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We base a bootstrap dynamical scheme on the Veneziano model, We assume that the internal trajectories
in all channels are similar in their spin and isotopic-spin properties to the external particles, and that vertices
are symmetric in their internal and external particles. It turns out that quarks form a very useful entity
for expressing the solution, even though the system contains no physical quarks. The spin and multiplicity
of the quarks are not determined by the solution, but must be assumed. The spectrum of particles is the
same as that predicted by the nonrelativistic quark model, and the particles from multiplets of SU (6).
The trajectories of the system, on the other hand, form multiplets of SU(12) or SU(6,6), and they are
doubled both in their parity and in their Toller M value. Some of the trajectories have residues whose sign
corresponds to repulsion rather than attraction, and an interpretation of such trajectories is suggested.
If we assume p universality in order to fix certain parameters, we can determine all further coupling constants
to within a scale factor, and our vertices are those predicted by SU (6)w. In much of the work the detailed
form of the Veneziano model is not used, and a comparison is given with certain previous approaches.

1. INTRODUCTION

HE Veneziano formula' provides a promising
alternative to the finite-energy sum rules for
constructing a dynamical scheme based on rising Regge
trajectories. Since the formula has Regge asymptotic
behavior in the three channels, all finite-energy sum
rules will automatically be satisfied at all values of ¢.
Questions of how many moments to use in the finite-
energy sum rules, or of which value of ¢ to take, become
irrelevant. The whole scheme thus takes on a clearer
form. It now becomes a practicable objective to include
completely the lowest SU(6) multiplets of mesons and
baryons in a fairly simple calculation. General results
related to the quark-model and SU(6) can be derived.
As in any dynamical scheme so far suggested, one has
to begin by making approximations whose accuracy
can only be estimated by comparison with experiment,
or possibly by extending the calculation to a higher
approximation. In the scheme based on finite-energy
sum rules, the approximation was to assume that only
the resonances of lowest energy contribute. Such an
approximation is similar in spirit to that of neglecting
multiparticle intermediate states in the unitarity
equation. Our assumption in the new bootstrap scheme
is to take only a finite number of Veneziano terms, or, in
the lowest approximation, only a single term. Higher
terms emphasize the higher resonances, and are to be
taken into account in subsequent stages of the approxi-
mation scheme. Actually, we shall be able to obtain
many of our conclusions from a somewhat weaker

* Research supported by the Air Force Office of Scientific
Research, Office of Aerospace Research, U. S. Air Force, under
Grant No. AF-AFOSR-68-1471.

1 A preliminary account of this work, based on finite-energy sum
rules instead of the Veneziano formula, was presented to the
International Conference on High-Energy Physics at Vienna,
1968. The treatment based on the Veneziano formula is much
cleaner and, since it is equivalent to satisfying the finite-energy
sum rules at all values of ¢, it allows more detailed predictions on
the nature of the trajectories.

! G. Veneziano, Nuovo Cimento 57A, 190 (1968).
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assumption than the absence of non-leading terms. Our
calculations for the variation of the Regge residues as a
function of ¢ will require the full assumption, however.

It is not completely out of the question that one may
be able to treat the lower terms analytically. If the
remarkable factorization and vertex-symmetry prop-
erties of the n-point Veneziano amplitude®® can be
extended to nonleading trajectories, one may be able
to say something about them.* With sufficient optimism
one may even hope to show that they cannot change our
conclusions about the nature of the spectrum. We shall
not attempt to examine such points in the present paper,
however.

The scattering as given by the Veneziano formula can
take place through an infinite number of resonances.
If one simply examines the amplitude for the scattering
of four given particles one can obviously not insert all
the physical requirements. It is therefore to be expected
that any sufficiently general formula will have an infinite
number of constants; in the Veneziano formula these
constants enter as the coefficients of the nonleading
terms.

Any four of the infinite number of internal resonances
can, themselves, form the external particles of a scatter-
ing amplitude which is given by the Veneziano formula.
We thus have a multichannel problem, and the residues
are restricted by factorization. In the amplitude
A+B— C+D, the residue at the pole due to the
internal resonance £ must factorize in the form
gapegecp. As is well known, such factorization decreases
the number of independent parameters in the many-
channel problem. Furthermore, if one examines an

*K. Bardakci and H. Ruegg, Phys. Letters 28B, 342 (1968);
M. A. Virasoro, Phys. Rev. Letters 22, 37 (1969); H. M. Chan and
S. T. Tsou, Phys. Letters 28B, 485; C. J. Goebel and B. Sakita,
Phys. Rev. Letters 22, 257 (1969).

* K. Bardakci and M. B. Halpern (to be published).

* Whatever extension may be possible, it is certainly not true
that factorization will take place with single subsidiary trajectories
at integral distances below the main trajectory.
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amplitude such as E4B— C+D, where the internal
resonance of the previous amplitude is now made an
external particle, the residue at the pole due to the
intermediate state A will factorize in the form
gapegacp. The coupling constants gspe in the two
residues must be the same. We therefore obtain an
infinite number of relations connecting the infinite
number of constants in the Veneziano formula. The
power of the factorization requirement was pointed out
in Veneziano’s original paper.

Factorization is itself a consequence of unitarity.
Thus, while the unitarity equation is not used explicitly
in a narrow-resonance approximation, it does play a
major role through the factorization requirement.

One now has to adopt an approximation scheme in
order to reduce the infinite set of equations to a finite
set. In the first approximation, one would demand that
the internal resonances on the leading trajectories
should also play the role of external particles. Non-
leading terms in the Veneziano formula, which empha-
size the lower trajectories, would be left out. One would
then obtain a finite number of equations for a finite
number of unknowns. In higher approximations one
would demand that internal particles on nonleading
trajectories should play the role of external particles,
and one would introduce nonleading terms. At the
moment we do not know whether the system of equa-
tions is overdetermined, uniquely determined, or
underdetermined; indeed, we have not formulated the
problem precisely enough to ask that question.

As we have already remarked, we can obtain our most
important results without making the assumption that
all nonleading terms are zero. Certain types of non-
leading terms are simply not relevant when one asks
questions about the lowest particles on the leading
trajectories, and no assumption need be made about
them. On the other hand, one obviously has tomake some
assumption about the nonleading terms. Without such
an assumption, the crossing relation would impose no
restrictions. If one were to allow arbitrary nonleading
terms, one could start from a Veneziano term such as

I'(—as—b)T(—at—b—n)
I'(—as—ai—2b—n)

U12,1304

where R is a matrix which involves the spin and unitary-
spin variables of the particles. The Veneziano term has
a leading trajectory in the s channel, but no leading
trajectory in the ¢ channel. One could now add the term

T'(—as—b—n)T'(—at—b)
I'(—as—at—2b—n)

Rclxlzla.h

where R° is the matrix obtained from R by crossing.
The sum of the two terms satisfies the crossing relation,
and the matrix R is unrestricted. The properties of R
in the ¢ channel are irrelevant, since there is no leading
trajectory in this channel.
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We therefore introduce an assumption that the
leading trajectory bootstrap itself, and we shall first
explain our assumption in a system with unitary spin
but no ordinary spin. The external particles will con-
sist of certain multiplets, which may be singlets, octets,
etc. We demand that the internal particles consist of
the same multiplets as the external particles. The
internal particles on the highest trajectory must be
identical to the external particles, and the amplitude
must satisfy the factorization requirement. We insist
that no trajectories, leading or nonleading, occur in
multiplets other than those corresponding to the external
particles.

It may be that there are nonleading trajectories with
more complicated multiplicities than the leading
trajectories. Our bootstrap assumption is that such
trajectories need only be considered at a subsequent
stage in the approximation scheme, where the higher
multiplets are introduced as external particles.

One makes a similar assumption regarding ordinary
spin. We characterize a trajectory by means of its
lowest particle, so that we regard the = trajectory as
pseudoscalar, the p trajectory as vector, and so on.
Again we make the assumptions that the internal par-
ticles on the leading trajectory are identical to the
external particles, that the factorization requirement is
satisfied, and that the only internal trajectories which
occur are those with similar characteristics to the
external particles.

A second assumption or, more accurately, a point of
interpretation, concerns repulsive trajectories. In any
model with linear trajectories, parity doublets must
occur for all fermion trajectories and for all boson
trajectories with M 0. The sign of the residues asso-
ciated with the parity doublets corresponds to repulsion
rather than attraction, unless the residue has a zero at
some point below the mass of the lowest particle.
Repulsive trajectories cannot occur in a narrow-reso-
nance approximation. We shall discuss the interpreta-
tion of the trajectories in the following section; we
shall have to regard the narrow-resonance approxima-
tion as analogous to a Born approximation rather than
as an accurate representation of the amplitude. We
should emphasize that the problem of the parity
doubling occurs generally in relativistic quark models,
and is not peculiar to our present scheme.

