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Current Algebra, X&s+ Forin Factors, and Radiative J ts+ Decay
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The complete gauge-invariant matrix element for the decays E'+ —& Pl+vs is derived up to and including
terms linear in the photon energy k. The contributions of order k ' and k' are evaluated through Low's
theorem, while the contributions linear in k, which represent the most important structure-dependent
terms, are related to the vector and axial-vector couplings in E'+ ~ l+vy via the hypothesis of partially
conserved axial-vector current {PCAC). It is shown that the spectra and rates from the radiative decay
provide an independent means of measuring the EI3 parameters f+{0),g, and X+. Results are given for the
rates and photon spectra in both X+-+ 9r'e+vy and E+-+ 2r p+vy decays for representative values of the
EI3 parameters. Kith improved experimental data, it is then possible to check the predictions of various
theoretical models both for the t dependence of the EI3 form factors and for the size of the structure-de-
pendent matrix elements.

I. INTRODUCTION the decay rates are much smaller for the electron mode
than the muon mode. When a photon is emitted by the
charged-particle lines (bremsstrahlung), the matrix
element, which is still proportional to the lepton mass,
can be calculated by standard quantum electro-
dynamics, and the decay rate has an infrared divergence
associated with the zero photon mass. Photon emission
from the interaction region has a normal spectrum, and
the matrix element can be separated into a vector part
and an axial-vector part due to parity violation. In
general, the vector amplitude' can be related to the
two-photon decay matrix element of the corresponding
neutral meson, by the conserved-vector-current hy-
pothesis of Feynman and Gell-Mann. ' Of course, this
is not trivial for the strangeness —changing vector cur-
rent, because this current is not conserved. Neverthe-
less, some information can be obtained from sum rules
and this point will be discussed in more detail later.
The size of the axial-vector contribution can be roughly
estimated from current-algebra techniques. ' As far as
experimental data are concerned, the decay ~~ @vs
is entirely dominated by inner bremsstrahlung radia-
tion and yields no new information. Even though there
is sufficient phase space in K —+ leod La branching ratio
I'(EC ~ieoy)/F(IC~ all) =1.0)&10 ' is quoted in Ref.
4), there are no experimental results on this decay. The
experiment' on ~ —+ eve yielded a rate consistent with
the conserved-vector-current prediction and showed
the presence of an axial-vector term. Note that there is
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EMILEPTONIC E-meson decay modes have been
the subject of many experimental' and theoretical'

papers. Although the general picture of these decays
agrees with V —A theory, p, -e universality, and the

~

AI~ =-,' rule, there are still some points which need
further clarification. We mention in particular the 3

dependence of the form factors f+(1) and f (f) and the
different values of Re&, obtained from the rate and
polarization studies. Better data are obviously required
before one can distinguish between the various theoreti-
cal models proposed to explain f+(f) and f (f) In this.
paper we study the radiative E&3+ decay modes with
the aim of obtaining information about f~(t) and the
structure-dependent matrix elements in the Exp
interaction. Radiative Etg' decays will be the subject
of a later paper. Before presenting our calculation, we
would like to discuss the general problem of weak
leptonic radiative pseudoscalar meson decays and
summarize the work done by other authors.

Let us first consider the radiative leptonic weak
decays m- —+ Ivy, ' and E~ tv'. 4 The two-body weak-
matrix elements are proportional to the lepton mass, so
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FIG. 1. The Feynman dia-
&(q) gram for the decay K —+~l~y.

no interference between the terms of diRerent parity.
Considering the small rate for E+ t,v, ' it is not sur-
prising that the radiative mode has never been observed.
[Typically F(K ~ cry)/F(K ~ all) —10 '.]

The situation regarding four-body radiative semilep-
tonic meson decays is entirely different. First of all, the
matrix elements are not proportional to the lepton mass
so there is no suppression of the decay rate into elec-
trons. Indeed, this rate is larger than the muon decay
rate because of increased phase space. Also, because of
the presence of four particles in the final state, all. inter-
ference terms contribute to the decay rate. We propose
to study E+~ z "e+vy and E+~ m'p+vy but not
x ~ revs. Experiment" gives a branching ratio

1'(E+—+ s."e+vy, F.,)30 MeV)/I'(K+ —+ m "e+v)

=(1 2~0.8)X10 '

and more data, especially on the photon spectrum,
would be necessary to determine the presence of
structure-dependent radiation. "Note that the present
paper deals only with hard-photon decays, where a
photon is observed by the detection apparatus. The
problem of radiative corrections to the Et3 spectra and
rates, where the photon is not detected and its spectrum
is combined with self-energy and vertex corrections, has
been treated in detail by Ginsberg. "Khile the rates
for the E,3 and E,s„decays are only sensitive to the
form factor f+(l), the E„3and K„3~decays depend upon
both f+(t) and $(t):f (l)/f+(t). ln —principle the rate
for the radiative muon decay could give another
estimate of &(t).

Before concluding this general discussion, it would be
appropriate to discuss the effects of time-reversal-
violating interactions in these modes. MacDowell"
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2p k
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and Gervais et a/. '4 have already considered the mode
E —+ gpss with possible complex structure-dependent
amplitudes. However, no experimental data are avail-
able. E&3 decay has been fitted with a complex value of

f but so far all evidence is consistent with Im)=0.
However, if there is a C-violating electromagnetic
interaction with hadrons, " it would give rise to an
asymmetry of the type p .p, &(p~ in E&» decay. Such
terms are probably very small and there is a problem of
separating these events from E—+ mm. eve. The new
value of the upper limit for the neutron dipole moment

(I d
I
(4X10 "cm) reported by Dress el ol." indicates

no appreciable C violation in electromagnetic inter-
actions with hadrons. Chu et at. ' recently considered
time-reversal invariance in E—& pve+e decay. In the
present paper we do not consider any eRects of time-
reversal violation.

The outline of this paper is as follows. Section II
contains the derivation of the matrix element based on
Low's theorem. This derivation is given in considerable
detail so that we do not need to repeat this disscusion
in a forthcoming paper on E' decay. The hypothesis of
partially conserved axial-vector current (PCAC) is
used in Sec. III to relate the structure-dependent form
factors in X+~ roe+my to those in E+~ e+vy, which
are known from vector-meson dominance and dis-
persion theoretic sum rules. A discussion of some
technical details regarding the evaluation of the spectra
and rates is given in Sec. IV, and our conclusions are
given in Sec. V. Appendix A contains the results of the
spin and polarization sums, and a tabulation of phase-
space integrals is given in Appendix B.

I MATRIX ELEMENT FOR K+~ moVvy

The matrix element for the process K+(P) ~ ~'(Q)
+1+(p)+v(q)+p(k) shown in Fig. 1 is given by

OR =,„t(~'l~
I
K+);„=—i(27r)'5'(P —Q —P —

q
—k)

X
»2 eG sine

T, (2.1)
8POQopoqokoV' v2

where T is defined by
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g,o'(x) =P V,(x)+A.(x)]*= (—g;t(x), g4i(x)),

i= j.,2,3

where t„is the lepton current and

V„4 *'(x) =-S„4(x) is, '(—),x
A„~"(x) = 5'.-.4(x) —iP-„'(x)

(2.4)

(2.5)

In Eqs. (2.5) the F-spin currents will be assumed to
obey the usual SU(3)PxSU(3) commutation relations"

Ltp'(x, 0),5o'(x', 0)]= if, p, Fp"(x,0)bo(x —x')

LFp (x,0),Fpp'(x', 0)]= if, p, PM'(xO)b'(x —x') (2.6)
LP~p'(xO), 5'ppo(x', 0)]=if,p, Fp'(xO)bo(x —x') .

