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The quark-model bootstrap previously proposed is extended to include the lower trajectories. The exten-
sion is obtained by showing that the factorization properties of the multiparticle Veneziano amplitude can
be generalized to the resonances on the lower trajectories. All trajectories other than the leading trajectory
are degenerate, and the degeneracy increases rapidly as we go downward. Apart from the fundamental
narrow-resonance approximation, the solution of the bootstrap model is exact. If we make a hypothesis
regarding the simplicity of the spectrum of the lower trajectories, then the solution appears to be unique
to within a finite number of constants. The inconsistency associated with negative widths remains, and
any improvement in this respect wi11 probably require going beyond the narrow-resonance approximation.
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FIG. 1. Decomposition of the

Ã-point Veneziano amplitude into
two factors.
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l. INTRODUCTION

HE purpose of the present paper is to show that
the relativistic quark model, which the present

authors have proposed in conjunction with Halpern, '~
can be extended to include the lower trajectories. The
model therefore provides a formally exact solution of the
linear-trajectory bootstrap, in which we make no ap-
proxirnation besides the narrow-resonance approxima-
tion. It may be questioned whether such an exact
solution is of much value, since the narrow-resonance
approximation is not expected to be valid for the lower
trajectories, besides which the model possesses incon-
sistencies associated with negative widths. In order to
remove the inconsistencies, it will almost certainly be
necessary to go beyond the narrow-resonance approxi-
mation. We feel, however, that a formally exact solution
may well be of value in providing a starting point for an
improved treatment. It is also of interest to observe that
one can probably answer questions on the uniqueness of
the Veneziano formula within the framework of such a
model. If we ask for that solution which contains the
minimum number of lower trajectories, we obtain a
result which, as far as we can tell, is unique to within a
hnite number of parameters.

The fundamental question which must be resolved
concerns the factorization of the multiparticle Veneziano
formula. If we examine the 1V-point amplitude (Fig. 1)
and isolate the pole which occurs when the trajectory 1j
passes through a certain integer, the residue of the pole
must be expressible as a Gnite sum of products of two
factors, one associated with each half of Fig. 1. It is

already known that the residue associated with the
leading trajectory can be expressed as a single product
of two factors if all external particles are spinless. We
shall show in the present paper that the residues as-
sociated with the subsidiary trajectories can also be
expressed as a sum of such products, but the sum will

now consist of more than one term. In other words, the
subsidiary trajectories will consist of several degenerate
numbers.

Once we know that the Veneziano amplitude is
factorable, we can construct a solution of the linear-
trajectory bootstrap as we have explained in Refs. 1
and 2. From a multiparticle Veneziano amplitude we
isolate the pole term corresponding to the four-point
amplitude. Any of the resonances which correspond to
the individual factors associated with the leading or
nonleading trajectories can play the role of external
particles in such an amplitude. The same resonances
will appear as internal particles in the four-point
amplitude, and the vertices will possess the required

symmetry properties. Thus all the requirements of the
bootstrap are fulfilled. Production amplitudes can
similarly be constructed.

If we replace the single-term Veneziano formula by a
sum of leading and nonleading terms with arbitrary
coefFicients, the amplitude will no longer be factorizable.
Such a formula does not, therefore, provide a solution to
the bootstrap equations. The question arises whether
one can restore the factorization requirement by suita-
bly adjusting the coeScients of the nonleading terms.
One way of doing so would be to take a system with a
number of quarks of di6'erent masses. The masses can be
adjusted so that trajectories in new positions are not
introduced. However, the number of degenerate tra-
jectories would be increased by such a process, and the
degeneracy increases rapidly as we go downward. We
therefore make the hypothesis that the scattering
amplitudes which occur in nature do not have an
unnecessarily complicated spectrum of lower trajecto-
ries. It might be hoped that the hypothesis could be
proved from the unitarity condition, but at the moment
it appears that such a proof would require a considerable
improvement in our understanding of the whole prob-
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lem. We feel that a hypothesis of this nature provides a
reasonable starting-point for constructing a dynamical
scheme. It can at least be partly justi6ed by the re-

