Fig. 2(a)] determine the
structure of T up to (but not including) terms linear in
the photon momentum k. Consequently, the unknown
form factors 4, C, H, - - - can contribute only to terms
which are at least linear in k. What we are attempting
to do is to rewrite Eq. (2.25) in a form consistent with
Low’s theorem.

Let T'1 denote the contribution to 7" from the terms
up to (but not including) those linear in k. It can be
shown that 7'z may be computed from the correspond-
ing nonradiative amplitude by the following simple
recipe?t: (1) Write down T, the sum of contributions
in which the photon is radiated from an external
charged line. (2) Expand 7 in a Taylor series about
k=0. (3) Drop all terms from 7T which are explicitly
independent of £ or which are of order k or higher.
Denote the result of this step by Tex'. (4) Add to T’
a contribution AT independent of k so as to make

T e’ +AT gauge invariant. Then
Tr=Te+AT. (2.26)

For the present problem we have

ep v-evk ) ) e P
Tex=d(1))(~—+———>[f1(t,0,0)w-P+f2(f,0,0)wQ](l-Hs)v(q)-—Fx((P—k)2+M2)——
Pk 2pk Pk

Xa(p){J1(=(A—k)*,(P—k)*+M20)iv (P —k)+fo( — (A —B)% (P — )+ M2 0)iv- Q) 1 +7s)e(g), (2.27)

where F is the electromagnetic form factor of the kaon [Fg(0)=1], and Jre=f1,2 (t=—A2

Ay=P2+M2,

Ay=(Q4-u?) are the K3 form factors when the kaon and the pion are on the mass shell. Expanding Eq. (2.27) in a

Taylor series about k=0, we find

ey k

€ep v
Tex=a<p>(—+
bk 2pk

2¢- P d

——*k-(P —Q);;Z(P)[f 10y (P=B)+ ()i QJ(1+vs)v(g)+2¢- P

Pk

e P
)[fx(t)iv P+ fo(O)iy- QJ(145)v(g) —ﬂ(P)P—Je[fx(t)iv- (P—k)+fo(®)iv-Q1(14vs)v(q)

9
—F k(A1)
0A;

A1=0

9
Xa(p)L /()i (P —k)+f2(l)i7'Q](1+75)v(q)+2€'Pﬂ(P)[an1(t,A1,0)i‘Y' (P—F)

d
+6—A1f2(t,A1,0)i‘Y'Q](1+75)v(q), (2.28)

where f(t)= f(1,0,0). Next we drop all terms which are either independent of £ or which are of order k or higher

yielding

v-ey-k
-k

€p
Tex’=ﬂ(p)(—+
Pk 2p

P
+257¢
P-k

: e P
)[fx(t)i’Y P fo()iv-Q](1+vs)v(g) —a(p) ;;[f 1Dy (P—R)+fo(®)iy-QJ(1+vs)v(q)

3
;tﬂ(p)ffx(t)iv'P+fz(t)i7-Q](1+w)v(q)- (2.29)

# F. E. Low, Phys. Rev. 110, 974 (1958); T. H. Burnett and N. M. Kroll, Phys. Rev. Letters 20, 86 (1968).
#S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966); J. Pestieau, 7bid. 16(}),, 1555 (1967). 86 )
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Finally, checking Eq. (2.29) for gauge invariance, we find that we must add to Eq. (2.29) a AT given by

F)
AT = — fL(a(p)iy - e(1+ys)v(g) —2Q- eg[f 1)y P+ f2(8)iy - Q1(14+v5)v(q) -

(2.30)

AT corresponds to the “seagull” diagram Fig. 2(c). Hence

T1=Te'+AT= u([))(————:—--l-—-———)[fl(t)w P+ fo(t)iv- QJ(1+vs)v(g)

E Pk 2pk

—ﬁ(z)a(p)[iv—e—iv-k%e](1+75>v<q>—za(m[ 0—0- k—] Wi P4+ i - 011 Fre(a)

We can extract the contribution to T from 7’1 by defin-
ing new functions 4’, C’, H', and I’ via
AWtu)=—f1{t)+(P-k/M2 A (v,t,u)
Cvtu)=—20f:(t)/0t+(P - k/M*)C' (v,t,u)
H@,tu)=—2011(t)/3t+(P-k/M>)H' (v,t,u)
I tu)=(P -k/ M) (vu),
v=P-k.

If we define the structure-dependent contribution .S via

T=T1+S (2.33)

(2.32)

v-ey:
2p-k

ep eP
Tty (S
p-k P-k

(2.31)

then S is given by

S=(4"/M?)(e-I1P-k—e-Pk-1)+(e-QP-k—e-PQ-k)
C(C'/M?)Q-1+H' /M) P-1+I'/Mk-1]
+ewapeuls(DP aks+cQaks) .

It is understood that the unknown functions 4’, C’,
H', I, b, and ¢ are finite as k— 0, so that S is at least
linear in £ as is required by Low’s theorem. Combining
Egs. (2.31) and (2.34) we have, after some Dirac
algebra,

(2.34)

)mom 0—mf() 11 +1o)(g) — z(Q —0- k——k)— A2+ i -Q—mfi(D)]

A’ c’ il r
X(1+7a)v(q)+i—2(e-lP-k—e-Pk~l)+(e-QP~k—e-PQ-k)(E’Q-l+5/[—2P-l+A—l—zk-l)

2/ =HO=1).