For later purposes we note that the two terms in Eq.
(2.2) are not separately gauge-invariant. The decom-
position of Eq. (2.2) is, however, useful since it permits
us to extract from T a contribution which can be
directly evaluated, namely, the lepton bremsstrahlung.
The signi6cance of this will become evident later. To
proceed further we must analyze the radiation from the
hadrons. %e begin by performing a Lehmann-
Symanzik —Zimmermann (LSZ) reduction on the photon
giving

( y~ V„"(0)+A, "(0)~E+)= ' „dxe '"'*(—/ )

X(pro
i T(C„(x)LV„4 "(0)+A„'—"'(0)])

i
K+)

ie„(M„„"+M„„"),—(2.7)"N. Brene, M. Roos, and A. Sirlin, Nucl. Phys. 86, 255 (1968}."M. Gell-AIann, Physics 1, 63 (1964).

In Eqs. (2.1) and (2.2) e (e&0) is the electric charge, G
is the Fermi constant (GMpo ——1.02X10 '), and 8 is
the Cabibbo angle (sin 8—0.21)." Throughout this
paper, M, p, , m, and m„denote, respectively, the masses
of the kaon, pion, lepton (p or p), and neutrino. )The
factor rn„appearing in Eq. (2.1) cancels against the
factor np„ in Eqs. (AS)-(A12) when computing ~5R~',
so that the limit np„~0 is well defined. ]The two terms
in Eq. (2.2) correspond, respectively, to bremsstrah-
lung from the external lepton LFig. 2(a)] and to radia-
tion from the hadrons. LThe minus sign in the first term
of Eq. (2.2) arises from our convention for the electro-
magnetic vertex: For emission of a photon by a particle
of charge e the vertex factor is —ey„.] fi(t) and fo(t)
are the usual E~3 form factors de6ned by

&~'(Q)
l
V.' "(0)I&'(P))

= (4PoQoV') '"ffi(l)P +f (&)Q ]. -(2 3)

In the limit of exact SU(3), f+(0) =-', Lfi(0)+fo(0)]
=1/&2, f (0) =-', Lfi(0) —fp(0)]=0. The AS=1 semilep-
tonic weak Hamiltonian density is assumed to be given
by the conventional Cabibbo model

G
K(x) =—sinlt/V„~"(x)+A „~"(x)]*l„(x)+H.c.

42

M„„"=„„p(bPkp+ Q kp+dP Qp). (2 9)

In Eqs. (2.8) and (2.9), the coeflicients A, , J, b, c,
and d are, in general, functions of the variables v =E.k,
l= —(P—Q)', and I= —(k —Q)', and we have retained
only those structures which are at most bilinear in the
particle momenta in Eq. (2.9). In order to establish
that it is M„„"(rather than M„„r)which is proportional
to e„„p,v e can examine the transformation properties
of the eRective Lagrangian density

Z(E ~ privy) = (giF„„+gpF„„)zB„Kl„, (2.10)
where

Flay —

Byway

8y Qlx

=1&' yv g &pvap~ap ~

(2.11)

Evidently the term F„„mB„Khas the transformation
properties of an axial vector (since o„„pis a tensor
density) which gives Eq. (2.9). We set aside for the
moment the problem of calculating b, c, and d in Eq.
(2.9) and turn to the form factors A, , J in Eq.
(2.8). The procedure we will adopt in obtaining informa-
tion about these form factors is the following: We will

relate M„„~to the matrix element for Ega decay via a
Ward identity, and to the matrix element for E —+ lop

by PCAC. It will be shown that in the soft-pion limit
this is sufhcient to determine the structure of 3f„„~.To
derive the Ward identity, we begin by letting —G
in Eq. (2.7) act to the right, giving'P

M =i d'x e ' (p( r'~ 7T(j„&(x)V„"(0))
~
E+)

—b(xp)(ir'i Lope„(x),V„'-"(0)]
i
E+)

—ap(b(xp)(lr'~ [ep(x), V,' *'(0)]~E+))) „(2.12)

where j„p'(x)= 5„'(x)+(1/v3)P„p(x) is the electro-
magnetic current. It is claimed" that the second and
third terms in Eq. (2.12) will cancel against Schwinger
terms which arise from the 6rst term in the process of
deriving the Ward identity. Let us assume this for the
present and retain only the first term in Eq. (2.12).
Differentiating Eq. (2.12) with respect to x, we obtain

zk„M„,~=z d'x e '~'

X(z P
~
&(xo)Ljpi'(x), V„'"(0)]

~

IC+) . (2.13)
' See for example, S. L. Adler and R. F. Dashen, Current

A/gebras (W. A. Benjamin, Inc. , New York, j.968), p. 2j.8.

~here e„is the polarization vector for the emitted

photon, and Q.„(x)is the operator which annihilates the
photon field. LNote that the normalization factor
(2kpV) 'r' in the LSZ reduction has been absorbed in

the definition of T in Eq. (2.1).]M„„vand M„„"may
be covariantly decomposed as follows:

M„„r=A b„„+Bk„k„+CQ„Q„+DP„P,+Ek„P.+FP„4
+GP„Q„+HQ„P„+IQ„k„+Jk„Q„,(2.8)
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K(P)

y(k)

e(Q)

t(p)

Kq)

M„'and M„„~/„.Hence by use of the Dirac equation we
deduce that M„,~ must satisfy

k„M„.~l, = k„—M„'=—ri(p)Lfr(t)iy P+f,(t)iy Qj
X(1+go)e(q)

= —Lf&(t) P+fo(t)Q,)t„ (2.19)

K(P)

$(p)

v(q)

Fxa. 2. (a) Inner brems-
strahlung from the lepton
line. (b) Inner bremsstrah-
1ung from the kaon line. (c)
The seagull diagram.

y(k)
g(p)

(c)
v(q)

'n(O)

If we neglect possible Schwinger terms arising from the
commutator of jP with V; (i=1, 2, 3), we have from
Eq. (2.6)

b(&o)I jo~(x), V.4 to(0)$= —b4(x)V„~"(x) (2.14)

whence

k M '= —( oI '-*(o)i +)
= —I:f (t)P.+f (t)Q.1, (2 15)

which is the desired Ward identity. I
As before, all

normalization factors in Eq. (2.15) have been absorbed
in the definition of T.j Next we return to the alleged
cancellation of the Schwinger terms. To proceed, "
we note that since T must be linear in the photon
polarization vector, we can write

T=e„M„, (2.16)

with M„defined implicitly by Eq. (2.2). Gauge in-
variance (i.e., masslessness of the physical photon) then
requires that T be invariant under the transformation
~„—+ e„+Xk„whereX is some scalar, which in turn
requires that M„satisfy the condition

k~„=O at k'=0. (2.17)

From Eqs. (2.2) and (2.7), we can write k„M„explicitly:

O=k„M„=N(p)yk(y (p+k)+im)/2p k

XLfr(t)iy P+fr(t)iy Qf(1+'ro)e(q)
+kPI„,"1.+k~„,"l.

k~„'+k~„„"l„+—k~„„"l„(2.18)

where l, =itg(p)y. (1+go)e(q) From Eq. (.2.9) we note
that M„„"/„transforms diBerently under parity than

~' Our argument closely parallels that of Ref. 20. See also L. S.
Brown, Phys. Rev. 150, 1338 (1966};D. G. Boulware and L. S.
Brown, ibid. 156, 1724 (1.967); R. P. Feynman, in Proceedings of
the 1967 International Conference on Purtides end FieQs (Inter-
science, New York, 1967), p. fil.

which just gives Eq. (2.15)."We conclude from Eqs.
(2.12)—(2.19) that the Ward identity of Eq. (2.15) must
be exact in the sense that the Schwinger terms which
were dropped from Eq. (2.14) must exactly cancel the
dieergence of the second and third terms in Eq. (2.12)
which were also dropped. Note that in order to exhibit
this cancellation, it is unnecessary to assume anything
about the detailed structure of the terms which were
dropped from Eq. (2.12). I

In fact, as the preceding
argument indicates, k„M„„~could have been evaluated
directly from Eqs. (2.2) and (2.7) by use of gauge in-
variance alone. ) Proceeding in an analogous manner,
we deduce from Eq. (2.18) the gauge condition for
M„„",namely,

A„M„„~l„=o, (2.20)

and hence that d=0 in Eq. (2.9). Equation (2.20) is
the result we would expect had we derived a Ward
identity for M„„".Proceeding as in Eqs. (2.12)—(2.15),
we would have found

k„M„„=—( IA„-"(0)IZ+)=0 (2.21)

Equating coeKcients of the independent vectors k, I',
and Q, we find

A+Bk'+FP k+IQ k=0,
DP k+Ek'+HQ k= —fr(t),

CQ k+GP k+Jk'= —fr(t),

(2.23)

M„„r=A(b„.P„k„/Pk)+Bk„k„—
+C(Q.Q —Q kP.Q/P k)

+Ek„P„+H(Q„P„QkP,P„/P k)— .

+I(Q„k„QkP„k„/Pk)— .

+Jk„Q.—I fg(t)P.+ fo(t)Q„jP„/Pk (2.24).
From Eqs. (2.2), (2.7), (2.9), and (2.24) we can then

'2 Evidently had we considered the decay of E instead of E+,
the sign of the commutator in Kq. (2.14) would have changed as
would the sign of the first term in Eq. (2.2), so that the Ward
identity argument would go through as before.

by parity arguments, which then gives Eq. (2.20).
Returning to the problem of evaluating the form factors
A, ~ ~, J we have from Eqs. (2.8) and (2.15)

k„M„,~=(A+Bk'+FP k+IQ k)k„
+(DP k+Ek'+HQ k)P.+(CQ k+. GP k+Jk')Q,

f (t)P. f (—t)Q' (2—22)
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write
»'p y' »'y'k

T=u(p) -+ Lf,(t)zy P+fz(t)i~ Q7
pk 2pk

X(1+hz)v(q)+A(» l —» Pk l/P k)

+C(» QQ l—Q k» PQ. l/P. k)

+II(» QP l. Q —k» P. P l/P k).
+I(»'Qk l Q.k»—Pk l/P k. ) [fi(t—)P l+fz(t)Q l]

X» P/P k+»„„e»„l„(bPke+cQ ke). (2.25)

In choosing to solve for D, F, and G from Eq. (2.23)
we are motivated by the desire to exhibit explicitly the
kinematic singularities arising from the kaon pole
diagram Fig. 2(b) which we know contributes to M„„v.
Since this diagram can be calculated explicitly, it is
advantageous to do so at this point before discussing
the consequences of PCAC and the Q =0 limit.

Before exhibiting the contribution of the kaon pole,
it would be useful to state explicitly what we are driving
after. By virtue of Low's theorem, ""the sum of the
known contributions from the kaon pole diagram

TL, ——T,„'+AT.
For the present problem we have

(2.26)

LFig. 2(b)] and the previously considered electron
bremsstrahlung diagram LFig. 2(a)] determine the
structure of T up to (but not including) terms linear in
the photon momentum k. Consequently, the unknown
form factors A, C, H, . can contribute only to terms
which are at least linear in k. %hat we are attempting
to do is to rewrite Eq. (2.25) in a form consistent with
Low's theorem.

Let TI. denote the contribution to T from the terms
up to (but not including) those linear in k. It can be
sho~n that TL, may be computed from the correspond-
ing nonradiative amplitude by the following simple
recipezz: (1) Write down T, , the sum of contributions
in which the photon is radiated from an external
charged line. (2) Expand T, in a Taylor series about
k=0. (3) Drop all terms from T, which are explicitly
independent of k or which are of order k or higher.
Denote the result of this step by T, '. (4) Add to T» '

a contribution AT independent of k so as to make
T, '+AT gauge invariant. Then

6' p p' 6p'k e PT.„=u(p) + tcf&(t,0,0)i& P+fz(t, 0,0)ip Q](1+hz)v(q) Fx((P k—)'+M')—
pk 2pk P.k

Xzz(P) f f&(—(A —k)', (P —k)z+M', 0)iy(P —k)+fz( —(A k)' (P—k)'+M' 0)iy Q—)(1+ye)v(q), (2.2&)

where Fx is the electromagnetic form factor of the kaon tFzr(0)—= 1], and fz, z
——fz, z (t= —A', Aq=P'+M',

Az ——Q +zt)zare the IC~q form factors when the kaon and the pion are on the mass shell. Expanding Eq. (2.27) in a
Taylor series about k =0, we find

».p r»'r' k e PT,=u(p) + [fz(t)iv. P+fz(t)iv Q](1+v,)v(q) —u(p) Lfr(t)iv (P k)+fz(t)—iv Q](1+v»)v(q)
p k 2p. k P-k

2~ P 8 8
k (P—Q)~(p)Lfz(t)A'(P —k)+fz(t)iv Q](1+&»)v(q)+2'P Fx(Az)P.k Bt

Xu(p)Lfz(t)zv (P—k)+fz(t)zv Q](1+v»)v(q)+2'Pu(p) fz(t, »,0)iy (P k)—
aa,

l9

+ fz(t, Az, 0)iy Q (1+hz)v(q), (2.28)
Bhj

where f(t)=f(t,0,0). Next we drop all terms which are either independent of k or which are of order k or higher
yielding

»p yeyk ~ PT-'=u(p) + Lfz(t)A'P+fz(t)A'Q](1+v»)v(q) —u(p) Lfz(t)iv (P k)+f (t)zv Q—](1+v»)v(q)pk 2pk P k

» PQ k 8
+2 ~(p)kfz(t)zv P+fz(t)zv Q](1+v»)v(q) (2 29)Pk Bt

"F.E. Low, Phys. Rev. 110, 9/4 (1958); T. H. Burnett and N. M. Kroll, Phys. Rev. Letters 20, 86 (1968)."S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966);J. Pestieau, ibid. 160, 1555 (1967}.
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Finally, checking Eq. (2.29) for gauge invariance, we find that we must add to Eq. (2.29) a AT given by

