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Use of Nonsignatured Partial-Wave Amplitudes in Regge-Pole Theory~
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It is shown that a Froissart-Gribov-type partial-wave amplitude without signature can be defined for
both two-body and multiparticle processes. Such an amplitude permits a Sommerfeld-Watson transforma-
tion, and its poles govern asymptotic behavior in the usual way, although unitarity properties of the am-
plitude are complicated. The relation to Toiler amplitudes is discussed.

I. IHTRODUCTIOH

ERE, we show how to dedne a Froissart-Gribov-
~ - ~ ~ type partial-wave amplitude that may be con-
tinued into the complex / plane without introducing
signature. The crucial point of our argument is the
observation that while nonsignatured partial-wave
amplitudes do not in general satisfy Carlson's theorem,
they can nonetheless be used in a Sommerfeld-Watson
transform with their poles controlling the asymptotic
behavior.

For the sake of simplicity and so that the basic idea
of the method will be clear, we condiser the example of
elastic scattering of equal-mass, spinless particles. We
shall also explicitly indicate how the results may be
generalized to multiparticle amplitudes, because it is
desirable to have a definition of the analytically con-
tinued partial-wave amplitude for application (e.g., in
the multiperipheral model of production processes),
where details of the cut structure of the amplitude are
unknown. '

Speci6cally, we examine the region of convergence in
the z=cose plane of the background integral which
appears in the Sommerfeld-Watson transform of the
scattering amplitude A (s,z) =A (z). For this purpose it
is necessary to know the asymptotic behavior of the
partial-wave amplitude in the right-half complex I plane,
including the case in which Irrd becomes large in either
direction while Rel remains fixed. We 6nd that the
partial-wave amplitude without signature u(l) is
Carlsonian' only when the left-hand side singularities
of A(z) are displaced, however slightly, from the real
axis. Otherwise, the bound a(l)(e ~'~, Rel~& const fails.
Nevertheless, it is possible to hand a line in the z plane
that intersects the Lehmann ellipse in which the
Sommerfeld-Watson background integral for the non-
signatured amplitude converges, even if all singularities
are on the real axis so that the partial-wave amplitude
without signature no longer satisfies the conditions of
Carlson's theorem. Singularities in the nonsignatured
partial-wave amplitude therefore determine the aszmp-

*Work supported in part through funds provided by the U. S.
Atomic Energy Commission under Contract No. At (30-1} 2{j98.' J. B. Hartle and C. K. Jones, Phys. Rev. 184, 1564 (1969}.'E. C. Titchmarsh, Theory of Functions (Oxford University
Press, New York, 1939},2nd ed. , p. 186.

totic behavior of the amplitude in this region of the z

plane in the usual way.
Since the right-hand side of the partial-wave uni-

tarity relation contains, roughly speaking, the square
of the amplitude, its high-L behavior will not, in general,
be such as to admit a Sommerfeld-Watson transforma-
tion. Thus, the unitarity properties of the nonsignatured
amplitudes are, at least, more obscure than for the
signatured amplitudes.

In order to illustrate the method of analysis, we
begin in Sec. II by studying the partial-wave amplitude
and the Sommerfeld-Watson transformation of a func-
tion A (z) with singularities in the finite z plane not on
the real axis. Each singularity determines a hyperbola
with focus at +1 or —1, which passes through the
singularity. The basic result is that the background
integral which arises in the Sommerfeld-Watson
transformation of

A (z) = Q (2l+1)uiPi(z)
l~o

converges to the left of the hyperbola through the left-
most singularity. Sy transforming the partial-wave
expansion of A( —z)=B(z),

B(z) =Q (2lj1)b Pi(iz),
)~Q

(1b)

we find a representation of A (z) which converges to the
right of the hyperbola through the rightmost singularity.

The generalization to the case of an amplitude with
singularities at arbitrarily large z and with singularities
on the real axis is easily made. In particular for a
realistic amplitude with branch points on the entire z
axis excluding the physical region —1~&z~&1, we find
one representation of A (z) that converges for z &~—1 on
the real axis and another representation that converges
for z&~+1 on the real axis.