A further subsidiary assumption has to be made in
order to fix two free parameters Ay and Ay, which are
associated with the vector and pseudoscalar trajec-
tories, respectively. It turns out that one choice of this
parameter gives us the SU(6)w results. If, therefore,
we assume one SU(6)w result, such as p universality,
we can predict all other SU(6)w results. We shall
refer to this assumption as ‘“‘assumption 3.” The
parameters Ay and Ap specify which combination
of degenerate states correspond to the physical pseudo-
scalar and vector nonets, and their arbitrariness does
not constitute a real arbitrariness within the framework
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of the model itself. By going somewhat beyond the
limitations of the model, one may make arguments to
indicate that the N’s should have approximately their
SU(6)w value. We shall discuss such arguments at the
end of this section and in Sec. 6.

In a bootstrap calculation based on the principles
just outlined, we shall be mainly concerned with the
crossing matrix in spin and SU(3) space. It is necessary
to find eigenfunctions of the crossing matrix which are
consistent with all factorization requirements. Our
approach thus has features in common with previous
approaches by Singh and Udgaonkar,® Capps and
Cutkosky,® and especially Capps.” By considering dis-
persion relations for backward scattering (fixed ¢
dispersion relations for the su crossing relations),
and by making reasonable assumptions about the sub-
traction terms, Capps obtained and solved an albegraic
problem which, in unitary space, is identical to ours.
Harari® has obtained similar results from the assump-
tion that there are no exotic resonances. In ordinary
space, the results of Capps are also similar but not
identical to ours. Since we do not restrict ourselves to
backward scattering, we are able to obtain more de-
tailed properties of the trajectories.

Our method of constructing the solution to the prob-
lem leads us naturally to regard the mesons as com-
posed of quarks in both their spin and unitary-spin
degrees of freedom. One can obtain a solution with
quarks of any spin and multiplicity, and we shall
assume that the quarks have spin % and that the sym-
metry group is SU(3).

Subject to a qualification which we shall make below,
we shall find that the spectrum of particles in our model
is the same as that predicted by the nonrelativistic
quark model. The particles will thus occur in multiplets
of SU(6) and, in our model, all members of the multiplet
will be degenerate. We have already mentioned that we
can adjust the constants Ay and Ay in such a way that
the vertex functions are those predicted by SU(6)w.

The spectrum of trajectories is more extensive than the
nonrelativistic quark-model spectrum, and the trajec-
tories are doubled in both the parity and the Toller
quantum number. Thus, in addition to the p nonet with
M=0, we have an axial-vector nonet with M =0,
C=—(—1)%, as well as an M =1 conspiracy between a
second vector nonet and an axial-vector nonet with
M =0, C=(—1)i. There are similarly two scalar and
two pseudoscalar nonets, all of which have M=0. The
scalar and axial-vector trajectories are repulsive and do
not correspond to particles. Both of the vector and
pseudoscalar trajectories are attractive, but it turns
out that the residue of the second vector trajectory and

5 V. Singh and B. M. Udgaonkar, Phys. Rev. 139B, 1585 (1965).

¢ R. E. Cutkosky, Phys. Rev. 131, 1888 (1963); R. H. Capps,
Phys. Rev. Letters 14, 842 (1965); Phys. Rev. 148, 1332 (1966);
ibid. 158, 1433 (1967).

7 R. H. Capps, Phys. Rev. 168, 1731 (1968).

8 H. Harari, Phys. Rev. Letters 22, 562 (1969).
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of the second pseudoscalar trajectory at the mass of the
p or the 7 is only § as large as that of the first. We shall
remark in the following section that it is plausible to
interpret these trajectories in the same way as the
repulsive trajectories. They would therefore have no
particles associated with them, but our interpretation
is not unambiguous.

All our trajectories are exchange degenerate, as in the
ordinary quark model. Since we are unable to obtain a
solution without exchange degeneracy, we must use the
oridinal Veneziano formula, and not the generalizations
proposed by Virasoro® and Mandelstam.1

Once we have made assumption 3, our model has two
free parameters, the over-all coupling constant and the
intercept of the trajectories (or the mass of the mesons).
The over-all coupling constant can obviously not be
determined in a narrow-resonance model. We might
determine the mass of the mesons if we use the general-
ized Veneziano supplementary condition,! but there are
certainly no compelling reasons for doing so. The choice
n=0would be inconsistent, since it would make u?= —1,
while the choice =1 leads to u?=1. The masses
are of course measured in units of the reciprocal of
the slopes of the Regge trajectories, which is 1 BeV.
The predicted mass would thus be too large, but cor-
rections due to finite widths would be expected to
decrease the mass.

In Secs. 3-S5 of the paper, the external particles will
be restricted to the lowest members of the leading
trajectory. The idea of Bardakci and Halpern® then
enables us to obtain a solution with any members of the
leading trajectory as external particles. Their proposal
is to use the properties of the eight-point Veneziano
amplitude to construct a bootstrap model where the
external particles possess angular momentum. By
combining the properties of their model with the spin
and unitary-spin properties treated in the present paper,
one is led naturally to consider the eight external
particles as quarks. We shall combine our model with
the Bardakci-Halpern model in Sec. 6. It is evident from
such a construction that quarks having space, spin,
and SU(3) degrees of freedom may be a very useful
concept, even though the quarks do not exist as real
particles.

2. REPULSIVE RISING TRAJECTORIES

The problem of the parity doublets of rising trajec-
tories was noticed before the Veneziano representation
was found.”? Various solutions have been suggested,
other than that which we shall propose here, but none of
them is very attractive. We shall treat the problem by

® M. A. Virasoro, Phys. Rev. 177, 2309 (1969).
1°S. Mandelstam, Phys. Rev. 183, 1374 (1969).

1 1 .
1712 4G(1gggleano, Ref. 1; S. Mandelstam, Phys. Rev. Letters 21,

2 This problem has been emphasized by P. G. O. Freund
(private communication).
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F16. 1. Gribov-Pomeranchuk singularities for baryon trajectories.

referring to fermion channels, where the possibility
M=0 does not exist and where more experimental
information is available. Once one agrees that the
problem exists for fermion channels, we do not consider
it a drawback of a particular model that it exists in the
boson channels as well.

Let us examine the parity doublet of the baryon
Regge trajectories with zero strangeness. The first
possibility might be that particles do exist where the
trajectories pass through the half-integers. No such
particles have been found at the point where the tra-
jectories pass through /=0, where [/ refers to the orbital
angular momentum of the quarks. It could happen that
the trajectories passed through the value /=0 at an
energy greater than that for which the quantum
numbers of the resonances have been identified, but
this would require a marked departure from linearity.
All the resonances in the /=1 region have been identified
with the normal-parity resonances predicted by the
quark model, so, unless we are prepared to destroy the
beautiful agreement between theory and experiment,
we conclude that there are no resonances when the
parity-doublet trajectories pass through !/=1. In this
case it would require a smaller deviation from linearity
to push the resonances above the region where we have
detailed experimental information.

The second possibility is that no particles exist where
the parity-doublet trajectories pass through the half-
integers, either because the residues vanish or because
the trajectories choose nonsense. We have never
encountered a model where the trajectories fail to
produce particles at all the half integers, and it is
probably impossible to construct one. A more reasonable
modification of this possibility would be to assume that
the trajectories choose nonsense (or have zero residues)
at /=0 and /=1 only. This would not be within the
spirit of the quark model, where trajectories should only
choose nonsense at negative values of /. One may also
have an uneasy feeling about requiring that the trajec-
tories choose nonsense at points where experimental
information is available, and then choose sense.

If the Regge residue of the trajectories has no zero,
the parity doublets will be repulsive. Hence, if there are
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particles on the parity doublet, the residue must change
sign at some point between the lowest particles on the
trajectory on the two sides of the MacDowell axis. A
similar result is true for boson trajectories with M#0;
one of the two trajectories must have a zero between
t=0 and the position of the lowest particle. Had there
been no strong experimental evidence against the
existence of particles on the parity-doublet trajectories,
it would be natural to assume that the zeros were
present. We shall attempt an interpretation under the
hypothesis that the trajectories remain repulsive.

We wish to link this problem with another problem
connected with rising Regge trajectories, namely the
problem of the Gribov-Pomeranchuk threshold sin-
gularities.® Gribov and Pomeranchuk showed that an
infinite number of trajectories converge on the point
l=—3% at threshold, where / is the orbital angular
momentum. As the variable ¢ is moved through its
threshold value, the trajectories approach I=—3%
along the imaginary axis and recede again along the
imaginary axis. In a Schrédinger model with an attrac-
tive potential, a finite number of trajectories will move
to the right of /=—13 as ¢ is increased from —« to
threshold. These trajectories will not take part in the
Gribov-Pomeranchuk phenomenon. If the potential is
repulsive, all trajectories take part in the Gribov-
Pomeranchuk phenomenon.