8»= f —(t)u(p)i~'(1+& )~(q) 2Q— Lf (&)i~ P+f (&)i~ Q)(1+~ )~(q).
Bt

AT corresponds to the "seagull" diagram Fig. 2(c). Hence

(6).p 6 P $.6'r k
Tr. T, '——+&T=u(p)~ — + —[fi(i)iy P+fg(r)A Q j(1+y;)i)(q)

'kpk Pk 2pk

«P «.P 8—fi(i)u(p) iV' —iV k (1+7k)r(q) —2u(p) 'Q —Q k [fi(—~)i~ P+f2(i)i~ Q31+»)r(q)
P k Pk Bt

(2.3O)

(2.31)

S=(AI/M2)(e (tP k —~ Pk 1)+(e QP k —e PQ k)

[(C'/M')Q I+(H'/M')P l+(I'/M')k lj
+g„„pc„l„(bPkp+cQ kp). (2.34)

A (P,t,u) = —fi(i)+(P k/M') A'(P, t,u)
C(v, i,u) = 2Bfi(t)/—Bt+(P k/M')C'(P, t,u)
H(v, l,u) = 2Bfi(t)/—Bt+(P k/M')H'(v, t,u)
I(p, t,u) = (P k/M')I'(v, t,u),

v=P k.

(2.32)

It is understood that the unknown functions A', C',
H', I', b, and c are finite as k ~ 0, so that S is at least
linear in k as is required by Low's theorem. Combining
Eqs. (2.31) and (2.34) we have, after some Dirac
algebra,

If we dehne the structure-dependent contribution S via

(2.33)T=TL,+S

We can extract the contribution to T from TJ. by defin- then S is given by
ing new functions A', O', H', and I' via

«p «P y«yk «P 8
T =&i(p) — + [2f (i)iy Q —mf (t)](1+y )r(q) —2 Q —Q k —u(p)[2f (t)iy Q —mf (t)j

pk Pk 2pk Pk Bt

C' H' I'
X(1+1;)(I)+ ( IP k — Pk I)+( QP k — PQ 1) Q I+ P I+ k I)—

M' M' M' M'

2f+(i) =fr(i) ~f2(r) .
+p.„„(ip.„l„(bPkp+cQ kp),

(2.35)

It is worth observing that in going from Eqs. (2.8) and
(2.9) to Eq. (2.35) we have reduced the number of un-
known form factors from 13 to 6. We have written the
matrix element in terms of f+(t) and fi(i) rather than

f+(/) and f (t) because the former choice of form factors
gives rise to the smallest number of terms when taking
the trace. To evaluate Bf+(t)/Bt and B fr(t)/Bt, we adopt
the following parametrization for the momentum de-
pendence of the Eg3 form factors:

( At
f(i) =f(O)l 1+—

so that the relation between 6rst-order quantities is

gAi =A++ $A (2.38)

In principle, Eq. (2.35) is exact. However, in order to
evaluate the unknown form factors A', C', H', I', b, and
c, it is necessary to invoke PCAC and consider T in the
Q=O limit. More specifically, we will evaluate the un-

known form factors in Sec. III by relating E+—+ ~'l+vy
to E+~ i+vs via PCAC and show that in the soft-pion
(i.e., Q=O) limit the expression for T in Eq. (2.35)
depends on only two unknown form factors.

(m' —2p. q
—2p k —2q k)

=f(O) 1yA
M'

(2.36)

III. EVALUATION OF THE STRUCTURE
DEPENDENT FORM FACTORS

We assume PCAC in the form

where the connection with the usual notation is
A=XM2/p2, and f(t)=f+(t) or fi(t). We also define p, a

Bkrkg'(x) = It'(x), j=1,2,3
V2

(3.1)
k=f-(O)/f+(O),

~ =fi(o)/f+(o) =1+& (2.37) where ((k is the pion mass, a =0.94, and 4'(x) is the field
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operator which annihilates a pion with isospin j. By an LSZ reduction on the pion field, we can express the
left-hand side of Eq. (2.7) as

~(Q'+t ')
d'y e '&'vQ&(p

j T(Foz'(y) $„'"(0))
~
K+)

vZi(Q'+p')
d'y e ''vb(yo) (v I L&oo'(X)«8

' "(0)31K+)
p Cg

In the last step in Eq. (3.2), we have made use of Eq.
(3.1) and we have dropped surface terms arising from
partial integration. Taking the limit Qq~0 in Eq.
(3.2), we find

(2Qov)'"(K'V
I V. "(0)

I
K+)

=(—i/v2pu )(yi A,~"(0)
i
K+),

(2QoV)'"(Koy
~
A,~"(0) ~

K+)
=(i/vlpa )(y~ V„'(0) ~K+). (3.3)

In taking the limit Qz ~ 0 in Eq. (3.2) the term pro-
portional to Q&, makes no contribution since covariance

under parity rules out any intermediate state which
could give rise to a pole in the Q =0 limit. "Evidently,
the right-hand side of Eqs. (3.3) is just the matrix
element for radiation from E+ in the process E+~ i+my.

From Eqs. (2.35) and (3.3) we see that the terms
proportional to the form factors C', H', I', and c are
zero in the soft-pion limit with the result that T now
depends on only two unknown form factors A' and b.
It should be emphasized that the Q =0 limit is taken only
in 5 as is evident from the preceding discussion. For fu-
ture reference, we exhibit the expression for T in the
approximation to which we are now working,

e.p e I' y ~y. k Q ko P). 8.
T=N(p) — + $2f+(t)iy Q mf~(t) .j(1—+go)v(q)+2 ——Q o

~

—u(p)L2f+(t)iy Q —oooo(t)]
pk Pk 2pk P k) Bt.

X(1+po)v(q)+(A/M')(o lP k oPk 1)+—(B/Mo)o„„eo„l,P ke, (3.4)

where we have redefined A'=A and Ja=b. To evaluate
A and 8 we proceed to discuss the matrix element for
E+~ l+vy.

Following the same procedure used in the previous
section, the matrix element for the process K+(P) -+l+(p)
+v(q}+y(k) is given by

Dlt =.„,(ivy [ K);„= i(2») 4b'(P—p q k)— ——

X
(mm„'t'2 eG sin8

T, (3.5)
4PoPoqAoVo

where T consists of the sum of the inner bremsstrahlung
graph and the structure-dependent axial-vector and
vector parts,

o p O'P $ er k
T= imM fKa(p) — — +

p k I'.k 2p k

X(1+go)v(q)+(ia/M)(o lP k o Pk l)—.

f»+K K«
)—2v+M»*' —M'

(3.7)

and multiplying by a factor of i from the LSZ reduction
and a factor of M to make the new coupling constants
dim ensionless.

An evaluation of the form factors a=a(v=O) and
b=b(v =0) has been attempted by several authors. ' ' "
The difhculty of the problem is indicated in part by the
disparity in the numerical values obtained for a and b

by the diferent groups. In an e6ort to unravel some of
the diKculties, we will summarize in the following
paragraphs the various approaches that have been used
and state the results which have been obtained.