Having established regions of convergence of the
background integrals of nonsignatured partial-wave
amplitudes, we show in Sec. III how Regge asymptotic
behavior in z appears when the background integral is
displaced to the left. It is interesting to note that the
background integral that converges for z ~&1 on the
real axis is closely related to the Toiler expansion, which
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is usually obtained' by expanding directly in representa-

tions of O(2, 1) in which case s ~&1 throughout the

analysis. Boyce' has derived the O(3) partial-wave ex-

pansion from the Toiler expansion by an inverse Som-

merfeld-Watson transformation, using two different

partial-wave amplitudes that treat right and left z-plane

singularities separately and which, therefore, correspond

to the introduction of signature. VVe state the precise

relation between the Toiler amplitude and the non-

signatured Froissart-Gribov partial-wave amplitude in

Sec. III.
Finally, in Sec. IV we indicate how the analysis out-

lined above is to be generalized to provide a definition

of multiparticle partial-wave amplitudes, whose poles

govern the asymptotic behavior of, for example, pro-
duction a,mplitudes.

z plane

8 plane

-7r/2

, Oi

I

Gg=— ds A (z)Pi(s) =
27rz

ds Qi(s)A (s), (2)

II. PARTIAL-WAVE AMPLITUDE
AT COMPLEX l

The partial-wave amplitude in Eq. (1a) is defined as
usua, l by

04

FIG. 2. Mapping between the z=cos8 plane and the 8 plane
for z on the principal branch of Q&(z). Corresponding paths
are labeled by the same number in both planes. Hyperbolas with
foci at &1 in the z plane map into vertical lines in the g D]ane.
Ellipses with foci at ~1 in the z plane map into horizontal lines
in the 8 plane. Arrows indicate path direction.

we define the analytic continuation of a& by

where C is a simple closed contour which encloses
z=+1 and z= —1 in the positive sense in such a way
that all singularities of A (s) lie outside the contour. We
assume that asymptotically A (s) &s*, so that for Rel) x
the contour C may be deformed into the contour C'

shown in Fig. 1. All singularities of A (s) have been dis-

placed from the real axis, and we can write O'=P; C;.
Note that each C; may enclose several singularities and
that the directions in which they go to infinity are
arbitrary, all directions being equivalent. For Rel&x,

(a x x

a(l) = ds Qi(s)A (s)
27' E

«Q/(s)D'(s) = Z a;(t), (3)

where 2', (z) is the discontinuity across the ith cut
in A(s). Similar expressions delne the analytic con-
tinuation b(l) of bi in terms of 8 (s) =A (—s).

In order to perform the Sommerfeld-%atson trans-
formation on the expansions in Eqs. (1), we need to
know the asymptotic behavior of a(l) and b(l) for large
I,. This is obtained by inserting the asymptotic form of
Qi(s) into Eq. (3).For large'f (~ argll &z)

~
—sX8 ( ~ 1/2

Q/(s)-
V&' k2'sin8)

exp( —/~ inLs+ (z' —1)'/2g}=(z~)'", , (4)
yl/2(z2 1)1/4

C

Fro. 1. Contour C' used to dehne a(l) in Eq. (3). Crosses indicate
the location of singularities of the amplitude A (z).

' M. Toiler, Nuovo Cimento 37, 631 (1965).' J. F. Boyce, J. Math. Phys. 8, 675 (1967).

where z=cos8, X=l+-'„and the positive sign of the
square root is taken when z is real and greater than one.
(The last proviso means that on the principal sheet of
Q/(s), t/i&0, and ~8a~ ~&7r, where R and I denote the
real and imaginary parts of subscripted variables. )

~ Higher Transcendental FNnctkms, edited by A. Krdelyi (Mc-
Graw-Hill Book Co., Neer York, 1953), Vol. 1, p. 132, Eqs. (37),
p. 77, Eq. (16); or p. 157, Eq. (12).
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plane

responding to Eq. (1a), we have the equation

A (z) —Q (2)+1)/2/P/ (z)
0

I ~

I ~

1 2
22 Cg

2z

(2l+1)/2(l) P/ (—z)
dl

sinful

(2t+1)/2; (l)P/ (—z)
dl , (7)

sin+1

f E 7) g th where the contour C& is shown in Fig. 3, and X is the
FIG. 3. Sommerfeld-Watson contour CI for Eq. (7). E isjthe

largest integer less than x, where the scattering aInplitudeA (z) &z largest integer less than Rex. The asymptotic form of
for large z. P1(—z) is'

Thus,

a;(1)-
(2~)1/2

a& e
—A// D .(z)

dz
/11/2 (z2 —1)1/4

dz expL —i (X/28/2 —X181)
(22rX)'"

D;(z)
+&z8/4+&/28rj (5)