It is worth observing that in going from Egs. (2.8) and
(2.9) to Eq. (2.35) we have reduced the number of un-
known form factors from 13 to 6. We have written the
matrix element in terms of fi(f) and fi(¢) rather than
f+(t) and f_(f) because the former choice of form factors
gives rise to the smallest number of terms when taking
the trace. To evaluate df,(¢)/dt and 8 f1(¢)/dt, we adopt
the following parametrization for the momentum de-
pendence of the K;3 form factors:

f(t)=f(0)<1+%)

22p.q—2p-k—2q-k
(m*—=2p-q—2p q )], (2.36)

=f<o>[1+A
M2

where the connection with the usual notation is
A=MM?/u? and f(£)=f+(t) or f1(t). We also define
£=1-(0)/1+(0),

7= f1(0)/f+(0) =1+¢, (2.37)

+euasedy (P aks-cQuks)
wap€uy(DP akgtcQaks (2.35)

so that the relation between first-order quantities is
nAr=A+EA_. (2.38)

In principle, Eq. (2.35) is exact. However, in order to
evaluate the unknown form factors A’, C’, H', I, b, and
¢, it is necessary to invoke PCAC and consider T in the
Q=0 limit. More specifically, we will evaluate the un-
known form factors in Sec. III by relating K+ — 7% +py
to K+ — Ity via PCAC and show that in the soft-pion
(i.e., 0=0) limit the expression for T in Eq. (2.35)
depends on only two unknown form factors.

III. EVALUATION OF THE STRUCTURE
DEPENDENT FORM FACTORS

We assume PCAC in the form

wiar
a)\gﬂj(x) =—\77“¢](x) ’ ]= 1a2:3 (31)

where u is the pion mass, ¢, =0.94, and ¢’(x) is the field
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operator which annihilates a pion with isospin j. By an LSZ reduction on the pion field, we can express the

left-hand side of Eq. (2.7) as

(2QoV)1*(ry | g—5(0) [K*) =i / dty e ¢v(— 0, +u?)(y| TG (1) 9 ()| K+)

_\/E(Qz'i'u’) /
uPar

_\’fi(Q2+u2) /
uiar

In the last step in Eq. (3.2), we have made use of Eq.
(3.1) and we have dropped surface terms arising from
partial integration. Taking the limit Q»— 0 in Eq.
(3.2), we find

(2Q0V) 12y | V,+5(0)| K+)
=(—i/V2ua,)(y| 4,%(0) | K*),
(2Qov)1/2(1r07|Av4—i5(0)|K+>
=(i/V2ua.){y| V,*5(0) | K*+). (3.3)

In taking the limit O\ — 0 in Eq. (3.2) the term pro-
portional to Q\ makes no contribution since covariance

ep eP vy-ey-k
— -

T=a<p>(
pk Pk 2p

X (14+7y5)v(q)+(A4/M?) (e IP-k—e- Pk-1)+(B/M?) €papeu Paks,

where we have redefined 4’=4 and B=b. To evaluate
A and B we proceed to discuss the matrix element for
K+ — Ityy.

Following the same procedure used in the previous
section, the matrix element for the process K+(P)— I+(p)
+v(¢)+~v(k) is given by

M =gus{lry | K)in=—i(2m)64(P — p—q—F)

mm, 112 ¢G sinf
( ) T, (3.5)

X
"ll)opqukoV4 V2

where T consists of the sum of the inner bremsstrahlung
graph and the structure-dependent axial-vector and
vector parts,

. .P cev -k
= —imit o)t )
pk Pk 2pk
X (14vs)v(q)+(ia/M)(e-IP- k—e- Pk-1)
+(iZ/M)eﬂvaﬂ5nlvPak5, (3.6)

where @, b are dimensionless functions of the variable
P-k. An alternative derivation of Eq. (3.6) follows
directly from Eq. (2.35) by setting Q=0, fi(t)=f«,

)[2f+(t)z‘7-Q—mfx(l)](1+75)v(Q)+2(

d"y e“'Q'”QX('YI T(ifsﬂ(y)g,.““"(O)) l K*)

d*y e ¥3(yo) (v [ [Fs0*(¥),9,+5(0) ]| K+). (3.2)

under parity rules out any intermediate state which
could give rise to a pole in the Q=0 limit.?® Evidently,
the right-hand side of Egs. (3.3) is just the matrix
element for radiation from K+ in the process K+ — I*vy.
From Egs. (2.35) and (3.3) we see that the terms
proportional to the form factors C’, H’, I’, and ¢ are
zero in the soft-pion limit with the result that 7" now
depends on only two unknown form factors 4’ and b.
It should be emphasized that the Q =0 limit is taken only
in S as is evident from the preceding discussion. For fu-
ture reference, we exhibit the expression for T in the
approximation to which we are now working,

Qhel L )21 -0 —mii)]
7 "Q'é);uﬁfh iy-Q—mf

(3.4)

and multiplying by a factor of ¢ from the LSZ reduction
and a factor of M to make the new coupling constants
dimensionless.

_ An evaluation of the form factors @=a(v=0) and
b="5b(»=0) has been attempted by several authors.57:1!
The difficulty of the problem is indicated in part by the
disparity in the numerical values obtained for @ and b
by the different groups. In an effort to unravel some of
the difficulties, we will summarize in the following
paragraphs the various approaches that have been used
and state the results which have been obtained.