markable agreement of the predictions of the simple

quark model with experiment.
One may still ask the question whether there is any

other way of adding nonleading terms without de-

stroying the factorization condition. In particular, one
would like to know whether it is possible to do so with-

out increasing the number of lower trajectories. We have
attempted to construct amplitudes which ful611 these
conditions, but we have not succeeded. On the other
hand, we have no proof that such amplitudes do not
exist. The position at the moment is therefore that we

have an analytic solution of the rising-trajectory
bootstrap. The solution possesses no obvious non-

uniqueness once we make our hypothesis regarding the
simplicity of the spectrum of lower trajectories, but we

cannot prove that no other solution exists.
With the approach outlined above, we can discard the

assumptions made in Ref. 2 regarding the nonleading
Veneziano terms. The results quoted in Refs. 1 and 2
will depend on the hypothesis mentioned above, and
they will be fundamentally dependent on the narrow-
resonance approximation, but no other approximation is
necessary.

We shall carry out our proofs in terms of a model
with neutral-scalar quarks, since the extension to actual
quarks is straightforward. The spectrum of the quark
model will be obtained by superimposing the SU(6)
spectrum of particles, or the SU(6,6) spectrum of
trajectories, on the spectrum derived in the present
paper. In Sec. 2 we shall show that any particular
multiparticle Ueneziano residue can be expressed as a
finite sum of factorizable terms. The details of the
spectrum of lower trajectories are not necessary for an
understanding of the model, but we shall outline a
prescription for calculating the number of satellites in
Secs. 3 and 4. The second trajectory will turn out to be
twofold degenerate', the third will be sevenfold de-
generate. Thus, even when we choose the solution with
the minimum number of trajectories, this number still
increases rapidly as we go towards the lower trajectories.

2. FACTORIZATION OF THE GENERAL RESIDUE
OF THE N-POINT VENEZIANO AMPLITUDE

We now examine the nth pole in a particular channel
of the E-point Veneziano amplitude. We divide the
particles into two groups 1, . . . , j and j+1, . . . , E, and
we examine the residue when the corresponding tra-
jectory function az; is equal to n (Fig. 1).If we integrate
only over the variable e» relative to the channel in
question, it is not difFicult to show that the residue in
the pole of the remaining integrand is given by the

where

y j=1, y1
——0,

(2.2a)

(2.2b)

y&
——up, ,+, usa, j+2&k&ItI 1(2—.2c)

y+1——1, y~ ——0,

~;I,——0 unlessi= j and k= j+1,
~, ;+1——b —1,

(2.2d)

(2.2e)

(2.2f)

and b is the intercept of the Regge trajectory. (We are
using the mass scale for which the slope of the tra-
jectories is equal to unity. ) The functions Iz and I2 are
the integrands of the rnultiparticle Ueneziano formulas
associated with the two halves of Fig. 1. They will of
course be functions of all the appropriate u's and n's.

In order to evaluate the expression on the right of
(2.1), it is convenient to take the logarithm of the
product, so as to turn it into a sum. Thus

8" j N

I1I2 exp[ p Q (2p;pa+a;a)
n~ Bm" i=1 k~ j+1

Xln(1 —wy, yp)] ~
„0

1 8" j=—IgI2 exp —g p (2p;pg+e;g)
n! BK" i=1 k j+1

X 2 —y, "ya' (2.3)

We now observe that the coefFicient of m", excluding the
term ej,j+1, can be written as a product of two factors,
one involving only p; and y; and the other only p; and
y;. Thus

1 8
E.= ——I1I2 exp

n! 8R"

+b 1]—
t0~0

(2.4)

In writing down (2.4) we have used Eq. (2.2f) for e,&.