The lowest two-particle channel which communicates
with the baryon trajectory is the pion-nucleon channel.
At 7=0, the orbital angular momentum can be equal
to —3. A Gribov-Pomeranchuk singularity will there-
fore exist at the threshold for #V scattering at j=0.
Another channel which communicates with the baryon
trajectory is the 7-F5;; channel. One of its subchannels
will have /= —% at j=2. Another Gribov-Pomeranchuk
singularity will thus be present at the threshold for
wFs5;5 scattering at j=2. Similarly there will be a
singularity at the threshold for 7H,,; scattering at j=4,
and so on. The Gribov-Pomeranchuk singularities have
been shown in Fig. 1.

At each of the singularities indicated in Fig. 1, an
infinite number of trajectories must approach the real
axis from the imaginary direction as ¢ passes through the
appropriate value. The trajectories must recede again
as ¢ is increased further. The arguments of Gribov and
Pomeranchuk cannot tell us how the trajectories behave
away from the singularities, but it is reasonable to
suppose that trajectories exist which jump from
singularity to singularity, remaining in the complex j
plane except at the singularities. At any rate, rising
trajectories must exist which approach the Gribov-
Pomeranchuk singularities from the complex plane.
Such trajectories will supplement the ordinary trajec-
tories which rise roughly linearly.

As long as we work within the framework of the

1V, N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters
9, 238 (1962).
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narrow-resonance approximation, we cannot accom-
modate trajectories which do not rise linearly. We shall
therefore regard the Veneziano formula as analogous to
the Born approximation in potential scattering, and we
do not insist that it reproduce correctly all features of
the scattering amplitude. We attempt to relate the
trajectories in the actual scattering amplitude, some of
which take part in the Gribov-Pomeranchuk phenom-
enon, to their counterparts in the narrow-resonance
approximation where they all rise linearly. We again
remind the reader of the corresponding relationship in
potential theory. The leading attractive trajectories,
which correspond to the particles or resonances, do not
pass through the Gribov-Pomeranchuk singularities.
The repulsive trajectories, and also the subsidiary
attractive trajectories, do. In a model with rising Regge
trajectories, we therefore require that the leading
attractive trajectories do not pass through the Gribov-
Pomeranchuk singularities. The respulsive trajectories
do pass through the singularities and, if a trajectory is
repulsive along its entire length, it may pass through an
infinite number of Gribov-Pomeranchuk singularities.
Such a behavior has no counterpart in potential theory,
where there are only a finite number of singularities.

Since the parity-doublet trajectories are repulsive, it
is proposed that they pass through the Gribov-Pomer-
anchuk singularities. They will not be near the real
axis at the half-integers, and they do not produce
particles or resonances. As long as the trajectories are
sufficiently far from the real axis except near the thresh-
olds, there is no obvious contradiction between the sign
of the residue and the requirements of analyticity and
unitarity.

Besides the trajectories just treated, our model
predicts a second vector and pseudoscalar trajectory.
They are attractive, but their residues when they pass
through s=u? are much smaller than those of the first
trajectory. We shall assume that these trajectories also
take part in the Gribov-Pomeranchuk phenomenon and
move into the complex plane away from the thresholds;
nothing in our previous reasoning implies that only
the repulsive trajectories can have this property. Such
an interpretation is certainly not unique, nor is it
necessary that the trajectory have the same behavior
near all the integers.

Except for the SU(6) singlet, all channels with re-
pulsive trajectories also have nonleading attractive
trajectories one unit below. This may be a significant
point, since analyticity and unitarity do place restric-
tions on the position and residue of a repulsive trajec-
tory in the complex plane. It is a reasonable conjecture
that the restrictions will be weaker when attractive
trajectories are present as well. If so, it may be that one
can obtain a consistent solution if and only if the
residues of the repulsive trajectories are not too large
relative to those of the attractive trajectories. Making
the assumption that the maximum repulsive residue is

QUARK MODEL BASED ON VENEZIANO REPRESENTATION. I
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not too large relative to the attractive residues, we can
resolve certain ambiguities in the predictions of the
model. In particular, there exists another solution where
the roles of the attractive and repulsive trajectories
are reversed, so that the lowest-mass particles are
scalars and axial vectors instead of pseudoscalars and
vectors. In such a model some of the repulsive trajec-
tories have residues three times as large as those of the
attractive trajectories, whereas in our model they are
about £ as large. We therefore prefer our original model.

Another application of the assumption regarding the
magnitude of the repulsive residues is to fix the approxi-
mate value of the parameters X\ mentioned in the pre-
vious section. The optimum value appears to be around
the value given by assumption 3.

The conclusions of this section are therefore that
repulsive rising trajectories may be allowed, provided
that we regard the narrow-resonance approximation as
analogous to the Born approximation in potential
scattering. It is very plausible that the inconsistency
associated with the wrong sign of the residue will dis-
appear in an improved treatment with finite widths.

3. BOOTSTRAP FOR SPINLESS MESONS

Before dealing with the solution of our problem which
corresponds to nature and which possesses mesons of
spin 0 and 1, we shall deal with a hypothetical problem
where the mesons have SU(3) symmetry but are
spinless. The solution we expect will correspond to a
model with a triplet of spinless quarks. Most of our
results will agree with those predicted by other models,
but it will be helpful to use this problem to explain our
methods before we go on to the more difficult problem
where the quarks have spin.

We may write the general Veneziano amplitude as
follows:

Aot (5,0) =230 Ruytgtat, VW ) (s,1) . (3.1)

The indices /1, 2, I3, and /4 on the amplitude 4 represent
the components in unitary space, and they specify both
the multiplet involved (e.g., singlets or octets) and the
component within the multiplet. The summation on the
right is over leading and nonleading Veneziano terms
W®, and R is a matrix in unitary space which is inde-
pendent of S and £. One can resolve R into multiplets
and components for the incoming state 34 as a whole
and, according to our bootstrap assumption, the only
multiplets which appear in this resolution must be the
multiplets corresponding to the external particles.
From the crossing relation, we may write

At (5,0) =2 Re st "W O (1,5) , (3.2)

where R, is obtained from R by applying the crossing
matrix. If we resolve R, into multiplets and components
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corresponding to the incoming state as a whole, it too
must only contain multiplets corresponding to the

external particles.
Adding (3.1) and (3.2), we find that

Antase=2 Ry a1t WL (s,8)
+> R——.hlzlal.:(r)W_(')(S,t) , (3.33.)

where
(3.3b)

(3.3¢)

R:l:(r) =RM4R, ™,
Wi (s,)=H{W D (s,)+W " (4,5)} .

The matrices R, and R_ will be eigenvectors of the
crossing matrix, with eigenvalues 1 and—1, respectively.
We shall show later in this section that there exists no
suitable eigenvector of the crossing matrix with eigen-
value — 1. If we anticipate this result, we may drop the
second term of (3.3a). On doing so and concentrating
on the leading term, we obtain the final result

Anig,= Ry 10, W (s,t)+nonleading terms, (3.4)
where R, is an eigenvector of the crossing matrix with
eigenvalue 1, and W is the leading Veneziano term.

The matrix R, must satisfy a number of properties
which restrict it fairly severely. It must be decom-
posable into a sum of factors as follows:

R—Hﬂzlah:Z VuatsV gtz (3-5)
s

where /5 runs over the same multiplets and components
of multiplets as the indices U3, I3, I3, ls associated with the
external particles. Furthermore, ¥ must be symmetric
in the three indices /3, l4, 5. When I3, I, I5 represent
different components of the same multiplet, the sym-
metry follows from SU (3) invariance and Bose statistics
in all interesting cases, but the symmetry is an additional
requirement when /3, ls, and /5 represent different multi-
plets. Finally, ¥V must be an eigenvector of the crossing
matrix with eigenvalue 1. We shall find that these
requirements are too strong to allow any solution, but
we shall be able to solve the problem by adding an
exchange-degenerate trajectory.

Our algebraic problem is in fact identical to the
problem encountered by Capps,* who investigated the
dispersion relation at #=0 and made similar bootstrap
assumptions to ours. Since the reasoning will be crucial
in the following sections, we shall rederive his result.
We shall first explain how a solution may be found, and
shall then discuss its uniqueness.

The solution will be based on a mathematical quark
model. To each meson we associate a quark index and
an antiquark index. Thus, if the quarks form an SU(3)
triplet, the mesons form a nonet, which can be resolved
into an octet and a singlet in the usual way. The indices
are not intended to correspond to real, physical quarks.
Each meson will be represented by a nine-component
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vector f, which possesses the quark and antiquark
indices. We adopt the following convention:

Outgoing particles: The quark index is a superscript
a;, the antiquark index a subscript 8.

Incoming particles: The quark index is a subscript
Bi, the antiquark index a superscript ;.

The f’s associated with the four particles will thus be
written fg,%, i=1, .-+, 4. We obtain SU(3)-invariant
amplitudes by contracting upper and lower indices.