We begin with a discussion of 5(») which has been
treated by Gervais, Iliopoulos and Kaplan,'*Rockmore,’
and Sarker? using K*(890) dominance and by Kummer
and Majerotto® using a Fubini-type sum rule. In the
K*(890) dominance model of Fig. 3(a), b(v) is given by

b)) _ ‘Wf"c""" , 3.7
M —2v4+-M g+ —M?
where fx*is defined by
(2Q00V)120| V= 5(0) | K*+H(Q)) =eufr*  (3.8)

38 C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966).
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(a) Y(k)

2(p)
K(P)é ©30) < F1c. 3. (a) K*-pole con-

v(a) tribution to the structure-
dependent vector matrix
element in K+ — Ityy. (b)
K 4-pole contribution to the

Y structure-dependent axial-
2 vector matrix element in
(b) 2p) K+t— l+v'y.
K() K, (1320) : @)

in analogy to

(2Q0V)1%(0| V,*=2(0) | pH(Q)) = u -
Gk*ky is defined through the coupling

(3.9)

&(K* — Kvy) =eGx*k,F K, *3,K-+H.c. (3.10)
In the limit of exact SU(3), we have
fre*=f =V2m,2/ fora=20.26m,?, (3.11)

with f,..%/4m=22.4. By use of spectral function sum
rules obtained from asymptotic SU3)XSU(3), the
effects of SU(3) symmetry breaking may be estimated?®
and give

fr*=fo(mx+/m,)=20.30m,*. (3.12)

Up to this point, there is a general level of agreement
among the various authors, a level unfortunately not
achieved in evaluating Gx*k,.

Rockmore and Sarker calculate Gx*k, by assuming a
Gell-Mann-Sharp-Wagner-type model,” in analogy
to the conventional treatment of G,.,. Difficulties
arise, however, from the fact that both isoscalar and
isovector photons contribute to K* — Ky while only
isovector photons contribute to w—my. As a con-
sequence of this, p, w, and ¢ intermediate states can
contribute to Gk *x, with the result that Gx*x, depends
somewhat sensitively on models of w-¢ mixing and
SU(3) symmetry breaking. Using the nonet model of
Okubo?® for w-¢ mixing, Rockmore finds

GK *Ky =Gpw1l [fp/m92 - (\/%)f¢/m¢2
= (V5 fo/ma*], (3.13)

where f4 and f, are defined as in Egs. (3.8) and (3.9),
and G,,r2/4m=20.40/p? as determined from I'(w — 3r).
In the exact SU(3) limit, f4=7, and f,=0 (¢ is a pure
octet and w is a pure singlet). The effects of SU(3)
symmetry breaking on fs and f, may be estimated
again using spectral function sum rules and give?
fo2221.031,%, f.2220.431,%. Hence

Gr*ry=20.37/M . (3.14)

% T, Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967).

M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).

28 S, Okubo, Phys. Letters 5, 165 (1963).
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[Gervais et al., using SU(6) to relate Gx*gy t0 Gory,
find Gg*x,==23.5/M using T'(p— my)=20.5 MeV, a
width which is probably too large.] From Egs. (3.7),
(3.12), and (3.14) we find

|5(0)|=20.12. (3.15)

Note that since 5(v) multiplies an expression which is
already linear in %, it is sufficient to evaluate b(v) at
»=0 and treat 5(») as a constant to the approximation
in which we are working. _

Kummer and Majerotto® evaluate 6(0) using the
dispersion theoretic approach of Fubini? and find

B(0)/M =—(V/8) fryyt+BfsGors/m?),  (3.16)
where fryy and G, are defined by
(4koQo V) 2y (k)| V,3(0) | °(Q))
=1efryyewaseskaQp, (3.17)
(4koQoV2) 2o+ (k) | V,.2(0) | w*+(Q))
=V3Gpry€wap&Qaks. (3.18)

Note that fry, is defined in analogy to b(»)

(4koPoV%) 12y () | V4= *(0) | K+(P))
=ie(b(v)/M)e,‘,,,,ﬂe,‘Pak3 . (3 19)

Since only the magnitudes (and not the signs) of the
coupling constants in Eq. (3.16) can be determined
theoretically, Eq. (3.16) gives rise to two solutions®
for |6(0)]

_ 0.80
[5(0)| = [0.430.37| = ‘0 06} . (3.20)

We see that the various estimates of |5(0)] differ quite
appreciably from one another. From Egs. (3.3) and
(3.4) we can then write

| B(0)|=2(M/V2uar) |5(0)|=2.8]5(0)| . (3.21)
From the previous discussion we conclude that | B(0)]
probably lies in the range

025 |B(0)| L2 (3.22)

and consequently we have chosen the nominal value
[B(0)| =1.0 in plotting the structure-dependent con-
tribution to the photon spectrum in Fig. (4).

We turn next to a discussion of @(v) which has been
treated by Rockmore,” Sarker,” and Vaishya and
Gupta.’! We assume that @(v) is dominated by con-
tributions from intermediate I(J?) =1(1+) mesons such
as the K 4(1320) shown in Fig. 3(b).% A straightforward

2 S, Fubini, Nuovo Cimento 43, 475 (1966).

% Actually, there appear to be several resonances having the
same quantum numbers as K 4(1320). See, for example, N. Barash-
Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H. Rosenfeld,
P. Soding, and C. G. Wohl, University of California Research
Laboratory Report No. 8030, 1968 (unpublished); and Particle
Data Group, Rev. Mod. Phys. 41, 109 (1969).
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evaluation of Fig. 3(b) yields
()| _ TrahgaRA() ’ (3.23)
M | —2+My—M?
where fx, and k(v) are defined by
(2Q0V) (0] A,(0) | K 4¥(Q)) =1ufx4 (3.24)
—i(4PQoVA) XK 4+(Q) ] 7u7(0) | K*(P))
=[2P knu—(P+Q)unkJhxsx4()
+k“7] . kgKAKy(V) . (325)

In Eqgs. (3.24) and (3.25) 7, is the polarization vector
for K 4, and k=P —(Q. By gauge invariance, the term
proportional to gx,xy(v) makes no contribution to the
radiative matrix element. In accordance with Low’s
theorem we know that hg,x,(v) is finite as »—0
and hence

|5(0)|/M= lfKAhKAK‘Y(O)[/(MKAZ_Mz)' (3.26)

In view of the previously mentioned uncertainties in
the I(JP)=3(1%) spectrum® and in particular of the
K 4 couplings, we have not attempted to evaluate
@=a(0) explicitly and consequently we have chosen
the nominal value A4=A4(0)=1.0 in plotting the
structure-dependent contribution in Fig. 6. [Recall
that A4(0) is related to @(0) through Eq. (3.3).]