To 6nd the nth derivative in (2.4), we expand the
exponential in powers of r and isolate the coefIicient of

following formula:

j n

R=—I I P g (1—~y*y~)"'""+""I -o (2 1)
n!
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m". The result will consist of a sum of terms of the form

~I I II[(Z p'y")( 2 p~y")+& —11'" (25a)

with
t'Kg = fE . (2.5b)

cI&I& g(Q y,y,")"'(P yky&")"

The product is over all possible sets of integers ~„which
satisfy (2.5b) with 0»r&n Si.nce we are interested in
making an angular-momentum analysis of the residue,
we shall work in the c.m. system of the channel 1j, and
shall separate the scalar product into its spatial and
temporal parts. Thus F will consist of terms of the form

II U[(Zpo'y'") (Zp y')
—(E p*y") (2 p.y")+&—13"", (2 6)

with the indices ~, still being limited by (2.5b). All

summations over the indices i and k run from 1 to j and
from j+1 to Ã, respectively.

We may next expand the expression (2.6) so that the
amplitude will be represented by a sum of terms of the
form

The expression (3.2) is not zero, but it does give a zero
contribution to our final result, which involves an
integration over ui; i. We therefore have to supplement
(2.7) with the information that terms of the form (3.2)
give no contribution to the integral. When we do so, the
symmetry under the change of variables must appear
automatically.

We now quote the results:

Oui, j

Buij
=u~, , r(1 —ur, , &), (u»=0) (3.3)

were obtained by n-fold differentiation with respect to
the variable u», with u;; kept constant (1&i»j —2,
2&i'»j —1). If we had adopted the other choice of
variables, we would again differentiate with respect
to ui;, but the variables kept constant would now be
u;;. (2&i »j 1, 3—&i'& j). Under the change of vari-

ables, the integrand I simply changes by the Jacobian
factor, but the derivative of I with respect to ui, .

acquires in addition a term

�

(9 Oui, &' I, 2 &i &j 2—. (3.2)
~ul, j—1 ~u1j i u& j ui, j

with
X(E po*'y'")"'(Z p» y~ ')"', (2 7a)

Oui, &'

[Iul J 1(1—ul, ' 1)]
t'ai, j—1

P rX,+P su, &n. (2.7b)

By making an angular-momentum analysis of each
term of (2.7a), we can resolve it into a finite number of
terms, each consisting of two factors which depend only
on the initial-state and 6nal-state variables, respec-
tively. However, it is possible to find certain identities
with the aid of which we can reduce the number of
terms, and we shall now explain how such identities may
be obtained.

3. RESTRICTIONS DUE TO CHARGE
CON JU

BASTION

In choosing the variables u corresponding to Fig. 1
which we regard as independent, we could have labeled
the particles by starting from the bottom of the diagram
and proceeding anticlockwise. The particles numbered
1 to j would then be numbered j to 1, while those
numbered j+1 to E would be numbered ~V to j+1.
Under such a transformation it is not difFicult to show
that the y's transform as follows (with u» ——0):

y, ~ 1—y;„g;, yp ~ 1 —yn~;~g g. (3.1)

The factors I& and I2 in our amplitude will change by a
Jacobian factor under the transformation in question,
since a change of the variables of integration is involved,
but the extra factors (2.7a) should be unchanged. The
expressions as written do not have this property.

To investigate the origin of this apparent discrepancy,
we notice that the left-hand factors of the terms of (2.7)

where

=2I'P (P p;y; ',P)—-
=2I'Po[E po (y' —l)7, (3 4a)

P=g p;. (3.4b)

Oui, & Buij

more than once. It will be more convenient, however, to
use instead the following formula for the derivative of
y; with respect to ui, , i ..

~ul, j—1 ui, j
1/ur, , r(1 —ui, , r) (yP —y;). (3.5)

From the form of (3.4a), one can conclude immediately
that the two equations (3.4) and (3.5) contain all the
information that could be obtained by repeated applica-
tion of operator

8 Buy, &

Oui, & i Oui, &

Equations (3.4) and (3.5) can be used to differentiate
expressions of the form u~, ~(l —u~, , ~)I'(g p~y;")""

I is the Veneziano integrand with independent vari-
ables ui, , i. We could also examine the effect of ap-
plying the operator

8 Oui, ; i



184 ANALYTIC SOLUTION OF LINEAR —TRAJECTORY BOOTSTRAP i643

X+ po;y, ')& with respect to the variable u~, , q. The
resulting expressions will be sums of terms of the form
I'(g p;y;")" (P po;y;*)& . Bymaking use of the fact that
such sums will give zero when integrated over u~, ; i, we
can reduce the degeneracy of the lower trajectories.