(z2 1)1/4

In order to extract the leading X dependence from Kq.
(5), it is useful to consult Fig. 2, which displays the
relation between the 8 plane and the z= cos8 plane. We
find that it is always possible to choose the contour
from z; to ~ in such a way that both Xleg and kgb
decrease monotonically from their values at 8= tI;

=cos 'z;. Along such a contour, the factor exp(X/28r

+X1822) damps the integrand relative to its value at
z= z;. The damping effect increases as

~
X

~

~~ in the
right-half plane including the case Xg ~+~ with Xg

fixed. Therefore, if Xg&Rex+2 so that the integral
converges, the leading X behavior is determined entirely
by the behavior of D;(z) in the neighborhood of z= z;.
In particular, if D, (z) 42 (z—z;) near z=z;, we have
from an examination of Kq. (5) that

P1 (—z) {cosL (8W2r) Xl——,'2r j
OC f(z), Imz(~0. (g)

sinful X'" cosvrX

By substituting the asymptotic forms (6) and (8) into
Kq. (7), we conclude that the contribution to the in-
tegral from the contour at infinity vanishes when ~8r

~

&
~

8 r ~, i.e., inside the I.ehman ellipse, provided the re-
maining background integral converges. (z =cos8 is
the location of that singularity which defines the small-
est ellipse with foci at &1.)

The background integral contours in Eq. (7) run
parallel to the imaginary / axis from /0 —i to 10+i~,
where l0 is real and greater than Rex. The convergence
of these background integrals depends on the relative
values of 8;& and 8& as follows: We find by using Eqs.
(6) and (8) that the integral ov'er a; (//) in Eq. (7) con-
verges in the shaded region of Fig. 4 and on the boun-
dary of the region for n) —1 (except at z=z; when
—1(42; 0). The representation (7) for A(z) therefore
converges to the left of the hyperbola, which passes
through the singularity z; which has the largest ~8;/2~

of aH the singularities of A (z).
By a similar analysis, we can establish the region of

convergence of the background integral obtained by

42;(f)
y3/I2+a

(6)

The asymptotic form (6) holds for ~&~ ~~ in the
right-half X plane, including a direction parallel to the
imaginary axis. We see from (6) that when 42= —1, the
case of a simple pole at z = z;, we just find the asymptotic
behavior to be that of Q;(z,), as it must be for a simple
pole.

We are now in a position to examine the validity of
the Sommerfeld-Watson transformation procedure ap-
plied to the expansion in Eqs. (1). For definiteness we
assume D;(z) ~ (z—z;) near z=z; with 42;) —1. Cor-

FIG. 4. Shaded region to the left of the hyperbola with focus
at +1 that passes through z; is the region of convergence of the
background integral in Eq. (7) associated with the singularity
of A (z) at z=z;. The expression (7) for A(z) thus converges to
the left of the leftmost of the hyperbolas defined by the singulari-
ties of A(z).

' Reference 5, p. 162, Eq. (2). See also E. I. Squires, Complex
Angzdar Momenta and Particle Physics (VV. A. Benjamin, Inc, ,
New York, 1964), p. 5.
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transforming the expansion (1b), where B(s)=A( —s),
and

z plane

1
b(l) =

27l Z

ds Q((s)B(s) .

x x x x

The contours C; look just like those shown in Fig. 1,
except that a singularity of A (s) at s=s; corresponds
to a singularity of B(s) at s= —s,. The leftmost sin-

gularity of B(s) is therefore the rightmost singularity of
A (s). The background integral for B(s) thus converges
to the left of the hyperbola through —sq, where sg,

is the location of the singula, rity of A(s) with the
smallest value of ~Has~. Therefore,

c

FIG. 5. Contour C' used to define a (l) in Eq. {11b).Crosses indicate
the location of singularities of the amplitude A (z).

converges for s on the real axis with s) 1. In Eq. (12a)

1 '0+'" (2l+1)b(l)Pg(s)
A(s) =B(—z) =— dl

2z )g sinvrl

b(l) =
2Ãz

ds Qi(s)A (—s), (12b)

+P (2l+1)aiPg(s) (10)

converges to the right of the hyperbola through sI,
and on the hyperbola for a) —1 (except at s= s~ when
—1(n(0).