In the approach of Vaishya and Gupta,’! and of
Sarker,” a sum rule is derived which permits the right-
hand side of Eq. (3.26) to be expressed directly in terms
of the kaon decay constant fx thus avoiding a direct
confrontation with the unknown coupling constants
fra and kg x,. The validity of this sum rule depends
on (1) assumptions about subtracted or unsubtracted
dispersion relations and (2) on carefully extract-
ing the Born amplitude (including possible contri-
butions from “seagull” diagrams) from the amplitude
{(y|4,7%(0)| K*). We quote without further comment
the values 0.15(]@(0)[/]6(0)] =|4(0)|/|B(0)|)£0.9
obtained by the various authors.

IV. SOME TECHNICAL DETAILS

Given the final form of the matrix element, the
evaluation of the sum over spins and polarizations is
tedious but straightforward. As note previously the
infrared divergent terms of order 47! in T arise ex-
clusively from diagrams in which the photon is emitted
from an external charged line. As a consequence of this,
the terms in |7'|? which are of order k2 factorize in
the following way:

| T(K+ — ntvy) |2

=0(k~?) | T(Kt — 7%t) | 240k 1) +- -+,  (4.1)
The remaining terms in |7| (the real “brems-
strahlung’) are well behaved in the limit £#— 0 and

require no special attention. From Eqgs. 3.4) and (AS)
the coefficient of order 472 in Eq. (4.1) may be read
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off by inspection and is given by

€ e P
I T(K"’——) 7"01+V'Y)IZ=—— _g____.
dmm,\p-k P-k

XTr[T(iy-Q)yaltyalm—iy-p) 1+ -+,

T=2f(t)iy-Q—mfi(t).

The trace in Eq. (4.2) is given by the quantity in curly
brackets in Eq. (A6) and the full sum over spins and
polarizations of the complete matrix element is given
in Egs. (A8)-(A12).

Note that we will use the photon energy as one of the
integration variables in the expression for the rate and
therefore evaluate the complete trace and polarization
sum with zero photon mass. The final integral over the
photon energy is cut off at a photon energy equal to the
minimum photon energy to which the detecting ap-
paratus is sensitive.

Note also that all terms in Eq. (A8) which contain
the factor (p-k)~2 are multiplied by m?2. As we show in
Appendix B, the phase space integral over (p-k)~?
behaves like m~2 so terms m?/(p-k)? are finite as
m?— 0. This cancellation cannot be seen from the
matrix element. If we examine the terms with (p-£)~!
in Eq. (3.4) they will have a singularity when p-k=0
or |k|(|p| cosd—E)=0, i.e., they will have an end point
singularity in the cosf integration when m=0. At this
point p|lk so p.x k. If we make this substitution in
the numerator of Eq. (3.4), the (p-%)~! terms have co-
efficients k-¢, which are zero by current conservation,
and v-py-e, which is proportional to the lepton mass
by use of the Dirac equation. Therefore, the terms
which can cause trouble have numerators at least of
order m. At first sight the denominators seem to
approach zero as m? but after explicit calculation of the
integrals, we see that the (p-%)~2 terms in the trace
approach zero as m~% and not as m—* Hence there is
no linear mass divergence in the lepton mass. This is
an example of mass singularities examined by Kino-
shita® and the particular case discussed here uses an
argument due to R. W. Brown (private communica-
tion). We are therefore not allowed to drop terms pro-
portional to the lepton mass in calculating the decay
rate into electrons.

Next we turn to the final-state integrations which
yield the photon spectrum and decay rate. To illus-
trate the method of doing the integrations over the
four-momenta of the neutrino, electron, and photon,
we consider the basic integral

2

—1

(4.2)
where

J= / d*k 5(k2)0(ko) / d*p 8(p+m2)8(po) / d*q 8(g*)6(qo)

X / @*Q 8(Q*+u?)0(Q0)o (P—Q—p—q—k). (43)

3 T Kinoshita, J. Math. Phys. 3, 650 (1962).
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Integration over the pion four-momentum is trivial using the final § function. We then use the usual relation

given by Killén?? in the form

/ d*q 5(g*+€)0(g0)5((4 —9)*+12)0((4 —g)0) =21>\” *(a,e,u)0(a)0(a — (u+€)?), (44)
a
where
A24a=0, \(x,y,3)=x?+y*+22—2xy—2xz—2yz.
Hence
>‘1,2(010’“2)
J=3r / da 8(A*+a)——H0(a—p?)0(a) / d*k 5(k2)0(ko) / dp 8(p2+m2)6(po) . (4.5)
a
If we let A =B—p, where B*4-b=0, then
)\”2((1,0,#2)
J=%1r/dbfda ————————G(a—p“’)/d‘k 5(k2)0(ko)d((P —k)2+b)0((P —k)o)
a
X / d*p 5(p*+m*)8(po)3((B—p)*+a)0((B—p)o)
A2(12,5,0) N2(b,ma)  N%(a,0,u%)
=(3m)? f db——M—2———0(b)0(b—-(\/a+m)2) / da ; 6(a) 0(a—u?)0(M2—b)
a
Mgy g ]
— Gy / = 0Nt N 2(,020) (46)
miw? b J 2 a M?