We now examine the following possible forms for the
matrix R:

5‘!1625“2345“41‘335“351 ,

5‘“535&3545“41925“2:31 .

(3.6a)
(3.6b)

Both these forms will be SU(3) invariant, since they
are obtained by contracting upper and lower indices.
They can both be represented in the form (3.5) in
either the s or the # channel. In the s channel of (3.6a),
for instance, one quark index (as,8s) and one antiquark
index (a3,81) are contracted between the incoming and
outgoing states, so that the intermediate-state summa-
tion will again be over a nonet of mesons. Similar
arguments apply to the ¢ channel of (3.6a) and to both
channels of (3.6b). The factors V do not yet satisfy the
symmetry conditions. The crossing matrix interchanges
the particles 2 and 3, and therefore interchanges
(3.6a) and (3.6b). If we take the sum of (3.6a) and
(3.6b), we obtain an eigenfunction of the crossing matrix
with eigenvalue 1. Thus

B1B2B384 — 5‘“625“2645‘” B35 4,51
+6a1ﬁ36a3ﬁ45a4ﬂ25a2 By

R+a1a1a3a4

3.7)

Now let us investigate the factorization of (3.7) in
the form (3.5). It is not difficult to see that

Ri=3% (V+a1¢!sabﬂl52§6V+ﬂsa4aaa5ﬂ‘ﬁ'
as,85
FV —ayagas® P35V _ Byaqay5P4B3)

=R.1+Roa, (3.8a)

where
V s ara0as?P2P5= 3 (80,7200, P90 0y P18, P28 P28,0,P1) . (3.8D)

The vertex function V, is symmetric in the particles 1,
2, and 3. It is, therefore, the appropriate vertex for
three-meson coupling, and the intermediate states in the
summation of the first term of (3.8a) are identical to the
external particles.

The second term of (3.8a) can be interpreted as a
summation over the intermediate-state particles on the
exchange partner of the trajectory under consideration.
It is immediately obvious that the first term of (3.8a)
is symmetric under interchange of the final-state par-
ticles 1 and 2, so that it has D-type octet coupling and
scalar coupling, whereas the second term is antisym-
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metric and has F-type octet coupling. It then follows
from Bose statistics that the two terms couple to inter-
mediate states with even and odd angular momentum
respectively. Alternatively, we may write Eq. (3.4)
with an st and a fu term as follows:

A uxazaaaaﬁl B2B3B4 (S,.') = R+a1aga3a4ﬁl PaBsBall/ (s,,)

+ R aragasas® PP (s,1) . (3.92)

If we decompose the R’s according to (3.8a) and make
use of their symmetry properties under interchange of
the final-state particles, the equation becomes

A(s,)) =Ry A[W(s,)+W (s,4)]
+R+,‘2[LV(S70 - H’(Sﬂ")] )

and we observe that the matrices R; and R, are asso-
ciated with positive- and negative-signature trajec-
tories, respectively.

Our conclusion is thus that we can solve our problem
provided we have a leading trajectory whose lowest
member is identical to the external particle, together
with the exchange partner of the trajectory. Exchange
degeneracy is required in order to satisfy our bootstrap
assumptions.

We now return to examine the uniqueness of the
solution (3.7). If we assume that the external particles,
and therefore the internal particles, have no higher
multiplets than octets, we can easily see that the only
possible SU (3)-invariant forms for R are given by (3.6).
All other possibilities fail to satisfy at least one of our
requirements. It is of course possible to contract the
indices in combinations different from (3.8a) or (3.8b),
but most combinations involve a contraction of more
than two indices between the initial and final states of
either the s channel or the ¢ channel. The intermediate
particles in that channel would then consist of 27’s as
well as octets and singlets. The combinations in which
two indices of the same external particle are con-
tracted do not possess this defect but, if the matrix R
is then represented in the form (3.5), it is found that the
vertex function V is not symmetric in the three particles.

We might try and construct a solution where the
external particles consist of higher multiplets than
octets. One obvious way of constructing such a solution
would be to start with a higher SU(3) multiplet of
quarks. However, if we started with an #-fold multiplet,
we would obtain a solution invariant under SU(n),
whereas one of our assumptions was that the symmetry
group is SU(3). We conjecture that no other solutions
exist, but we have no proof of this fact.

We could have solved our problem by working directly
with the octet-octet crossing matrix given by de Swart.
The matrix has one eigenvector with eigenvalue 1
which involves only singlets and octets, namely,

58pp+98pr+161.
1 J. J. de Swart, Nuovo Cimento 31, 420 (1964).

(3.9b)

(3.10)
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By adding external singlets, we could then satisfy all
our factorization conditions. We have preferred the
direct method, first because it illustrates the connection
with the quark model, and second because it is applic-
able, with modifications, to the case where the quarks
have spin. However, we shall use (3.10) in order to
calculate the ratio between the vertex functions for
various components of the octets and singlets, since the
direct use of (3.8) would be rather cumbersome. The
ratio between the vertices for the different components
of the individual octets is given by the appropriate
SU(3) Clebsch-Gordan coefficient. Equation (3.10)
then implies that one must associate over-all factors of
£/5, 3, and 4 with the vertices (Vsss)p, (Vass)r, and
Vssi. All components of the vertex Vg will be equal to
V2, since all the Clebsch-Gordan coefficients are equal
to 1/4/8. Finally, by considering the crossing relation
between the processes 848 — 141 and 84+1— 841,
we conclude that the vertex V11 is also equal to V2.

We shall now verify the assertion that there is no
suitable eigenvector of the crossing matrix with eigen-
value —1. Since we have observed that the matrices
which fulfill our requirements must be linear combina-
tions of (3.6), the only possibility would be to replace
the + sign in (3.7) by a minus sign. If one did so, one
would obtain a matrix which changes a state sym-
metric in the two particles to a state antisymmetric in
the particles. Such a matrix is not allowed by Bose
statistics and angular-momentum conservation. It
corresponds to the following eigenvector of de Swart’s
matrix:

8pr+8rp.

The result which we have obtained is not particularly
enlightening as regards the spectrum of particles. We
have found that a system with octets necessarily
possesses singlets as well. This is the prediction of the
quark model, but it has also been predicted on the basis
of many other models whose assumptions have some
overlap in physical content with ours. It is of interest to
note that we can obtain a solution to the Veneziano
bootstrap model on this basis, provided we include the
exchange partners of the main trajectories. When we
apply our method to particles with spin we shall obtain
more interesting results, and it is to this problem we now
turn.

(3.11)

4. SOLUTION FOR MESONS WITH SPIN
A. Kinematics and Elementary Solutions

In the present section we shall show that the reason-
ing which we used for the unitary-spin problem may be
modified to treat the problem of ordinary spin. In
order to simplify the writing, we shall begin by treating
ordinary spin in the absence of unitary spin, though the
combination of both spins poses no essentially new
problems.
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We shall work in terms of M -functions rather than
scattering amplitudes, since the M -functions have a
much simpler behavior under crossing.!> We associate
with each particle a quark index and an antiquark index,
which we denote by a; and b;; each index can take the
values 1 and 2. We adopt the same convention with
regard to upper and lower indices as in the previous
section. The indices transform as the undotted indices of
the conventional two-spinor notation.!® Thus, if a lower
index transforms according to a representation (3,0)
of the Lorentz group, the upper index will transform
according to an equivalent representation where all
transformation matrix are replaced by their reciprocals.
This implies that the two types of indices must be
subjected to inverse boosts when converting the
M -function to the scattering amplitude.

We now construct the possible forms of the matrix R.
Lorentz-invariance allows two contractions analogous
to the é-function contractions of the previous section,
namely,

6a,;% (4.1a)
and
Pliaze2t, (4.1b)
where
Pac= Poaac'l' (op)ac ) (4-1C)
pijz p06cb,-— (O‘P)cb,- ) (4'1d)

and p; and p, represent any linear combination of the
momenta. For reasons of printing we have denoted a
dotted index by a bold-face subscript or superscript.
In the expression (4.1b) and subsequent similar expres-
sions, we shall define the momenta with a minus sign
if the subscript refers to an antiquark; the expressions
are then unchanged under crossing. The requirement
that the intermediate trajectories be no more com-
plicated than the initial particles than restricts (4.1)
to the factors

80,

(4.2a)
and

Piasedi®®, (4.2b)

where the subscripts 7 and j on p indicate that the
momentum p,,e, Which carries a subscript relating to the
ith particle, must be the momentum of the ith particle
itself. If a matrix R with any of the more general factors
(4.1) is constructed, intermediate particles with spin
greater than 1 exist in at least one of the two channels,
because it always turns out that more than two spinor
indices are contracted between the initial- and final-
state variables f3* and p,..