The behavior of the background integral correspond-
ing to a realistic amplitude A (s) with singularities ex-
tending to infinity on the real s axis can be obtained as
a limiting case of the preceding analysis. We find that

with C" enclosing the singularities of A (—s).
We note that the branch of the function represented

by Eqs. (11)and (12) is determined by the way in which
the singularities are moved ofI' the real axis and by the
corresponding definitions of C' and C". In particular,
it is not necessary to move all right-hand side singulari-
ties or all left-hand side singularities either all above or
all below the real axis. Rather, each choice corresponds
to a different branch of the function A (s).

III. ASYMPTOTIC BEHAVIOR

A (s) —Q (2l+1)a&Pi(s)
2 0

10+ion

2i

Ke now wish to extract the consequences of the as-
sumption that a(l) and b(l) are meromorphic in the
complex l plane. It is sufficient to examine Eq. (12b),

a(l)Pg( —s) since the analysis is identical for Eq. (11a).The ampli-
dl (2l+1) (11a) tude b(l) has poles of residue y; at l=n, Thus .from

sinful from Eq. (12a), we obtain

converges on the negative s axis with s&~ —1. The 1
partial-wave amplitude in Eq. (11a) is given by A(z) =

2i

b(l)
dl(2l+1) Pi(s)

sinful

a(l) = ds Q, (s)A (s)
27l Z

ds Q((s)Da(s)

OCI

+— ds Q, (s)Dr, (s), (11b)

where the contour C' is defined in Fig. 5, and Dg and
Dr, are right and left discontinuities of A(s). On the
other hand,

A(.)—P (2l+1)a,P, (s)

b(l)
dl (2l+1) — Pg(s) (12a)

sinful

1
A(s) =-

2i

f(l)
dl (2l+1) Pi(s)

tanml

where

(2a,+1)y;P',.(s)
(14)

sine o.i

f(l) = —Lb(l) —b(—l—1)j/2 cossl= f( l 1) . (15)——
Since~

(2ui+ 1)y~P,.(s)—7rQ, (13)
slnmni

where the summation extends only over o.i such that
Reo.,& ——,'. As a result of the symmetry of the in-
tegrand about Rel= ——,',

2z gp

P)(s)/tans. l=s. 'LQ((s) —Q ( g(z)j,
' Reference 5, p. 140, Eq. {8).

(16)
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z plone

Cy

x x x x x x

leading term in the expansion is given by the term in

Eq. (19) from the rightmost Regge pole.
Similarly, we find from Eq. (11a) for z~&—1 that

(2n~+ 1)b'Q-z;-i( —z)
A (z) =Q +background, (20)

cosmPi

Fro. 6. Contour C3 of Eq. (22). When b(I) is expressed as a
c.ontour integral along Cg its relation to the Toiler amplitude
f(I) of Eq. (21) becomes particularly transparent.

we can again invoke the behavior of the integrand under
reAection about Rel= —

2 to obtain

where the sum extends over all poles of a(l) of residue
b, at f=P, , ReP~& 1.. —

Equation (14) is the Toiler expansion' of A(z), pro-
vided A (z) is bounded by z-'" at large z so that the dis-
crete sum is absent (i.e., all Regge poles lie to the left
of Rel= —z). The inversion formula for the Toiler
expansion is'0

A (z) =—. dl(21+1)f(f)Q-i-i(z)

1
f(l) =— dz Pi(z) A (z) .

2
(21)

(2n, +1)y,P,. (z)
(17)

sins-o. ;

which is the appropriate form for moving the back-
ground contour to the left of /= —2. If we now assume
that b(l) has the Mandelstam syinmetry' so that
b(,'e)=b(-',n1—) —for,—n= —3 —5 then f(l) has
only poles of b(l) and of b( f 1).—In—moving the con-
tour of Eq. (17) to the left, we encounter poles of b(l)
of residue y, at l=a; where Rem, & ——,', and poles of
b( l 1) o—f re—sidue —y; at l= —n; 1where Ren;& ———,'.
Thus,

(2n,+1)v,Q,. i(z)
A(z) =Q

cosine;

b(l) =
2' Z

dz Qi(z)A (—z)

27ri
dzLQi(z+i~) Qi(z ir)j—A (—z—), (22)

and, therefore, after evaluating the discontinuity of
Qi(z),"we find that

We can check our results by demonstrating that the
right-hand side of Eq. (21) agrees with the definition
(15) of f(l) By defo. rming the contour C"which appears
in the definition (12a) of b(l), we find (see Fig. 6 for
the definition of the contour C3) that