The variable b=—(P—k)?=M?*—2P -k=M?*—-2MW
in the kaon rest frame, where W denotes the photon
energy. Hence the spectrum in & is essentially the
negative of the photon energy spectrum. The cutoff
on the low-photon energies now becomes a cutoff on
high values of 5. Specifically if we take Wria =30 MeV
as in the experiment of Ref. 10, bmax becomes bmax
=(M —A)? with A=30 MeV.

When we include a matrix element, dependent upon
scalar products of four vectors, the pion integration is
still trivial but the neutrino four-momentum appears
in the numerator in powers up to two, and we require
the following integrals:

2
— f 0 8(¢2)0(g0)5((4 — ) +u2)0((A — ),

™

=%A,.(1—E)20(a)9(a—#2), @7

a

2
z / 04 5(@)0(g0)8((A — )04 —0) Dasg,

3
=%<A“A,+%aam>(1—-"—) 0(2)0(a—u?). (4.8)
—

Each integral involving ¢ then reduces to a number of
terms involving p. When we have tabulated all possible
combinations of integrals over the lepton four-momen-
tum (Appendix B), we can finally compute the spec-
trum and rate by integration over @ and @b, respec-

32 G, Killén, Elementary Particle Physics (Addison-Wesley
Publishing Co., Inc., Reading, Mass., 1964).

tively. Luckily, only a few of the p integrations have to
be actually integrated analytically. The others are
related by recurrence relations as shown in Appendix B.
Our final answer is enormous and cannot possibly be
reproduced here. However, if anyone wants the rates
and spectra for different vaules of the couplings from
those used in the last section, we will be happy to rerun
our program.

Finally, we note that, since the structure-dependent
terms are at least linear in k%, their contribution to the
K+ — w%*vy decay will be small compared to the
“structureless” bremsstrahlung contributions from 7';.
This implies that contributions from .S can be extracted
only with great difficulty given a knowledge of the
K+ — n%*yy rate and spectrum. Unfortunately, this
is a general feature of radiative decays and implies that
structure-dependent effects can only be seen with ease
in radiative decays where the bremsstrahlung decay is
forbidden by a selection rule, e.g., n— m+r—y because
the decay n— =+n~ violates parity.

V. CONCLUSIONS

We present next the results of the numerical computa-
tions. Let us first discuss the rates. Our procedure is to
evaluate the direct square of the infrared divergent part
of the matrix element up to terms linear in A. This
giV% seven terms, i.e., f+2(0)a f+(0)f1(0)1 f12(0),
F20)As, f*(OAs, £+(0)/i(0)As, and f,(0) f1(0)As. The
square of the term which is of order £° (as well as the
square of the structure-dependent terms) was found to
be so small that it could be safely neglected. The re-
maining terms come from the interference between the
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inner-bremsstrahlung term and the other three terms.
Here we are justified in keeping only f(0) and f_(0)
in the inner bremsstrahlung, and we thus generate the
terms f+2(0)A+1 f+2(O)Ala flz(O)A+7 flz(O)Al: f+(0)A!
f+(0)B, f1(0)4, and f1(0)B. The rate in both cases is the
sum of the fifteen terms. In practice the decay rate for
the electron mode has only five terms because all the
terms proportional to the lepton mass are so small
that they can be discarded. The results are as
follows:

1655

T(K+ — w%tvy, E,> 30 MeV) = (G? sin20M 5/64x3)
X10—3[1.00821,2(0)+0.1704 £, 2(0)A
+0.1242£,2(0)A —0.00221, (0)A

—0.00137,(0)B]. (5.1)
As noted above, the two terms proportional to f12(0)A
in Eq. (5.1) have different origins in Eq. (3.4) and have
not been combined in order to exhibit their relative
magnitudes. We follow the same procedure in Eqgs
(5.2) and (5.3).

T'(K+ — n%tvy, Ey>30 MeV) = (G sin?0M*/647%) X 105 1.8736 £,2(0) +0.0930 £12(0)+0.1955 £,.(0) £1(0)
+0.6111£,2(0)A+0.0446 £,2(0)A140.0413 £, (0) £1(0) (A4 +A1)+0.9106 £, 2(0) A, —0.0028 £;2(0)A,

—0.0026£1%(0)A+—0.01111,2(0)A; —0.0370£,.(0)4 —0.0242 £, (0) B+0.0073 f,(0)4 —0.0060 f,(0) B]. (5.2)
Taking now the rate for K+ — w%ty from Eq. (A7), we find

[(K* — n%*vy, E,>30 MeV) [1.0082+0.1704A,+0.1242A, —0.00224/ £, (0)—0.0013B/ f,(0) ] X 10~
I'(K+ — %*) B

4(1.206740.3335A,)

The usual model of K*(890) dominance of the
vector form factor yields Ay=M?*/Mg+*=0.31. If

we assume sinf=0.21, then f,(0)=0.76 from the Ki;

(5.3)
rate [I'(K;3) =4.07X10° sec']. Hence the branching
ratio is

1=(2.100—0.0064 —0.003B) X 102, (5.4)
o ! ' j 5 T T
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Fi1c. 6. Photon spectrum in K*— x%*yy, with £,(0)=0.76,
£1(0)=0.76, (¢=0.0), A,=0.31, A;=0.31 and A=B=0. The
lower curves include interference with 4 =B=1.0. The ordinate
has been normalized by dividing by the K+ — #%*y rate.