The change of the ordering of the particles in the
initial and final states is equivalent to applying the
charge-conjugation operator. It follows that the eGect of
the initial- or final-state factor under the transformation
(3.1) gives us the charge conjugation of the corre-
sponding state.

(4.1)

where each factor (P p;y, ")"'must be interpreted as a
X„-index symmetrical tensor. The tensor can be de-
composed into representations of the rotation group
with angular momentum X„, X„—2, X„—4, . . . . The di-
rect product of the representations corresponding to
factors of (4.1) with difFerent r can be resolved into
irreducible representations of the rotation group in the
usual way.

It is convenient to regard each of these representa-
tions, for each combination of the indices X„and p„as
forming a state in a vector space. The condition (2.7b)
shows that the dimensionality of the space is finite, and
the expression (2.7a) shows that the scattering ampli-
tude is a diagonal matrix in this space.

We can next redefine our basis in such a way that the
states are eigenfunctions of C. We simply replace the
expressions (4.1) by the following expressions:

The charge conjugation of the state (4.2) will be

where
(4.3a)

(4.3b)

One can apply an angular-momentum analysis to the
states (4.2) in the same way as to the states (4.1).The
scattering amplitude will not necessarily be diagonal in
the new basis, but it will contain no elements between
states of different C. We can therefore rediagonalize the
amplitude by defining a third basis in each of the sub-
spaces with definite C.

With the aid of the relations (3.4) and (3.5), we can
now reduce the number of states. Let us denote the
integer v, defined by (4.3b), as the index of the state.
The state vector (4.2), corresponding to a state of index

4. COUNTING OF THE SATELLITES

We now return to examine the expressions of the form
(2.7). The initial-state factor will be

v —1, will have the form

We may now take the expression

Qg, z' y(1 —Qy, z r)Ig

and differentiate it with respect to Nq, ; q, using (3.4) and
(3.5). It is easy to see that the result is a linear combi-
nation of a state with index v and states with lower
index. Such a state does not contribute to our scattering
amplitude, since the state vector gives zero when
integrated over ul, ; i. Furthermore, the angular mo-
mentum of the state is unchanged by the operation of
differentiation. The number of states with index v and
angular momentum J is thus decreased by the number
of states of index v —1 and angular momentum J.

We shall now indicate how the number of states of a
given angular momentum may be counted with the aid
of a simple-harmonic-oscillator model. We construct a
system of independent simple harmonic oscillators, each
corresponding to one value of the index r of (4.2). The
rth oscillator will have energy levels 0, r, 2r, etc. Corre-
sponding to the factor ~ p, (y;——,')"]"",we suppose the
rth oscil1ator to be in the X„th energy level, so that
it has energy rX„. Ke have seen that the factor~ p, (y;——,')"]" corresponds to a series of states with
angular momentum X„, X„—2, etc. Such states will
correspond to the states of the oscillator with radial
quantum number 0, 1, etc. The angular momentum of
all the oscillators can then be combined in the usual way.

Ke must modify our prescription somewhat to take
into account the factors [g po; (y,' —~~)]& . Instead of
an ordinary simple harmonic oscillator, we consider a
"Lorentz simple harmonic oscillator. " For each level
of the ordinary oscillator with energy E and angular
momentum J, there will be a series of daughters of
the Lorentz oscillator with energy E and angular mo-
mentum J,I—1,J—2, etc. The factor ~ p, (y;—~)"]""
X~ p~; (y,'——,')")&"will correspond to the (X„+p„)th
level of the rth oscillator, and to the p„th daughter of the
Lorentz sequence.

The product of factors (4.2) will thus correspond to a
system of Lorentz oscillators. The definition (4.3b)
indicates that the total energy of the system of oscil-
lators is equal to the index of the state in question. The
number of states of index v is equal to the number of
states of the system of oscillators with total energy
equal to v, and the angular momentum of any state will
correspond to the angular momentum of the state of the
system of oscillators.