We begin with a discussion of b(v) which has been
treated by Gervais, Iliopoulos and Kaplan, "Rockmore,
and Sarker using K*(890) dominance and by Kummer
and Majerotto' using a Fubini-type sum rule. In the
K*(890) dominance model of Fig. 3(a), b(v) is given by

+(ib/M)o„, eo„l„Pk& (36) where f» isdefinedby

where u, b are dimensionless functions of the variable
P k. An alternative derivation of Eq. (3.6) follows
directly from Eq. (2.35) by setting Q—=0, f~(t) =f»,

(2QoV)'"(O~ V„~"(0)~E' (Q+)) =o„f» (3.8)

~ C. G. Callan arid S. B.Treiman, Phys. Rev. Letters 16, 153
(rw6).
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X(p)

K(P) K (890)

&(k)
Z

P(p)

K(P) K, (l520)
v(q)

in analogy to

Fzo. 3. (a) K~-pole con-
tribution to the structure-
dependent vector matrix
element in K+~l+vy. (b)
Kg-pole contribution to the
structure-dependent axial-
vector matrix element in
K+ -+ l+vy.

t Gervais et al. , using SU(6) to relate Gx x„to G, ~,
find Gx'x~ 3—5/.M using I'(p ~ ~y)—0.5 MeV, a
width which is probably too large. J From Eqs. (3.7),
(3.12), and (3.14) we find

Ib(o) I

=—0.12. (3.15)

Note that since b(v) multiplies an expression which is
already linear in k, it is sufficient to evaluate b(v) at
v—0 and treat b(v) as a constant to the approximation
in which we are working.

Kummer and Majerotto' evaluate b(0) using the
dispersion theoretic approach of Fubini" and find

(2Q y)'12(0( y —+(0) ( p+(Q)) =e„f. (3.9)

G~'~~ is dered through the coupling

b(0)/M = —(g8)f »+(3f,G, ~/m~'), (3.16)

where f » snd G, ~ are defined by

Z(K~ ~ Zy) =eGx'x„P„„K„*B,E+H.c.

In the limit of exact SU(3), we have

(3.1o) (4k40I")'"&v(k)
I
I'.'(0)

I ~'(Q))
=ief~»eyvaeevkaQe q (3 17)

fx =fp(mx /mp)=0 30m''. (3.12)

Up to this point, there is a general level of agreement
among the various authors, a level unfortunately not
achieved in evaluating G~ ~~.

Rockmore and Sarker calculate Gz'z~ by assuming a
Gell-Mann —Sharp-Wagner —type model, '7 in analogy
to the conventional treatment of G„~.Di6iculties
arise, however, from the fact that both isoscalar and
isovector photons contribute to E*—+ Ep while only
isovector photons contribute to ro —+my. As a con-
sequence of this, p, co, and P intermediate states can
contribute to G~'~~ with the result that G~ ~~ depends
somewhat sensitively on models of co-p mixing and
SU(3) symmetry breaking. Using the nonet model of
Okubo' for co-(t) mixing, Rockmore 6nds

Gx*xv =G;.Lf,/~' (&a)f./m—'
—(V'e)f-/~-'j, (3 13)

where fq and f are defined as in Eqs. (3.8) and (3.9),
and G,„'/4 0x.40/p' as determined from I'(a& ~ 3s.).
In the exact SU(3) limit, fe= f, and f„=o(p is a pure
octet and a& is a pure singlet). The effects of SU(3)
symmetry breaking on fz and f„may be estimated
again using spectral function sum rules and give"
f&'—1.03f,', f ' 0 43f,'. Hence— .

Gx x„—0.37/M. (3.14)
~6 T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,

470 (1967).
2~ M. Gell-Mann, D. Sharp, and W. G. %'agner, Phys. Rev.

Letters 8, 261 (1962).
2' S.Okubo, Phys. Letters 5, 165 (1963).

fx fp v2——mp'/——fp, 0.26m'—', (3.11)

with f„'/4n.—2.4. By use of spectral function sum
rules obtained from asymptotic SU(3)OxSU(3), the
effects of SU(3) symmetry breaking may be estimated"
and give

0.80
[b(O) f

= [0.43+0.37
f

=
0.06

(3.20)

We see that the various estimates of
~
b(0)

~
differ quite

appreciably from one another. From Eqs. (3.3) and
(3.4) we can then write

IB(0)I=—(M/~2pa-) Ib(0) I=28Ib(O)
I (3»)

From the previous discussion we conclude that
~
B(0)

~

probably lies in the range

o.2&
I B(0) I

&2 (3.22)

and consequently we have chosen the nominal value
~B(0) ~

=1.0 in plotting the structure-dependent con-
tribution to the photon spectrum in Fig. (4).

We turn next to a discussion of a(v) which has been
treated by Rockmore, ' Sarker, and Vaishya and
Gupta. " We assume that a(v) is dominated by con-
tributions from intermediate I(JP) =-,'(1+) mesons such
as the E~(1320) shown in Fig. 3(b)."A straightforward

~9 S.Fubini, Nuovo Gimento 43, 475 (1966).
~ Actually, there appear to be several resonances having the

same quantum numbers as Kg(1320). See, for example, N. Barash-
Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H. Rosenfeld,
P. Soding, and C. G. Kohl, University of California Research
Laboratory Report No. 8030, 1968 (unpublished); and Particle
Data Group, Rev. Mod. Phys. 41, 109 {1969).

(4koQol") "'&p+(k)
I ~.'(0)

I ~+(Q))
= /EGAD, e„„ee„Qkp. (3.18)

Note that f,» is defined in analogy to b(v)

(4k~, v )'I 4 (k) I
v„'-*(o) I

x+(P))
=ie(b(v)/M) e„,ee„Pke (3.19).

Since only the magnitudes (and not the signs) of the
coupling constants in Eq. (3.16) can be determined
theoretically, Eq. (3.16) gives rise to two solutions'
for ~b(0)~
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evaluation of Fig. 3(b) yields

I a(v) I fx~hx~xv(v)
(3.23)

oQ' by inspection and is given by

I
T(E+ +x—a/+vs)

I

'=
4m'„p.k P k

where f&~ and h(v) are defined by

(2QoV)'"(OIA„' "(0)IE„+(Q))=g„f
„

(3.24)
where

XTrtI I'(iy q)y4I'y4(m —A p)j+, (4.2)

I'=2f+(&)iq Q —mf, (t).
—&(4PoQol")"'(E~+(Q)

I f.'(0) IE+(P))
=L2P kq„—(P+Q)„q k/hx„x,(v)

+kv~ he..x~(v) (3.25)

In Eqs. (3.24) and (3.25) p„is the polarization vector
for Ez, and k=P Q. By—gauge invariance, the term
proportional to gx~x~(v) makes no contribution to the
radiative matrix element. In accordance with Low's
theorem we know that hx„x„(v)is 6nite as v —+0
and hence

Ia(o) I/hf = Ifxd x.xv(0) I/(~ ~x' ~') (3 26)

In view of the previously mentioned uncertainties in
the I(J ) =-', (1+) spectrum" and in particular of the
E~ couplings, we have not attempted to evaluate
a=a(0) explicitly and consequently we have chosen
the nominal value A =A(0) =1.0 in plotting the
structure-dependent contribution in Fig. 6. LRecall
that A(0) is related to a(0) through Eq. (3.3).j

In the approach of Vaishya and Gupta, " and of
Sarker, ~ a sum rule is derived which permits the right-
hand side of Eq. (3.26) to be expressed directly in terms
of the kaon decay constant fx thus avoiding a direct
confrontation with the unknown coupling constants
fx„and hex, . The validity of this sum rule depends
on (1) assumptions about subtracted or unsubtracted
dispersion relations and (2) on carefully extract-
ing the Born amplitude (including possible contri-
butions from "seagull" diagrams) from the amplitude

(GAIA. ~"(0)IE+). We quote without further comment
the values 0.1&(Ia(0)I/Ib(0) I

= IA(0) I/IB(0) I) &09
obtained by the various authors.