The experimental number R;=(1.2-£0.8)X10~2 can
only be fitted with 4 and B large and positive. If 4
and B are smaller, then R; can be fitted with a smaller
value of Ay. We cannot place too much reliance on the
results of one experiment, and clearly better data would
be very useful. The large positive values of 4 and B
are incompatible with the estimates of @ and b obtained
in Sec. III. Our result for the electron mode clearly
shows that measurements of @ and & from the mode
K*— utyy can, in principle, be combined with measure-
ments of @ and b from the decay K+ — n%tvy to give
these parameters.
Now let us turn to the branching ratio ,

I'(Kt — m%tvy, E,>30 MeV)
R,= (5.5)
T'(K* — m%ty)

which is a rather complicated function of many parame-
ters. Assuming, for example, that 5=1.0, (£=0.0),
f+(0)=£1(0)=0.76, A+ =A;=0.31, and A=B=2.5, we
find R;=0.70)X10-3. The branching ratio R, can be
used to solve for A; and f1(0), but as no experimental
data are available we only quote a single result.

We complete our analysis by plotting the photon
spectra for different values of the couplings. Figure 4

AND 7J.
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shows the photon spectrum in the decay K+— wltvy
with 4 =B=0. The corrections due to small finite
values of 4 and B are almost unobservable and have
not been included. Figure 5 shows the photon spectrum
in the decay K+ — 7%try with £=—1.0 (result from
polarization datal), A,=A;=0.31, and A4=B=0.
Figure 6 shows the spectrum with £=0 (rough average
of polarization and rate data!) and both 4 =B=0 and
A=B=1.0. We have not drawn the diagrams with
different values of ¢ because in all cases the variation is
small and the effect could be misleading until we know
the other couplings.

Our results may be summarized as follows. Accepting
the estimates of 4 and B from Sec. III, the rates and
spectra for both decays are primarily determined by
the K;; form factors. It is unlikely that measurements
will be made in the near future with enough accuracy
to detect the A and B terms. Noting that the ratio R,
is independent of the Cabibbo angle and f,(0),we would
like to stress the possibility of directly obtaining Ay
from this branching ratio. R, is a rather complicated
function of the K3 form factors and has a smaller value
so it is probably academic to discuss this decay at
present. However, we feel that it will eventually be
measured and may provide a useful supplement to K,;
decay as a means of checking the values of 4 and \;

(¢and \y).
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APPENDIX A. THE TRACE CALCULATION
AND RELATED CONVENTIONS

In this appendix, we summarize some conventions
relating to the Dirac equation and present several
identities which were found useful in performing the
trace calculations. The necessary traces were cal-
culated by hand and checked against the results of
scHooNscHIP, a CDC 6600 program for symbolic eval-
uation of algebraic expressions, written by M. Velt-
man. The results for I'(K+ — 7%/*) and T'(K+ — 7% +vy)
are given in Egs. (A6) and (A13).

We have worked in the Pauli metric of Jackson,3’
Kiéllén,32 Mandl,* and Bernstein.? The Dirac equation
for the positive-energy spinor %(p,s) describing a spin-1
fermion of momentum p and spin s, and for the negative-

® J. D. Jackson, in Elementary Particle Physics and Field Theory,
1962 Brandeis Lectures (W. A. Benjamin, Inc., New York, 1963),
Vol. 1, p. 263.

# F. Mandl, I'ntroduction to Quantum Field Theory (Interscience
Publishers, Inc., New York, 1959).

% J. Bernstein, Elementary Particles and Their Currents (W. H.
Freeman and Co., San Francisco, 1968).
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energy spinor »(,s) is Y YnYs= (8w ¥ —0unyy+8x7u) 75— €unns¥s
VuYvYs=0uwYs “%61&")\;77)\7;: ) (A3)
YuYs= (1/3 1) €N YvY\Yp -

The trace of 5 with three or fewer v, vanishes and

iy - p+m)u(p,s) =a(p,s)(@y- p+m)=0,
(—iy-p+mv(p,s) =0(p,s)(—iy-p+m)=0,

v P=1 P tivepo, an Tr(vury\yeYs) = 46w,
pu=(p, ps=1ipo), Tr(vivsyeywysynys) =4(8:j€xumn — din€junt Oik€iumn
p-k=puky,=p-k— poko. Fomeiin—8uneiitntOneijin), (A4)

i) j’ k) p’) V, k=1’ 2! 3) 4'

For other trace formulas the reader is referred to

The Dirac matrices v, satisfy

5114 32 . .
(Yarvs} =28, {75, 74} =0, (A2) Killén.32 The K3 matrix element T is given by
with T(K+— 70ty)
Ys=v1v2v8va= (1/4]) eunavuvs 375 » =(4PQoVA)V2x2(Q) | V.45(0) | K+(P))l,
where e, is the completely antisymmetric permuta- = a2 L+ (i Q=mAO 11 +rs)(e) (A5)
tion symbol: so the rate is
G?sin?% 1

T(K+— n'ty) = PYETEY f d*p 8(p*+m*)0(po) / d*q 8(9%)6(q0)8((P—p—q)*+nu?)

X{=8[4/1 (O (m*p-q—M?p-q—2P - pP-q—2m*P-q)+4f,()) fr(Om*(P-g—p- Q) +m*[:2()p-¢}, (A6)
J+() = f+O)[1+As(m*—2p-q)/M*],

with a corresponding formula for fi(¢). Using the invariant-mass technique described in Sec. IV, we reduce the

rate down to a single integral, which is computed numerically. We give the results as functions of 7= £1(0)/1(0),
Ay, Ay, and f+(0)

G? sin®0M’®
F(K+ - 7r(’e+V) =Tf+2(0) X 10_2[1 2067+03335A+] )

T

where

G? sin?0M°
T'(K+ — 1%ty) =—-—3——f+2(0) X102

167
X[0.6497+-0.10637+0.02327?4-0.2720A 4 +0.0277(A;7+A1m) +0.0152A:72]. (A7)
The sum over spins and polarizations for the K3, matrix element gives