The inequality (2.7b) indicates that the total number
of trajectories at the tsth pole is equal to the number of
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states with v&m. On the other hand, we have seen that
the number of states with v=n is decreased by the
number of states with v=n —1, as a consequence of
(3.4) and (3.5). Hence the total number of trajectories
of angular momentum J passing through the nth pole is
equal to the number of states of our system of oscillators
with energy n and angular momentum J. The charge
conjugation of the states with index less than n will be
equal to the charge conjugation of the corresponding
states at the (n —1)th pole, while the charge conjugation
of the additional states will be (—1)". Thus, if the
charge conjugation of the states at the (n —1)th pole
with angular momentum J is known, there vill be an
equal number of states at the nth pole with the same
value of J and C. All remaining states at the nth pole
will have C= (—1)".

Following the above method, we may easily count the
states corresponding to the first few trajectories. The
leading trajectory will of course not be degenerate. The
second trajectory will be a doublet, with one member
of each charge conjugation. The trajectory with
C= —(—1)&' will be the erst daughter of the leading
trajectory, while the second trajectory will be an
additional satellite which is not required by Lorentz
symmetry. The third trajectory will be sevenfold de-
generate. Six members will have C= (—1)', while the
seventh will have C= —(—1) '. Of the trajectories with
normal C, one will have an abnormal parity of —(—1)&.

5. CONCLUDING REMARKS

The obvious limitation of our work is the lack of any
systematic analysis concerning the factorization proper-
ties of multiparticle Veneziano formulas with non-
leading terms. In order for the factorization property
to be relevant to the question of the uniqueness of the
simple Veneziano formula, one has to make the con-
jecture that one cannot add nonleading terms in such a
way that factorization is maintained and that the
degeneracy of the lower trajectories is not increased. At
present all we can say is that we have been unable to
find a method of doing so.

A related question concerns the factorization proper-
ties of the generalized Veneziano formulas. To our
knowledge, such generalized formulas have not been
constructed for amplitudes with more than five external
lines. It would be surprising if the formulas were really
limited to four- and five-point amplitudes, and the

factorization of the generalized formulas is obviously a
subject for investigation.

When counting the lower trajectories, we have not
proved that all our trajectories are really distinct. It
could be that some of our initial and final states are
linear combinations of one another, due to some
property of the Veneziano formula which we have
overlooked.

The hypothesis restricting the number of lower tra-
jectories is not to be taken to imply that we ask for the
solution with the absolute minimum number, but that
the number of lower trajectories is not too large to
provide any restriction at all. Thus, if we really insisted
on the minimum number of trajectories, we could con-
clude that the quarks were neutral scalar particles. We
obviously have to relax the hypothesis at least enough to
allow a triplet of quarks with spin ~~. By relaxing the
hypothesis further, it appears that we can introduce
SU(6) or SU(3) symmetry breaking.

Another point worth making is that we are not
necessarily assuming that the complete spectrum of
lower trajectories which exists in nature is simple, but
that a weak-coupling approximation with a minimum
number of lower trajectories provides an appropriate
starting point.

The problem of repulsive trajectories, or negative
widths, which was described in Refs. 1 and 2, occurs for
the lower trajectories. In fact, the problem is not now
confined to the case where the external particles have
spin —,'; it occurs for spin-zero external particles as well.
For practical purposes, the problem is mort. serious with
quarks of spin -„since it then exists for the leading
trajectory, but as a matter of principle the problem
exists in any factorized Veneziano model. Its solution
will probably require going beyond the narrow-reso-
nance approximation, and may involve the introduction
of Goldstone bosons.

In spite of the somewhat ud hoc assumptions which we
have had to make, v e feel that the analytic solution of
the linear-trajectory bootstrap scheme does indicate the
great power inherent in the developments of the past
year.

We understand that similar results regarding fac-
torization of the lower trajectories have been obtained
by Fubini and Veneziano. '

' G. Veneziano, private communication.