We notice that repeated factors of the form of (4.1b)
combine as follows:

Pi,ajchc binjb,-ded k= — szpi,a;cpkcek . (4‘.3)

18 T should like to thank Kuo-Hsiang Wang for pointing out to
me the usefulness of M-functions in this problem.

16 A brief discussion of two-spinor notation will be found in the
paper by H. P, Stapp, Phys. Rev. 125, 2139 (1962).
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Let us attempt to construct a matrix R according to
the models of Sec. 3. We might try the following expres-
sion, which is analogous to (3.6a):

81280y P00, %0001 Ba, 008,11

(4.4)

The amplitude would then factorize as before into
terms with the expected intermediate trajectory and
its exchange partner. Unfortunately the expression
(4.4) is not invariant under reflection and is therefore
unsatisfactory.

Another possibility is the following :

B8 P1,01eP2°02P2, 03t D4 04D 4, 0ig D552 D3 agn 1

+12431 — 13421, (4.5)

Using (4.3), we can again represent the amplitude in a
form similar to (3.8), with the & functions replaced by
the appropriate factors (4.2b). Equation (4.5) is also
not invariant under reflection. The sum of (4.4) and
(4.5) is invariant under reflection, but it no longer
factorized into contributions from the expected trajec-
tory and its exchange partner. If an attempt is made to
express the matrix in the form (3.8), it is found that the
intermediate trajectories become parity doubled.

The conclusion just reached is not surprising. A solu-
tion to our problem gives an amplitude with the correct
analytic properties at all values of s and ¢, including
t=0, and the trajectories therefore have an M quantum
number. Unless M =0, the trajectories must be doubled
in a parity-conserving system. What we have found is
that it is impossible to solve our problem with =0
trajectories alone.

If we allow a doubling of trajectories (in addition to
the exchange doubling), the sum of (4.4) and (4.5) does
provide a solution to our problem. We shall point our
very shortly that it is not an acceptable solution,
however.

B. Doubling of Quark States

To investigate further the solution just obtained, it
is convenient to regard (4.4) and (4.5) as the matrices
R for the scattering of two different types of mesons.
By taking linear combinations of the meson states with
coefficient 1/v2, we obtain a meson of definite parity,
and the R matrix of its scattering amplitude is obtained
by adding (4.4) and (4.5). The mesons which have the
coupling (4.4) are composed of two quarks which form
a representation (3,0) of the Lorentz group. The product
of two such representations gives us the representations
(1,0) and (0,0) which correspond to (axial-) vector
mesons with M=1 and (pseudo-) scalar mesons with
M=0. We shall show below that the value of M
obtained in this way is the correct assignment for the
Toller quantum number of the leading trajectories. In
the coupling (4.5), the operators p,, change the un-
dotted to dotted indices, and the quarks form a repre-
sentation (0,3). The (axial-) vector mesons with this
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coupling thus have M =—1, and mesons with fixed
parity can be obtained by taking the sum and dif-
ference of the states with M ==+1.

Since the p trajectory is known to have M =0, the
scheme we have outlined evidently does not correspond
to nature. Also, it turns out that the scheme fails to
satisfy our assumption 3. In order to obtain vector
mesons with M =0, we must combine the representa-
tions (3,0) and (0,3) of the Lorentz group. We are thus
led to consider a model in which the (3,0) quarks can
combine with themselves, the (0,3) quarks can com-
bine with themselves, and the (3,0) quarks can combine
with the (0,3) quarks. We thereby obtain a further
doubling of trajectories. It will be found, however, that
the total contribution of the repulsive trajectories in
the new scheme is not greater than the contribution of
the single repulsive trajectories in the scheme which we
have just discarded.

The matrix R for the scattering of any four particles
will again be obtained by contracting the indices in the
order 12431, and in the order 13421. Two indices asso-
ciated with a (3,0) quark are contracted by a matrix
such as 68,%, two indices associated with a (0,3)
quark by a matrix such as pi,q.ep2"%?, while an index
associated with a (3,0) quark cannot be contracted with
an index associated with a (0,3) quark.

It is convenient to extend our notation so as to treat
both kinds of quarks symmetrically. The state vectors
Jb;a,% in spin space will have two quark indices a;
and ¢; (or b; and d;) and two antiquark indices b; and
d;. The indices a; and b; specify the spin states as before,
while the indices 4; and d; take the value 1 for a (3,0)
quark and —1 for a (0,3) quark. The coupling will then
be given by the expression

(_ 1)—-(dz+c4—2) /25a1bzacldzaa,b‘aczd“aub35c4d35a3b‘5c3d1
+ (_ 1) (d1t+c3—2) /25alb3501d35a3b45cad«1

X 8a,020,128,5,"150,%.  (4.6)
As before, the boosts applied to the outgoing particles
when converting the M-function to the scattering ampli-
tude will be the inverse of the boosts applied to the
incoming particles. Also, the boosts applied to the
states with ¢ or d equal to 1 will be the inverse of those
applied to the states with ¢ or d equal to — 1. By revers-
ing the boosts in this way, we can replace the factors
P1,aiep2% in (4.5) by & functions, as we have done in
(4.6). The phase factors in front of the two terms of
(4.6) result from our definition of the sign of p in
expressions such as (4.1).

The R matrix (4.6) can be written in a form similar to
(3.8). The intermediate-state summation will be over
all indices @, b, ¢, and d. Thus, in addition to summing
over all spin states of the (axial-) vector and (pseudo-)
scalar Reggeons and their exchange partners, we have to
sum over the four Reggeons obtained by allowing the
two indices ¢ and d to take their two values. The vertex
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functions will be given by the equations
Vialcxﬂzczascsbldlbzdzbﬁds
=%[(_ 1) (dz—l)/25a1525cldzgazbsgcadsaasbxa%dl
o4 (—1) @=D125, bsg, dsg, bag, d25, 015,917, (4.7)

We now convert the M-function vertex (4.7) into a
scattering-amplitude vertex and, at the same time, we
shall change our indices @ and b into helicity subscripts.
The indices ¢ and d remain unchanged, but we shall
write them all as subscripts. Each of the quarks
associated with the incoming particles 1 and 2 will be
subjected to a boost e=M g—cut e~ or ¢4t where

coshé=s'2/2u. (4.8)

Also, contraction of helicity indices between the two
outgoing particles one and two gives rise to an extra
factor —i(—1)*. We shall define the helicity of the
intermediate Reggeon S to be its spin in the direction of
motion of particle one, so that contractions between
particles two and five will involve a Kronecker delta
8- Thus??

= — 17— (ci\+d Ae+-d.
Vﬂ:qucxdl.)\zuzqdz.Xsns%ds— lie (cih+diprtcadetdaug) §

X [(_ 1)d2“25)\1#2601d25)\2 -”“56c2d56)\ﬁﬂl6¢5d1
+ (—‘ 1)d”‘la)‘ms&cldsa—)\srﬂzacﬁdza)\zmavzdl] ) (49)

C. Characteristics of the Trajectories

Let us now discuss more fully the four sets of
Reggeons obtained by letting the subscripts ¢ and d
take the values 1 and —1. As we remarked in the intro-
duction, we shall characterize all trajectories by means
of their lowest particle. We shall only concern ourselves
with those trajectories which choose sense at the mass
r, where the leading trajectory in the Veneziano func-
tion W passes through /=0. The spin, parity, and charge
conjugation of the trajectory will, therefore, be given
completely by its spin degrees of freedom. The spin and
orbital angular momentum of the vector trajectories
will combine with one another to give two subsidiary
trajectories in addition to the leading trajectory, but
the subsidiary trajectories choose nonsense at s=p?
and do not interest us as the moment.

We first notice that the two state vectors 8.10a1
+06c,—104,—1 and 6.184,—1-08.,—1841 have negative intrinsic
parity, while the state vectors 8:1841—08¢,—104,—1 and
0:104,—1—0.,—10a1 have positive intrinsic parity. The
positive-parity combinations can be further separated
on the basis of charge conjugation, since the state
vectors 5;15,11—5,_-._154,_1 and 5¢13d,_1—'5¢__15,11 have
C=(—1)7 and — (—1)7, respectively.

We are more interested in the two negative-parity
combinations, which both have C= (—1)7and cannot be
separated from one another by selection rules. If the

17 The vertex (4.9) is still regarded as a vertex in the spin degrees
of freedom alone. We therefore do not include the factor

L@+1)/@j+DT"
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trajectories were really degenerate, we could define the
individual Reggeons by taking any two orthogonal linear
combinations of the wvectors 6c1041+08¢—10a,—1 and
8c104,—110¢,—1041. We do not expect the trajectories to
be exactly degenerate, however, and we therefore do
have to decide which linear contributions correspond to
the individual Reggeons. For this purpose we shall make
use of the assumption 3. There are two vector Reggeon
states fau®(8c10a1+0¢,~104,—1) and fan®(8e1da,—1+8c,—18a1),
and two pseudoscalar Reggeon states f,*(8c1d41
+08¢,-104,—1) and fr,*(8c184,—1+8c,—18a1), where f* and
f* are the usual nonrelativistic state vectors associated
with vector and scalar states. We wish to take orthog-
onal linear combinations corresponding to the trajec-
tories ¥ and II on which the p and 7 nonets lie, and two
further trajectories V' and IT'.