4mm,z [MIBIZ

8[ m MP  2Pp
“Lip-r)E (PR Pokpok

]£4f+2(t><m2p-q—wp-q—ZP-pP-q—zmﬂP-@

2P-kP-q 4P-pP-q M2P-q'2M2q.k M-k

+4f+(t)f1(t)m2(P-q—irq)+m”f12(t)p-q]+8{4f+2(l)[41’-q

bk pk Pk Pk pk
Mipq 2P-ppq P-q InP-kP-g 2MP-pgk 2MP-gpk IMphgk 2mtMqk miMg-k
Pk pk o pk (pRE (PR (PR (PR (PR (o)
M2?P-pq-k ' 6P-pP-q 2P-pq-k 1 2P-gp-k 1 mZP-qu“q'k mq-k mzp-q¢2(P-p)2q-k
Pkpk | Pk Pk Pk Pk (R pk  pk | Pohpk

3m2P'PQ'k q.k pq P. m2g-k P-pg-k
R I e
P-kp-k vk pk Pk (p-k)? Pkpk
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M-k q-k 2P-pq-k]}+16[2P~piP-pq-kim2 p-q1M2p~klM2q-kLP~qj|

2 T T 1 T T
+ Pk Pkpk pk pk (PR (PR Pk

_4mzf+(t)f1(l)[(P_k)2 m(P.k)z P-kp-k

0 d 0
x[‘&afﬁ(t) (m*p-q—M?*p-q—2P-pP-q—2m’P- q)+2:3—t[f+(t)f1(t)]m2(P- q—t-9) +m’:3—tf12(t)1> : q]

)
+8[4a—f+2(t)|:—2(P-q)2—4-.P- pP-q+2P- pg-k+2P-qp-k+4P-qq-k—4M?2p-q—2P -kp-q—6P- pp-q+4m?P-q
t

2M*(g-k)* 2P-k(p-q)* 2m?*P-kP-q 2P-kP-gp-q
—6P-qp-q+2p-kp-q—2m’q-k+2p-qq-k—m*p-q+ } +
P-k p-k p-k bk

2P-1;P~qq-k'4:M2P~;Iz(q~k)214M2P-q(p-k)2 M?P-pg-k M?*P-qp-k M?2P-qq-k 2M?*p-k(q-k)?
sk (PR (PR Pk Pk Pk (P-B)?

2Mp-RYg-k DM Rak AmMAGR) M kpq 2Mpggk mMigk Mgk 2mP-pg-k
(P-R? Pk (PR Pk Pk bk pk pk

4P-pp-qq-k 2m2P-kp-qJ4M2P~pp~kq-kL4M2P-qp'kq~k M2P-p(q-k)2|4m2M2p-kq-k 2P-p(q-k)?
bk pk (PR (PR Phpk (PR Pk

(6(Pp)Ygk AP-g(p-R)? 4(P-9pk 3miqk 10P-pP-qp-k 10P-pP-gg-k 6P-pp-kg-k 6P-gp-ke-k
' Pk Pk Pk pk Pk Pk Pk Pk

| Tm*P-pg-k 1 m*P-qp-k . SmZP-qg-kLZ(P~p)2(q-k)2 L?mﬂ]”-j;(q‘k)2 3m*p-qq-k
! —

d
] +m?—f,? (l)
ot

Pk Pk Pk Pkpk  Phpk bk
P-pg-k P-gp-k P-gq-k gk p-gqk Pplgk)? 9 2M*(q-k)?
X P | _— 2. } :] 4m? 1)— t[P' ——
[P Pk PR PRk pk | Phpk HWLONO| Pateg (P-k)?

| M?q-k P-pg-k P'kp~qi2P'qq~k 2M2;b-leq~kiM2(q'Ie)2 3P-pg-k P-gp-k 3P-qq-k q-k
"Pk . opk bk pk (P-B!  Pkpk Pk Pk Pk bk

P9k Pplgk)”

2M*(g-k)* M%q-k P-pg-k P-kp-q 2P-gq-k
T bk Phpk -

(PR Pk pk | pk pk

a
Jramno—ro] -p-o-p-
at

2M*p-qq-k M*q-k)* SP-pg-k P-qgp-k P-qqk 9k 3p-qq-k 3P-p(q-k)?
_ - - —3m? t :I}: (A8)

(P-k® Pkpk Pk Pk Pk bk pk  Pkpk
4mm, s 4mm, v —16
o T MAl=— =% V[ L LPRPgp kP kP pg- M-k ], (A9)
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dmm, Y, (MgMV*+MVM;p*)

164
2

(P-pPy-k P-kP-pp-
=?[2f+(t)|:~2P-kP~q—3P-pP-q—M2q-k+2P~pq-k+2P-qp-k—m?P~q— +

Pk pk
miP-kP-q MP-pgk MP-gp-k 2Mp-kgk mMgk miPkgk mzP-pq~kim2P-kp‘q]
bk Pk PE Pk Pk pk bk pok

q.k m2P-ko-k P-bo-k P-kp
+f1(t)[m2P-q+m2M2—k— kq +m? qu —m? l; qj“ , (A10)
4mmy Z (M]BMA*"I"MAMIB*) p P p p

—16B P-p)q-k P-kP-pp-q m*P-kP- k
=——{2f+(t)|:2P-kP-q+P-pP-q+M"’q-k—l—M2p-q -1 + r? q+ q—f—m?Mz—-
M2 Pk Pk Pk -k
14
mP-kq-k P-kq-k
————I—ZP';DQ'k—ZP'qP'k]—fx(t)m2 —}, (A11)
Pk Pk
324B
dmm, 3 (MAMV*+MVMA*)=——A}T(P-kP‘qp-k—P-kP~pq-k). (A12)

As explained in the text, we drop all terms proportional to A in Egs. (A10) and (A11). The final form for the
rate is

eG?sin% 1

'K+ — rtpy) =——
aM (278

/d“k/d“p/d‘q/d“@ S (P—Q—p—q—k)dmm, Y |Mip+MV+M4|2, (A13)
where we drop the é and 6 functions for simplicity, i.e.,

K+ — mry) =—
256w T

(mamy i M2 J y2ip M?