IV. SOME TECHNICAL DETAILS

Given the final form of the matrix element, the
evaluation of the sum over spins and polarizations is
tedious but straightforward. As note previously the
infrared divergent terms of order k ' in T arise ex-
clusively from diagrams in which the photon is emitted
from an external charged line. As a consequence of this,
the terms in IT I' which are of order k ' factorize in
the following way:

I
T(E+ +sr'I+vs)

I
'-

=0(k—')
I
T(E+ -+ n'3+v)

I '+O(k ')+ (4 1)

The remaining terms in
I
T I (the real "brems-

strahlung") are well behaved in the limit k-+0 and
require no special attention. Froni Eqs. 3.4) and (A5)
the coefficient of order k ' in Eq. (4.1) may be read

The trace in Eq. (4.2) is given by the quantity in curly
brackets in Eq. (A6) and the full sum over spins and
polarizations of the complete matrix element is given
in Eqs. (A8)—(A12).

Note that we will use the photon energy as one of the
integration variables in the expression for the rate and
therefore evaluate the complete trace and polarization
sum with zero photon mass. The hnal integral over the
photon energy is cut o6 at a photon energy equal to the
minimum photon energy to which the detecting ap-
paratus is sensitive.

Note also that all terms in Eq. (A8) which contain
the factor (p k) ' are multiplied by m'. As we show in

Appendix B, the phase space integral over (p k) 2

behaves like m ' so terms m'/(p k)' are finite as
te' —+0. This cancellation cannot be seen from the
matrix element. If we examine the terms with (p. k) '
in Eq. (3.4) they will have a singularity when p k=0
or IkI(IpI cos8—E) =0, i e., theywillhavean endpoint
singularity in the cos8 integration when vs=0. At this
point pIIk so p„a-k„.If we make this substitution in
the numerator of Eq. (3.4), the (p k) ' terms have co-
efFicients k ~, which are zero by current conservation,
and y py e, which is proportional to the lepton mass

by use of the Dirac equation. Therefore, the terms
which can cause trouble have numerators at least of
order m. At 6rst sight the denominators seem to
approach zero as m' but after explicit calculation of the
integrals, we see that the (p k) ' terms in the trace
approach zero as m ', and not as m 4. Hence there is
no linear mass divergence in the lepton mass. This is
an example of mass singularities examined by Kino-
shita" and the particular case discussed here uses an
argument due to R. W. Brown (private communica-
tion). We are therefore not allowed to drop terms pro-
portional to the lepton mass in calculating the decay
rate into electrons.

Next we turn to the 6nal-state integrations which
yield the photon spectrum and decay rate. To illus-
trate the method of doing the integrations over the
four-momenta of the neutrino, electron, and photon,
we consider the basic integral

d'k 8(k2)8(ko) d'p h(p'+m')8(po) d'q b(q')8(qo)

d'Q ~(Q'+~')8(QO) 8'(P —Q —p —
q
—k) (4.3)

"T. Kinoshita, J.Math. Phys. 3, 650 (f962).
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p
the form

' 8 —
q 4 ———"' a 4,44')8(a)8(a —(44+4)'),4f4q 8 q' 4 , — ' ' 8((A —q)4) =—X'I'(a, 4,44' ad'q 8 q'+ )8(q )8((A -q)'+ ' 8 (4 4)

. e then use the usual relation1 g functiontrivial using themomentun1 iSver the ion oIntegration ove
given by Kallbn32 in

where

Hence
s' —2xy —2' —2'a=0, X(x,y, s) =x'+y'+s—

2 8 2 d4 b(p2+gg2)8(p )8(a —44' 8 aJ=-,'~ dab A'+a ' ' '8 (4.5)

db da +

8 & p)'+a—)8((& p)o-x dpd'p b(p'+m') 8(po) b((B p—

=8—,where=8— ere 8'+b=0, thenIf we let A =8—, ere

—k ' b)8((P —k)0)d'k 8(k')8(ko)b((P —k)' b 8 — 08(a-4 ')

8(b)8(b —(Q + )') d=(-,'4r)' db 8 b

1/2 a0 26"(b eP, a) X'"(, ,44
— 8(a)

b

(4.6)

2

=-'A
I

&—8(a)8(a-4 '),2

f
'a8 ~

~

&—
I
8(a)8(a 4')—', (A „A„+~4a8„„1—-a V. CONCLUSIONS
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inner-bremsstrahlung term and the other three terms.
Here we are justiaed in keeping only f+(0) and f (0)
in the inner bremsstrahlung, and we thus generate the
terms f+'(0)A+, f+'(0)A&, fP(0)~& fy'(0)+&& f+(0)A&
f+(0)B, f&(0)A, and f&(0)B.The rate in both cases is the
sum of the 6fteen terms. In practice the decay rate for
the electron mode has only 6ve terms because all the
terms proportional to the lepton mass are so small
that they can be discarded. The results are as
follows:

1'(E+~ &r»e+vy, E,)30 MeV) = (G' sin'eM'/64&r')

X10 'L1.0082f+'(0)+0.1704f+'(0)~
+0.1242f+'(0)~—0.0022f+(0)A

—o.oo13f (o)B). (5.1)

As noted above, the two terms proportional to f+'(0)~
in Eq. (5.1) have different origins in Kq. (3.4) and have
not been combined in order to exhibit their relative
magnitudes. We follow the same procedure in Kqs.
(5.2) and (5.3).

1'(E+~ &r p+vy, E„)30 MeV) =(G sin 8M'/64&re) X10 $1 8736f (0)+00930f~ (0)+0.1955f+(0)f&(0)
+0.6111f+'(0)~+0.0446fP(0)A x+0.0413f+(0)fg(0) (~+Ay)+0.9106f+'(0)&1+—0 0028fg'(0)Ag
—0.0026'(0)~—0.0111f+'(0)Ag—0.0370f+(0)A —0.0242f+(0)B+0.0073f&(0)A —0.0060'(0)B). (5.2)

Taking now the rate for E+ —+ &r'e+& from Eq. (A7), we 6nd

I'(E+~ &roe+my, 8„)30 MeV) L1.0082+0.170~+0.1242~—0.0022A/ f+(0)—0.0013B/f+(0)jX10-'

1'(E+~ &roe+v) 4(1.2067+0.3335A+)
(5.3)

Rg ——(2.100—0.006A —0 003B)X10 '. (5.4)

The usual model of E~(890) dominance of the rate Ll'(Era) =4.07X10' sec ']. Hence the branching
vector form factor yields ~~M'/M~"=0. 31. lf ratio is
we assume sine=0. 21, then f+(0) =0.76 from the E&~

f, ~ LO

g -I. O

Port)

gent Pert)

2xlo '—
Ixlo s

I xIO-a—

30 70 IIO I50
PHOTON SPECTRUM IN MeY

210
IxIO~

30 70 I IO l50
PHOTON ENERGY IN Me Y

I90

Fro. 4. Photon spectrum in E+-+ ~ee+~, with f+{0)=0.76,
h.+——0.31, A =B=Q. The ordinate has been normalized by divid-
ing by E+-+ mee+r rate.