We can obtain some restrictions on the basis of the
M-values. The state vectors [y’ (8c10a12=0¢,—102,—1)
are obtained by combining two (3,0) representations or
two (0,3) representations. The resultant representations
will be (1,0) or (0,1) and (0,0), which correspond to
(axial) vectors with | M|=1 and (pseudo) scalars with
M=0. The state vectors fy,*® (8,104,—17=8¢,—1041) are
obtained by combining a (3,0) representation with a
(0,3) representation, and will consist of a vector and
axial vector with M =0 and their daughters, a scalar
and pseudoscalar with M=0.

If we anticipate the result that our M-value corre-
sponds to the Toller quantum numbers M, we conclude
that it is a good quantum number when s, the energy of
the Reggeon, is zero. It will not be a good quantum
number at any other value of s. The linear combinations
which we require will thus be the vectors f,?¢ (8:10a1
+5c,_18.1,._1) and f)‘"v(a) (5;15,1,_1‘,-5;,_1541) themselves at
s=0. Furthermore, the V trajectory should have M=0
at s=0, and the I should not be the daughter of another
trajectory. Thus, at s=0, the state vectors of the
V and II will be f)“v(aclad'_1+5c‘_15d1) and f;\“s(acls,u
~+8¢,—104,—1). We may accordingly write

S awea=272L(s/u)+N2 T2 o0
XL(sY%/w) (6c18a1+0¢,—10a,—1)
Ay (8c16d,—1+8¢,—1841) ],

fVI)\y,cd — 2—-1/2[(s/”z)_l_)\vzj——l/?f)\“v
X[Av(8c1dartdc,—10a,—1) — (s1/2/u)
X (8¢184,—1+8c,—10a1) ],

SMwea=2712L(s/u®) A2 T2 fru®
X[ (s*/u) (8c18a,~10¢,~18a1)
A (8e1bart8e,—16a,-1) ],

fnl)\u,cd = 2_”2[ (S/p."’) +>\I12]_1’2f)\,."
X[Aa(dcida,—148¢,—1841) — (s1/2/u)
X (8erdart8e,-10a,-1)],

(4.10a)

(4.10b)

(4.10c)

(4.10d)

where Ay and A\q are constants to be determined below.
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We employ factors of s'/2 rather than s in (4.10), since
it is known that the vertices associated with the Toller
quantum numbers in question differ by factors of s'/2.
We shall see that the definitions (4.10) do lead to vertex
functions with the correct analytic properties at s=0.

The singularity in the expressions on the right of
(4.10) at s= —M\?u? does not represent a singularity of the
amplitude, since, in our model, it corresponds to an
arbitrary definition of the individual vector Reggeons.
When the degeneracy between the trajectories is broken,
the complete amplitude will remain analytic at
s=—MA%u? provided that the trajectories intersect at this
point. The individual vertex functions are then allowed
to have singularities of the form [ (s/u?)+N]12. We
could have multiplied the two terms in the expressions
on the right of (4.10) by polynomials in s. The trajec-
tories would then have intersected in more than one
point.

To find the vertex function v between our external
particles and internal trajectories, we must sandwich
the expression (4.9) between the appropriate vectors
Iainrcidsy fhgug,eadsy a0A fagus esase The external particles
1 and 2 will be vectors and pseudoscalars, and the state
vectors f¥ and fT must be taken at the value s=pu?
corresponding to the un-Reggeized particle. For the
internal particle 5 we are interested in any Reggeon at
any value of s. By using this prescription it is not
difficult to see that the choice \y=Ag=1 in (4.10) gives
us the SU(6)w vertex.!® For, if the internal vertex fs
is left arbitrary, while f; and f, are expressed by
(4.10c) with s=u? Ay=Ag=1, we obtain the following
vertex:

oV, VDX = %if)\uuv (a)flzuav (s)fx)\sns.%‘ia
X[(—=1)#2 sinh (2ust)e~ (csks—dsus)fghhg)‘z 5051
+ (—1)# sinh (2u1£)e N8y, By 1 ugd_rg,us ]

X (ag1-8a5-1) BesttH0es1).  (4.11)

The superscript X refers to any of the Reggeons. We
may compare (4.11) with the nonrelativistic vertex:

=1
v (8),v(8),v(s) = —fthuxv(s)sznzv(a)fksusv(S)
X [(_ 1)“23)\1,‘25)‘2,_"55)\5“1

+(— 1)“67\2#167\11458‘)\5-#2] . (412)
In its dependence on the helicity subscripts for the
particles one and two, the expression on the right of
(4.11) differs from that on the right of (4.12) only by the
factor sinh(2u£), which may be written —i(—1)* sinh¢.
The extra factor (—1)* is just the extra factor required
by SU(6).

If one further uses (4.10a) and (4.10c) for fsin (4.11),

18 Strictly speaking, we should speak of the SU(2)w vertex
rather than the SU(6)w vertex, since we have no unitary spin in
the problem at this point. However, we feel that it will be less
confusing to the reader if we use the usual terminology.
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and sets \y=Ap=1, s=u?, one obtains the result
oV (D, VD,V AD ()

=%f)qmv(s)f)\zuzv(a)fksﬂsv ) cosh (As£) cosh (s8)
X [ ( - 1)"2 sinh (2#25)5)‘1»5)\2 —nsOhsu1
~+(—1)#t sinh (Zﬂlg)a)\zma)\ws‘s——)\smz]
=3 (3V3/8) fau®® faana® @ frus®®
X (5>\1»25)\2.—%5)\5#1+5>\2M15Mu56—)\5u2) )

since cosh{=%1 when s=u?. Again, the expression
(4.13) is just the SU(6)w vertex.

We can now collect together our results for the state
vectors of the different Reggeons. We shall use the
symbols 4 and S’ to denote the axial vector and scalar
trajectories with C= —(—1)% and B and S to denote
the axial-vector and scalar trajectories with C= (—1)7
Then

T rwea=2"12{(s/u?)+1}712 0
XL (sY2/u) (Bc1dar+8c,—184,—1)
+ (5c15d,—1+6c.—15d1)] s (4.143)

F7 ea=2712{ (s/w®)+ 1} 72 f5,°[ (8erdar+8c,—184,1)
-_ (81/2/;.(.) (5016d,_1+5c,_16d1>] N (4 14b)

Txuca=2712{(s/u®)+1} 712 fru®
X[ (sY2/u) (8c18a,~1+8c,—10a1)
+ (Bcladl+ac,—15d,—1)] ) (4 14C)

I\ ea =272 (5/u2) +13 72 5[ (Berda, 1o, 18a1)
— ("2/u) Berdart0c,18a,-1)], (4.14d)

Py am (VD o O G a—esbir), (4140)
FBSN i ca= (1/V2) /1,2 (Berda1—Be,—10a,-1) - (4.14f)

Our use of the symbols 4 and B is not meant to imply
that the trajectories correspond to the physical 4, and
B. They do have the same quantum numbers, but our
present A, and B “particles” are the /=0 members of a
repulsive trajectory, whereas the physical 4; and B
are the /=1 members of an attractive trajectory.

It is now a straightforward matter to substitute
(4.14) in (4.11) and thereby to obtain the vertex func-
tions for two external V or II particles and any Reggeon.
Since the vertex (4.11) differs from the nonrelativistic
vertex (4.12) only by the factors (—1)#2 or (—1)#t and
by factors depending on A\; and us, it is most convenient
to express the result in terms of the nonrelativistic
vertex. One can take into account the factor (—1)#2
or (—1)# by making the usual SU(6)w transformation:

(4.13)

Vie Vl, (4158.)
Voo 11, (4.15b)
Voo — V_1 y (415C)

where the subscript denotes the helicity. On examining
(4.14) and (4.11), we find that we have to make the
transformation (4.15) for the initial particles 1 and 2,
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and for the intermediate Reggeon 5 associated with the
trajectories V, Il and V’, II'. No transformation is
necessary for the trajectories 4,5, B, and S. In addition
we obtain the following factors, which depends only on
the intermediate Reggeon:

Vior IT: V2[(s/w?)+1]17"2[(s'*/u) = cosh] sinh¢,
Vi or II': V2[(s/p2)+1T2[1— (s"2/u) cosh¢] sinh¢,
Vor V2[(s/p*)+1]72[(s'?/n) coshi+1] sinhé,
Vo't V2[(s/u?)+1]7"[coshé— (s'2/u) ] sinh¢,
Ai: iV2sinh?, AyorS’: 0,

B;: 0, Boor S : V2 sinh?t.  (4.16)

The factors (4.16) must be applied after the transforma-
tion (4.15).