GEsin?0M5 @ [O-ADE g ~GIM-mIN? o s g b o g2
/ (M2’M2,M2’M2>,

where f is dependent upon all the masses and couplings and is too complicated to be reproduced here.

APPENDIX B: PHASE-SPACE INTEGRALS 4 \2(b,m?a)
@.0= —_—,
Define the basic integral, dropping the 6 functions m*M?* M?*—b
2 2
1<m.n)=(—) /d‘k 8(k%)o((P —k)*+b) (o+M?)
™ on=- wl (0,07,
X [#pstpbmiB-prtar oo, (o)
- a ,
p-R)m (b—M?2)

Iyog=—"wlou,
where B=P—k. We have already shown that 4b

x1/2(A42)b7()) A1/2(b)(l)’rl2) M2
M2 b ’ (Bz) 1(0,2) = [——)\(b,m2,a)
126

Io,0=

By similar methods, involving the evaluation of some 1 w?
angular integrations, +—@0+M?) 2<__m2>:| L0
126 Y
2 |w—AV2(b,m?a) ’

1(1.0) =—In|—————
w+AY2(b,m?a)

b

M2

(B3) s 1 o w?
2,0 =—(b—=M2)H ——m? ) .0y,
w=btmi—a, AT )(b m) @
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(O+M?2pPw®  M203(b+M?)
[(0,3)=["~ +

3263 1652
mie(b+M?2)? m2M2w(b+M2)]
} (0,0),
1652 4b
(=M% mio(b— M)
(=3,0) =|: ]1 0,05 (B4)
3253 1652

Tany=—30Ia,0Ft 00,
Ta=—wlpn+ieo¥ a0+ 10,
Iap=—3$q,0+ 10 0,0 =30 1,0+ 2,0,
Ieny=—30len+ a0,

Igo= —wI(1,0)+%‘—°2I(2,0)+I(u,o) ,

Ioiy=—30lc1,0+ 20,
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I on=—3l20+1s0),

Iy =30 1,0—wl 2,0t s0- (BS)

The recurrence relations may be checked by noting that
0((B—p)*+a) fixes P-p, i.e., using p-B=—1o,

P-p=—}otp-k. (B6)
We can then express I(1,1) as
2 2
[(1,1)=<—-> fd‘k 3(k2)6((P—k)2+b)
T
—Jatp-k
X/d41’ 5(P2+m2)3((B—P)2+a)(“‘—p—k—>
=—30laq,0+lon. (B7)

The other recurrence relations may be derived analo-
gously and in general permit the integrals I(m,s) to be
expressed in terms of I (m,0) and I (g, n).
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Sideways dispersion relations yield a theoretically well-defensible “lower limit” on the expected order
of magnitude of the neutron electric dipole moment. If T violation is due to the weak interactions, then
10~% ¢ cm appears as a reasonable expectation, and 107% ¢ cm the most one can hope for. If T violation is
due to the electromagnetic interactions of hadrons, we still cannot safely expect more than 10-% ¢ cm,
although optimistic guesses can easily yield 6X10~2 ¢ cm or more.

HE electric dipole moment ¢ of the neutron would
vanish under reflection (P) invariance, or under
time-reversal (T') invariance!; since neither is exact,? one
should estimate the theoretically expected order of
magnitude of 8. The experimental upper limit, 8 <35
X 102 cm,? already falls below some predictions.* Some
other models of T violation predict that 8 should
effectively vanish; we call these null-3 theories.®? We
discuss first the case where T violation is due to the
weak interactions, and second, the case where it is due

11.. D. Landau, Nucl. Phys. 3, 127 (1957).

2 For references to T violation, see R. C. Casella, Phys. Rev.
Letters 22, 554 (1969).

3J. K. Baird et al., Phys. Rev. 179, 1285 (1969).

4 Some recent predictions are P. Babu and M. Suzuki, Phys.
Rev. 162, 1359 (1967): $>2.2X102 cm; K. Nishijima, Progr.
Theoret. Phys. (Kyoto) 41, 739 (1969): 2X10~2 cm; P. McNamee
and J. C. Pati, Phys. Rev. 178, 2273 (1968): (0.9 to 1.5) X102
or (5 to 8)X107% cm, in two alternative models.

5 L. Wolfenstein, Phys. Rev. Letters 13, 562 (1964); R. ]J.
Oakes, ibid. 20, 1539 (1968). For a difficulty in Oakes’ theory:
B. H. J. McKellar, ibd. 21, 1822 (1968).

to the electromagnetic (EM) interactions of the
hadrons® (which remain, however, P-invariant).

In comparison with our predecessors, we claim only
(i) that our input assumptions bridge only those gaps in
the experimental situation that cannot at present be
sidestepped, (ii) that we are conservative rather than
optimistic about the dynamics, and (iii) that we have
isolated a less model-dependent and better calibrated
expression for certain almost unavoidable contributions,
which should set a theoretically well defensible order-of-
magnitude “lower limit” on @, unless there are acci-
dental cancellations, or conspiracies which effectively
reduce the theory to the null-8 type.

We begin with weak T violation. To motivate a fairly
careful treatment, recall that a quasidimensional esti-
mate would read thus: 8= (strength of T violation)
X (strength of P violation)X (typical hadronic length).
The first factor is generally agreed at around 10-3; but

¢ J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,
B1650 (1960).