Fro. 5. Photon spectrum in E+-+7roy+~ with f+{Q)=Q.76,
fr{0)=0.0, {g= —1.0),~=0.31,A1 ——0.31,A =9=0.The ordinate
has been normalized by dividing by the E+~ ~'p+r rate.
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energy spinor v(p, s) is

(iV p+m)N(p, s)=u(p, s)(iV p+m)=0,

( i—V P+. m)v(P, s) =8(P,s)( iV—P+m) =0,
'Y P = V P+zV4PO,

P.=(lk, P4=~Po),

p k= p„k„=y.lr —ppkp.

The Dirac matrices y„satisfy

{V.,V.) =2b... {Vk, V.) =o,

VvV~VkVk (~vvVk bvkVv+~akVv)Vk &v~kpVpr

1
Pfsgtj"/5 ~lsv+5 g &hatt XPPX YP 1

V,Vk = (1/3') k,.k,V.VkV, .
(A3)

The trace of y5 with three or fevrer y„vanishes and

i, j, k, p, v, 3=1) 2, 3, 4.
For other trace formulas the reader is referred to
Kallen. "The E&k matrix element T is given by

(VvV VkVvVk)

Tr(vjvgvkvvvvvkvk) 4(Rjkkg k ~ k&jv'vk+~jk&jvvk

+5v~kijkk ~vk&ijkv+8vkkijkv) y (A4)

'Yk V&V&V&V& (1/4 )kv"kvVv Y&VkVp )

where ~„„&,is the completely antisymmetric permuta-
tion symbol:

T(E+~ s'l+v)

=(4Po(gaol")'"( '(Q) I
i'.' "(0)IE+(P))l.

=tt(p)[2f+(t)iV. Q —mfk(t)l(1+Vk) v(q)

so the rate is

(A5)

G2 sin'0
F(E+—k ~ol+v) = d'»(p'+ ')e(po) d'q ~«')~(qo)&((p p q)'+—')—

4M (2~)'

where
X{ g[4f+'(t)(—m'p q M'p q 2—P pP q

—2m'P q)+—4f+(t) fi(t)m'(P q
—p q)+m'f, '(t)p q7), (A6)

f (t) =f (0)[1+A+(m' —2p q)/M'j,

G2 sin'0M'
I'(E+~ ~"e+v) = f+'(0) X 10 '[1.2067+0.3335&+f,

16m'

G2 sin'8M'
I'(E+ -+ ~'jk+v) = f+'(0) X10-'

16m'
X[0.6497+0.1063g+0.0232g2+0.2720A++0.0277(A rt+A»)+0 0152A»kj (A7)

The sum over spins and polarizations for the E~3~ matrix element gives

4mm„g ~M„('
m' M' 2P p=8 + + [4f+'(t)(m'p q

—M'p q
—2P pP q

—2m'P q)
(p k)' (P k)' P kp k

4P pp qM'P q 2M'q . k M'q. k
+

pk pk Pk Pk pk
M'p. q 2P pp q 2m'P q 2m'P kp q 2M'P pq k 2Mkp qp k 2M'p kq k 2m'M'q k m'M'q k+ + + +

p k p k p k (p k)' (P k)' (P k)' (p k)& (p.k)k (p. k)2

+4f+(t)fk(t)m'(P q Pq)+m'fk'(t)P q—j+g 4f+'(t) 4P q

M'P. pq k 6P pP q2P pq k 2P. qp
. k mkp q mkq k m'q k m p. q 2(p p)kq k+ + + + +Pkpk Pk Pk Pk Pk (pk)' pk pk pkpk

3m'P pq. k qk pq Pq m'qk Ppqk+ +m'fkk(t) + — + +
P kpk.pk pk Pk (pk)' Pkpk

with a corresponding formula for fk(t). Using the invariant-mass technique described in Sec. Dt', we reduce the
rate down to a single integral, which is computed numerically. We give the results as functions of rt =f~(0)/f+(0),
A+, Ag, and f+(0):
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M-2qk qk 2P pqk ]
2P p P pqk m2 pq M2pk Mmqk Pq—4m'f~(t) fg(t) +m' + — +16 + +

(Pk)2 (pk)~ Pkpk I Pk PkPk Pk Pk (Pk)2 (Pk)2 Pk

184

8 8 8
X -" f '(t)(m'p. q

—M'p q —2P pp q
—2m'p q)+2—Lf+(t)fi(t)lm'(P q pq—)+m' fi'—(t)p q.

8$ 8$ 8$

t4+8 4 f+'(t) 2(p —q)' 4P p—P q+2P pq k+2P qp k+4P qq. k 4M'p—q 2P k—p q
. 6P—pp q+4.m'P q

I at'
2M'(q k)~ 2P k(p q)' 2m'P kP q 2P kp qp q

6P qp
—q+2p kp q —2m'q k+2p qq k —m'p q+ + +Pk pk pk pk

2P pp qq k 4M'p. p(q k)' 4M'p q(p k)' M'p pq k M'P qp k M'P qq k 2M'p k(q k)'
+ +

p k (P k)' (P k)' Pk Pk Pk (pk)'

2M2(p k)'q k 2M'p kq k 4m'M'(q k)' 2M'p kp q 2M'p qq k m M2q k M2p. qq k 2m2p. pq k+ + + +(P.k)' P k (P k)' P k Pk pk pk p. k

4P.pp qq k 2m'P kp q 4MIP pp kq k4M~P .
qp kq k Mmp p(q k)' 4m'M'p kq k 2p p(q ~ k)2

+ + +
p k p. k (P k)' (P k)' P kp k (P k)' p k

6(p p)'q k 4P q(p k)' 4(p q)'p k 3m'q k 10P pp qp k 10P pP qq k 6P pp kq k 6p qp kq k+ + — + +Pk Pk Pk pk P k Pk Pk

P kp. kP k

7m'P pq km'P qp
.k Sm'P. .

qq k 2(P p)'(q k)' 3m'P p(q k)' 3m'p qq k 8-+ + + + +m' f&'(t)—
P k P.k Pkpk pk at

P pq k P.qp k P qq. k q k p qq k P p(q k.)' 8 2M'(q k)'
&( p q+ — —— +m' — + +4m2f~(t) —f&(t) P q+p qP.k Pk Pk Pk Pk PkPk '

at (Pk)2

q k—m2

p kp kP k

Mmqk ppqk Pkpq 2pqqk 2Mmpkqk M2(qk)2 3Ppqk Pqpk 3pqqk+ + + +
pk pk (Pk)' Pkpk Pk P kPk.
P kp k p k

pqqk P p(qk)' 8 2M'(q k)' M'qk P pq k P kp q 2P qq k
+4m'f, (t)—f (t) Pq pq- —

p. k a1 (Pk)' Pk pk pk

q k 3p qq k 3P p(q k)2-—3m' + (A8)
pk pk Pkpk

2M'p qq k M2(q k)' 5P pq kp q. p. k P. qq k
—+

(P k)' P kP k P k P k P k

4m'„4m'. —162 IM"I'= Z IM'i'= p'kp qp k+p. kp pq kqM p kq kj,82 A2 M4 (A9)
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4mm„g (MrsM v*+M vM)s»)