The phase factors 7 in front of two of the expressions
(4.16) require explanation, since they do not arise by
combining (4.14) with (4.11). If we had simply combined
these two equations, we would have obtained a vertex
function which is not invariant under time reversal,
since outgoing and incoming quarks require inverse
boosts. One could work with such a vertex if one wished,
and the theory as a whole would remain invariant
under time reversal. Nevertheless, it is more convenient
to work with vertex functions which are invariant under
time reversal. Since those expressions in (4.16) which
are odd in £ are also odd under time reversal, we can
remove the apparent noninvariance by multiplying all
such odd vertices by %; the incoming vertices would be
multiplied by —i. In addition, we have multiplied all
the expressions quoted in (4.16) by a factor 7. Such an
operation is permissible, as it merely alters the sign of
all scattering amplitudes and will not affect the validity
of the crossing relation. We have chosen to apply the
extra factor ¢ in order that the V and II trajectories be
attractive, the 4, B, and S trajectories repulsive.

The nonrelativistic vertex (4.12) can be treated in
the same way as the corresponding SU (3) vertex, or it
can very easily be treated directly. If the coefficients of
v** are represented by the appropriate Clebsch-Gordan
coefficients it turns out that the components of the
vertex v*°%, as well as the vertex v°*5, will be equal to
1/¥2. In addition, one must apply an extra factor
[(24+1)/(2j41)]2 to the vertices v*** and v***. In
this case the factor will be {[2a(s)—1]/[2a(s)+ 1]}~
All the vertices must finally be multiplied by the orbital
vertex in the Veneziano formula. At this point, and only
at this point, we must make use of the full content of
our assumption that the nonleading terms are
unimportant.

D. Toller Quantum Number

It remains to justify the assertion that our Lorentz-
group quantum number M is identical to the Toller
quantum number of the leading trajectory at s=0. We
begin with the simplified case in which the trajectories
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of the Veneziano function W pass through a=0 at
s=0, so that there is no orbital angular momentum.
We shall work on the basis of the treatment of Freeman
and Wang.?

Let us examine the first term of (4.9) for particular
values of the ¢’s and d’s where the Kronecker deltas do
not vanish, and let usisolate the term where the particles
1 and 2 have channel spin equal to S, while particle
5 has angular momentum J and helicity ». The two
quarks of helicity \; and u, have already been combined
into a spinless particle and may be ingored. To obtain
the term in question we have to multiply by the Clebsch-
Gordan coefhicients C(3,3,5,u1,\2) and C(3,3,7,\s,u5) by
the Kronecker delta 8,14, and by the phase factor
(—1)*2. The last factor is necessary in order to take
into account the Freedman-Wang definition of the
channel spin. We then have to sum over the helicities.
The term is thus equal to

%i Z C(%,%,S,}\5, V_AS)C(%)%PI;)‘-’); V—')\S)
A5

Xei[cs)\s—db(v—)\s)—2(v—)~5)]1r/2’ (417)
since §= —ir/2 when s=0. If ¢; and d; are both equal
to 1, the expression (4.18) reduces to e®*/25;5, which
is the same as the Freedman-Wang function
dss,*Y 7 (x/2). If on the other hand ;= —1 and ds=1,
the expression (4.18) becomes dsgs,* @9 (x/2). In either
case our result is equal to the Freedman-Wang vertex
function which corresponds to the Toller quantum
numbers we have quoted.

We can easily extend our results to the case where the
orbital trajectories do not pass through a=0 at s=0.
The above argument still applies to the spin degrees of
freedom. We then have to combine the representations
(1,0), (0,1), (0,0), or (%,3) with the orbital representa-
tion (//2,l/2). The M-value of the leading trajectory
remains unchanged by the combination, and our
assertion is proved.

The value of .S, the Freedman-Wang channel spin,
can easily be found for all our trajectories. Combining
the results with those already found for M, we obtain
the following assignments:

V:M=0,S5=0;

A: M=0,S=1,»=0; II': M=0,S=1,n=1;

V' and B: M=1;

II: M=0,S=1;

S: M=0,5=0.
Apart from the trajectory II’, which is the daughter of
the 4, all our trajectories have the daughter number #
equal to zero. Note that the trajectory S’, which would

have been the daughter of the V, has a residue which
vanishes identically.

¥ D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560 (1967).

STANLEY MANDELSTAM

184

5. ORDINARY SPIN AND UNITARY SPIN

The dynamics of the system with unitary spin and
ordinary spin is no more complicated than the dynamics
of the system with ordinary spin alone. We can repeat
the reasoning of the previous section line for line, with
the difference that the indices ¢ and b, or A and y, run
over the six states of the quark instead of over the two
spin states.

Our trajectories will now become nonets in unitary
space. The prescription for finding the vertex functions
will again be to use the nonrelativistic vertex, make the
transformation (4.15), and apply the factors (4.16).
The nonrelativistic vertex will have the form (4.12),
with the indices N and p running over all six values. It
is thus an SU(6) vertex. All our trajectories except the
(pseudo-) scalar SU(3) singlets are to be regarded as
parts of 35-dimensional representations of SU (3), while
the (pseudo-) scalar SU(3) singlets will be SU(6)
singlets.

Within the 35-dimensional representation, we can
determine the ratio between the vertices associated with
the different spin and SU(3) multiplets by using the
SU(6) Clebsch-Gordan coefficients.?? We can then
determine the ratios between the different components
of the spin or SU(3) multiplets by using the Clebsch-
Gordan coefficients for SU(2) and SU(3). Correspond-
ing to Eq. (3.10), the eigenvector of the 35X 35 crossing
matrix is

16 35pp+18 3575+35 1. (5.1)

Thus, if over-all factors of 4 and 3V2 are associated with
the vertices (V35,35,35)p and (V 35,35,35) , the components
of the vertex Vs 35,1, as well as the vertex Vyqy, will
be equal to unity. The vertices associated with inter-
mediate vector trajectories will also have a factor
{[2a(s)—1]/[2a(s)+171}'2, and all vertices will be
multiplied by the orbital Veneziano vertex.

It is important to notice that the transformation
(4.15) must be made after working out the nonrela-
tivistic vertex, but before applying the factors (4.16).
These factors will of course modify the nonrelativistic
SU(6) predictions, except at s=pu?. The transformation
(4.15) indicates that the vertex function at s=2 is
given by the predictions of SU(6)w.

As in Sec. 3, the 35p and the singlet representations
are to be combined with trajectories of even orbital
signature, the 35 with trajectories of odd orbital
signature. The intrinsic spin will reverse the signature of
the vector and axial-vector trajectories.

As in the model without unitary spin, the particles
of the system will lie on the V and II trajectories of
both signature. The 35p and singlet trajectories have
their lowest particles at the point where the leading
orbital Veneziano trajectory passes through /=0, the

35 at the point where the leading orbital trajectory

% C. L. Cook and G. Murtaza, Nuovo Cimento 39, 531 (1965).
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FiG. 2. Factorization
of the eight-point Venez-
iano amplitude.

(a)

passes through /= 1. The orbital angular momentum in
our model corresponds to that of the nonrelativistic
quark model.

6. EXTERNAL MESONS WITH ANY SPIN

We now wish to combine our model with the
Bardakci-Halpern model® in order to obtain a consistent
bootstrap scheme where any particle on the leading
trajectory may also play the role of an external particle.
Bardakci and Halpern propose to take the higher
members of a trajectory as external particles by ex-
amining the eight-point amplitude. They then isolate
the four-particle pole term shown in Fig. 2(a). From
this amplitude one can isolate further pole terms, as in
Fig. 2(b) and 2(c). If all the poles are on leading trajec-
tories, Bardakci and Halpern point out that the internal
vertices are symmetric in their three particles. It
follows that the pole term shown in Fig. 2(a) represents
a consistent solution of the two-to-two bootstrap
problem, where any particle on the leading internal
trajectory may be an external particle.

It is now evident that one may combine the two
models by assigning quarklike spin and unitary-spin
indices to the external particles of Fig. 2. To determine
the manner in which the indices are combined, we recall
the fact that the contractions in Eq. (3.7) are in the
order 12431 and 13421. The particular R matrix (3.7)
is to be used in conjunction with the st Veneziano term
and, if the box diagram for that term is drawn as a
planar diagram, the order of the external particles is
again 12431 and 13421. Thus, if a diagram such as
Fig. 3(a) is drawn with no lines crossed, the individual
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(b) (c)

lines should simultaneously represent the particles in
the box diagram and the §-function contraction of the
quark indices.

Such rules can easily be generalized to the eight-point
diagram. The external particles of Fig. 3(b) and (c)
are to be drawn in the order corresponding to the multi-
particle Veneziano term under consideration.? The
individual lines must also represent the §-function
contractions of the quark indices. No lines are allowed
to cross. Each multiparticle Veneziano diagram gives
rise to two terms, where the lines go round in a clockwise
or an anticlockwise direction, and the sum of all dia-
grams is to be taken.

A graphical representation similar to Fig. 2 has been
used by Harari® to treat the unitary-spin problem in the
quark model.