16A
2f+(l) 2P—.kP q

—3P pP q
—.Moq k+2P pq

.k+2P qp k —m2P qM'

(P p) 'q k-.P kP pp q+

P k p k

m P kP g M'P pq k. M. P qp k 2M'p kg k moMoq k m'P kq k m'P pq k mop kp. q+ + +
pk P k Pk Pk p k p k

4mm„g (MrsM~»+M "Mrs»)

qk m'P kqk P pqk
+ fi(t) m'P q+m'M' — +m'

pk pk pk

P kp q—m2

p k
(A10)

—168
2f+(t) 2P kP q+P pP q+M'q k+M'p q

p k

(P p)'qk PkP ppq m'P kP g. . gk+ + +m'M'
p. k p k p k

m'P kq k Pkqk+ +2P pq k 2P qp
—k fi(t)—m', (A11)

p k pk
32AB

4mm„g (M~Mv»+MvM~») (P kP qP k PkP P—q k). .
M4

(A12)

g'G' ssn'8 1
1'(K+ —+ )rot+my) = d'k d'p d4q d'Q b'(P Q p q

—k—)4m—m„—p ~
M(s+M +M"

~

' (A13)
4M (2)r)'

where we drop the 8 and 8 functions for simplicity, i.e.,

As explained in the text, we drop all terms proportional to A in Eqs. (A10) and (A11). The final form for the
rate is

G'sin'OM' n (' A'-~)' db ( ("~~')—~f )' dg g
fI'(IC+ —» n't+vy) =

236Ã K ( ) ~ +~ 3f p~, 'gI~ +2 ~2 ~2 ~2 ~2

where f is dependent upon all the masses and couplings and is too complicated to be reproduced here.

(A14)

APPENDIX B: PHASE-SPACE INTEGRALS

De6ne the basic integral, dropping the 8 functions

4 h) "(b m' a)
I(g, p)

m'M' M' —b

2 2

I(, ) = — d4k 5(k')h((P k)'+b)—
1(o.~) =—(b+M')

G0I (o,o),

(P'. p)"
X d'p b(p'+m') b((B—p)'+a), (81)

(p. k)m

where B=P—k. Ke have already shown that

h't'(M'b 0) h't'(b a m')
I(o,o) =

(b —M')
I( y, p) = MI(p, p),

4b

M2
I(o, ) = — h(b, m', a)

12b

By similar methods, involving the evaluation of some
angular integrations,

1 CO

+ (b+M ) —mo I(o o),
12b b

2 (o h"'(b, m',a)—
I(g, p) =—ln

M' (o+h"'(b m' a)

M=b+m cq

(83) 1 GP

I( o o)
—

(b M ) m' I(o,o»——
12b b
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I{0,3) =

I(—3.0)

(b+M')'cv' M'co'(b+M')
+

32b' 16b2

(b M—2)'(u' m'(u(b M—') '
I(0 0) ~

j.6b232b'

m'ca(b+M')' mM'~(b+M')
I(0,0) )

16b2 4b

I( 1) = ——coI( 2,o)+I(—3,o),

I(—12) =4''I(—1 o) —o)I(—2 0)+I( 3 o) ~
=1 2

The recurrence relations may be checked by noting that
b((B p)'—+a) 6xes P p, i.e., using p B=—-', ~,

P p= —-',(a+p. k.

(&4) We can then express I($,g) as

2 2

Iu, y) = — d k b(k )b((P —k) +b)
I(1,1) = —~coI(1,0)+I(0,0),

I(1,2) I(0, 0)+4 I(1,0)+I(—1,0) p

Iu, » = —geo'I(1, »+4~ I(0,0) s~I(—1,»+I(—2, » i
3 2 3

I(2,1) = —2coI(2,0)+I(1,0),

I(2,2) I (1,0)+g I(2,0)+I(0,0) y

I{ 1,1) = —2~I(—1,0)+I(—2, 0) p

—-', (u+p k
&( d4p b(p'+m') b((B—p)'+a)

~ k

= —
2 o,»+I(o.» (&7)

The other recurrence relations may be derived analo-
gously and in general permit the integrals I(,„)to be
expressed in terms of I(,p) and I(p,
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Electric Diyole Moment of the Neutron: Expected Order of Magnitude

G. BARToN AND E. D. WHITE

University of Sussex, Brighton, England
(Received 3 April 1969; revised manuscript received 8 May 1969)

Sideways dispersion relations yield a theoretically well-defensible "lower limit" on the expected order
of magn1tude of the neutron electric dipole moment. If T violation is due to the weak interactions, then
10 M e cm appears as a reasonable expectation, and 10 ~ e cm the most one can hope for. If T violation is
due to the electromagnetic interactions of hadrons, we still cannot safely expect more than 10 2g e cm,
although optimistic guesses can easily yield 6X10 ~ e cm or more.

HE electric dipole moment ep of the neutron would
vanish under reflection (P) invariance, or under

time reversal (T) invariance'; since neither is exact, ' one
should estimate the theoretically expected order of
magnitude of P. The experimental upper limit, P(5
y yp-» cm, already falls below some predictions. ' Some
other models of T violation predict that p should
effectively vanish; we call these null-p theories. ' We
discuss irst the case where 1' violation is due to the
weak interactions, and second, the case where it is due

j L. D. Landau, Nucl. Phys. 3, 127 (1957).
2 For references to T violation, see R. C. Casella, Phys. Rev.

Letters 22, 554 (1969).
3 J. K. Baird et al. , Phys. Rev. 179, 1285 (1969).
'Some recent predictions are P. Babu and M. Suzuki, Phys.

Rev. 162, 1359 (1967):P&2.2X19 cm; K. Nishijima, Progr.
Theoret. Phys. (Kyoto) 41, 739 (1969):2 X10 cm; P. McNamee
and J. C. Pati, Phys. Rev. 178, 2273 (1968): (0.9 to 1.5) Xi~
or (5 to 8) X10 cm, in two alternative models.

~L. Wolfenstein, Phys. Rev. Letters 13, 562 (1964); R. J.
Oakes, ibid. 20, 1539 (1968). For a difhculty in Oakes' theory:
B.H. J. McKellar, ibid. 21, 1822 (1968).

to the electromagnetic (EM) interactions of the
hadrons' (which remain, however, P-invariant).

In comparison with our predecessors, we claim only
(i) that our input assumptions bridge only those gaps in
the experimental situation that cannot at present be
sidestepped, (ii) that we are conservative rather than
optimistic about the dynamics, and (iii) that we have
isolated a less model-dependent and better calibrated
expression for certain almost unavoidable contributions,
which should set a theoretically well defensible order-of-
magnitude "lower limit"' on P, unless there are acci-
dental cancellations, or conspiracies which effectively
reduce the theory to the null-p type.

%e begin with weak T violation. To motivate a fairly
careful treatment, recall that a quasidimensional esti-
mate would read thus: P= (strength of T violation)
X (strength of P violation) )& (typical hadronic length).
The first factor is generally agreed at around 10—'; but

6 J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,
B1650 (1960).