The four-point amplitude is obtained by projecting
out the pole term as before. If the four poles all corre-
spond to the lowest members of the trajectory, the
projection of the orbital Veneziano terms gives us our
original four-point amplitude. Thus, when the spin and
unitary-spin factors are included, we obtain precisely
the amplitudes calculated in Secs. 3-5.

As in the simpler bootstrap problem, the multi-
particle Veneziano amplitude is not unique. We can add
nonleading terms whose coefficients cannot be deter-
mined unless we bootstrap the lower trajectories. Again
our philosophy will be to neglect such terms in the first
approximation, though results which depend sensitively
on their magnitude should not be regarded as accurate.

Diagrams such as Figs. 2 and 3 provide a pictorial
representation of the role of quarks in the Veneziano
bootstrap model. A meson can be regarded as composed

Fic. 3. Contrac-
tion of quark indices
in scattering ampli-

tudes.

N/
7\

<

(c)

o |



1638

of two quarks which have space, spin and unitary-spin
degrees of freedom, and the meson scattering amplitudes
may be constructed from the quark scattering ampli-
tudes. Nevertheless, the quarks need not exist as real
particles.

7. CONCLUDING REMARKS

The trajectories discussed in the previous two sections
do have the properties which were outlined in the intro-
duction and in Sec. 2. When they pass through /=0
there will be a single multiplet of 36 particles which we
identify with the p and = nonets. For higher values of /
the spin and orbital angular momentum of the vector
Reggeon can combine to produce three values of j,
and the number of multiplets will be correspondingly
increased. The nonets associated with the II and the
three V trajectories at I=1 are those which contain the
B, A,, A1, and 7y particles.

The positive-parity trajectories 4, B, and S are
repulsive, as may be seen from the phase factors in
(4.16). No particles are associated with these trajec-
tories. The attractive trajectories with the physical 4,
B, and 7y particles have the same quantum numbers
as the leading repulsive trajectories, but they are one
unit lower, and the particles in question are /=1 quark-
model states.

The trajectories V' and II’ are attractive. Examina-
tion of (4.16) and (4.8) shows that the vertex functions
for the V'’ and II’ trajectories are } as large as those for
the V and II trajectories at s=pu? so that the residues
will be § as large. We have already treated the inter-
pretation of the trajectories in Secs. 1 and 2. Any par-
ticles on the trajectories would duplicate the quantum
numbers of those on the V and II trajectories, though
the trajectories themselves have different values of M.
The temptation to associate one member of the 4,
doublet with the V'’ trajectory should perhaps be
resisted, as one would expect some splitting between
the V and V".

The spectrum of particles in our theory corresponds
to representations of SU(6) or, more accurately, of
SU(6)X0(3). The lowest multiplet is a degenerate
35+1. The spectrum of trajectories corresponds to
representations of SU(12)XO0(3), and the leading
trajectories form a degenerate 143+1. As long as we
are only classifying the spectrum, we need not dis-
tinguish between SU(12) and SU(6,6). In view of our
treatment of the repulsive trajectories, SU(12) or
SU(6,6) is in no sense a symmetry of the system. The
vertex functions are those predicted by the lower sym-
metry SU(6)w, but, since SU(6)w has no meaning
except for collinear processes, we cannot say that
SU(6)w is a symmetry of the system either.

In Eq. (4.16) we arbitrarily multiplied the positive-
parity vertex functions by the phase factor 7, whereas
we could equally well have applied the factor 7 to the
negative-parity vertex functions. The axial-vector and
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scalar trajectories would then have been attractive, the
vector and pseudoscalar trajectories repulsive. One
can repeat our calculations in such a model, but the
positive-parity wave functions now have to be associated
with the external particles. If one calculates the vertex
functions at s= 2, one finds that the vertices associated
with the negative-parity intermediate particles are
typically V3 times as large as those associated with the
positive-parity intermediate particles. The factor V3
comes from the ratio sinh¢/coshé. Thus, the residues
associated with the repulsive trajectories are three
times as large as those associated with the attractive
trajectories, whereas in our model they are % as large.
For reasons explained in Sec. 2, our model is thus to be
preferred.

The choice of Ag and Ay equal to 1, where Ag and Ay
are the parameters in Eq. (4.10), has the effect that
none of our repulsive residues dominates over the
attractive residues. This is not generally true for all
values of X\. To take an example, we may examine the
scheme to which we referred briefly in Sec. 4, where the
nonrelativistic quark-model states are parity-doubled
but where there is no further doubling. That model is
obtained by taking Ay=0, A\g= in (4.10). We then
find that the scattering of the pseudoscalar particles
takes place entirely through the repulsive trajectories.
The net effect of the repulsive trajectories and the V'’
and II’ trajectories relative to that of the V and II
trajectories is not less than in our model, in spite of the
extra doubling of trajectories which we have introduced.
We have not examined the complete range of Ay and
A, but we suspect that the two parameters must be
roughly equal to 1 if the repulsive trajectories are not
to dominate in any subchannel.

The main results of our model are of course those con-
cerning the qualitative nature of the spectrum of
mesons and trajectories. Another result is that all
coupling constants involving three mesons are given in
terms of one overall constant. The ratios between the
vertex functions are those given by SU(6)w, and they
have been discussed in the papers dealing with that
symmetry.” Most of the experimental predictions of
SU(6)w involve the baryon as well as the meson
coupling constants, but one prediction which involves
the meson coupling constants alone is the relation

(7.1)

where g.,- and g, are defined as in Ref. 21. If the con-
stant g,.,2 is taken from p decay, the predicted value of
Zupx’ 1s about one-half to three-quarters of that given
by the Gell-Mann—Sharp-Wagner or peripheral models.

One might also attempt to fit high-energy data with
the Regge trajectories suggested by the present model.
Since all residues are predicted in the present paper
and in a paper we hope to write on the baryon system,

Lupr= (4/mp2)gp”2 ’

2 See, for instance, B. Sakita and K. C. Wali, Phys. Rev. 139,
B1355 (1965).
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the fits could in principle be made without introducing
any new parameters. In the real world one would expect
some breaking of the degeneracy between the trajec-
tories and, since the predictions depend sensitively on
the positions of the trajectories, it may be necessary to
take the o’s as phenomenological parameters. It would
probably not make much difference whether one ob-
tained the dependence of the Regge residues on ¢ from
the present paper or simply used a function with the
correct singularities, and whatever difference there is
may depend on our assumption regarding non-leading
terms. Our model also predicts the ratio between the
residues for different trajectories, however.

High-energy photoproduction experiments provide
some evidence for two of our extra trajectories. If it is
assumed that the presently available energies are
asymptotic, and that the amplitude is dominated by
Regge poles rather than Regge cuts, the experiments
lead to the unambiguous result that a pair of trajec-
tories forming an M =1 conspiracy pass through (=0
near a=0. No such trajectories are predicted by the
nonrelativistic quark model, but our V’-B pair has the
necessary properties. The trajectories would have to
be displaced about half a unit below the p trajectory.
Such a displacement is not unreasonable in view of the
observed splittings of SU(6) multiplets, and, in fact,
the trajectory would be displaced by roughly the same
amount as the .

The SU(6) results of our theory must of course be
broken in higher approximations. An interesting ques-
tion is whether SU(6) properties will continue to exist
as long as we use the narrow-resonance approximation,
or whether the symmetry will break down when a
sufficiently large number of trajectories is included.
Once we go beyond the narrow-resonance approxima-
tion we certainly cannot have SU(6) symmetry.

The role of the pion as a Goldstone boson is not
manifest in our model, and cannot be exhibited in any
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SU(6)-invariant model, owing to the contradiction
between the two requirements m,=m, and m,=0.

One can treat the baryon system by methods very
similar to those of the present paper. The lowest
particles on the leading trajectory form a 56 representa-
tion of SU(6), whereas the trajectories form a 364
representation of SU(12). The exchange partner has
particles which form a 70 representation of SU(6), and
the trajectories form a 572 representation of SU(12).
With an assumption similar to assumption 3 of the
present paper, the vertex functions are those given by
SU(6)w, and all MMM and BBM coupling constants
are determined to within a scale factor. The intercept
of the baryon trajectories cannot be determined except
by applying the generalized Veneziano supplementary
condition. It is hoped to present the model in a later
paper.

Note added in proof: K. Bardakci and the present
author have shown that the factorization properties of
the multi-particle Veneziano amplitude can be ex-
tended to nonleading Regge trajectories. The de-
generacy is greater if we adopt a Veneziano amplitude
with nonleading terms. We may therefore drop our
assumption regarding nonleading terms and, instead,
we ask for that solution with the minimum number of
lower trajectories. Our solution will be subject to the
usual ambiguity regarding the spin and multiplicity
of quarks, but otherwise the solution we have given is
exact (apart from the fundamental approximation of
narrow resonances) and unique.
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