L2( —n' —1)+1jv'Q-;(z)
+p

cosz (—n, —1)

(2n,+1)y;P,(z)

SlIlvrni b(f) =—sinful
dz Qi(z)A (z)

dl (21+1)f(l)Q i i(z), (18)
1 1

+— dz Pi(z)A (—z). (23)
2 —1

1 b(l) b( / 1)—1——

2 2
dz Pi(z)A (z) . (24)

cosxl

where the j summation extends over poles for which Finally, as a result of Eq. (16),
—L&Ren;& —

~ and —L& —Rex—1. Combining the
coefficients of (2n;+1) for Ren~& ——,

' with the help of
Eq. (16), we then find that

Reas&—I cos7tGi

dl (21+1)f(l)Q i, (z). (19)

(2n;+1) r;Q, (z)
A (z) = If A(z)&z*, then the integral (12a) which defines b(l)

converges for Rel& x. Thus, the integral that appears in
Eqs. (21) and (24) converges for l in the strip

x&Rel& —x—1,

The representation (19) holds for z&~+1 and provides
the desired asymptotic behavior: For s-++oo, the

g S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962); the
extension of Mandelstam symmetry to S-matrix theory is dis-
cussed by S. M. Roy, Phys. Rev. 161, 1575 (1967).

a result which may be obtained directly from the
high-z behavior of Pi(z)

9 Reference 3, Eq. {74).
o Reference 3, Eq. (73).
~ Reference 5, p. 140, Eqs. (11) and {12).
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IV. APPLICATION TO MANY-PARTICLE
AMPLITUDES

In order to carry out the Regge analysis of production
amplitudes, ' it is necessary to have a satisfactory con-
tinuation of the relevant partial-wave amplitude A„,

'

from physical j to arbitrary complex j. In this section
we discuss the analytic continuation A„,(j) of the
partial-wave amplitude and the region of convergence
of the Sommerfeld-%atson transformation applied to
the partial-wave expansion of a multiparticle amplitude
for spinless particles. (It can be noted that formally the
following analysis is very similar to that for helicity
amplitudes for two-particle scattering with spin. )

The expansion of a multiparticle amplitude is given
in Ref. 1:

F(s,a,b, rp,g,z) = P e '&I'~"&&F„„(s,&s,b,z), (25)
P ~V~00

we have
1

A JlV

2 —1

dz F„„(z)h„„&(z). (31)

A„„j=
2~i

dz g„„(z)F„„(z). (32)

The contour C is defined like that of Eq. (2) for the
spinless case and may be deformed into the contour C'
enclosing the singularities of F (z) as in Fig. 1.Thus, we

define the analytic continuation of A „,' by

Since" the discontinuity of g„„&'(z) is i—xh„„'(z) for z

between —1 and +1, and since for integer j—p the
function g„„'(z) is cut from +1 to —1 only, we may
write

where
F„„(z)= g (2j+1)A„„'d„„&(z). (26)

A..(j)= . dzg"'(z)F"(z).
2xz

(33)

Here,
%=max(/p f, fx [).

1

c4
—1

dz F„„(z)d„„&'(z). (27)

In order to define a Froissart-Gribov-tp~e partial-wave
amplitude suitable for continuation to complex j, it is
necessary to exercise some care, since the factors in the
integrand of Eq. (27) may have kinematical singularities
at s= &1 not present in the spinless case. In particular,
it is clear from Kq. (27) and the properties of d„„'(z)"
and F„„(z) may have square-root singularities at
s= &1. We therefore define a kinematical singularity-
free amplitude 5'„„(z)by

F (z)=(1+z)'"+"'"(1—z)'" "'"F (z) (28)

The total c.m. energy squared is s; a and h denote the
internal variables of the initial and 6nal clusters; and
«; and f are the O(3) analogs of certain O(2, 1) "Toiler
variables, " and s= cos8, where 0 is the angle between
"body-axed" axes in the initial and 6nal clusters (see
Ref. 1). In writing Kq. (26), dependence on variables
other than s has been suppressed. For multiscalar-
particle amplitudes, p and v are both integers.

The inverse of Eq. (26) is

1
F"(z)=-

2i i~+M—e

dj (2j+1)

A „„(j)d„„'(—z)
X (34)

sinn (j—«&

In Kqs. (28)—(33) and throughout the rest of this sec-
tion we assume that p&~ ~v~ &~0. Corresponding equa-
tions for other regions of the indices are obtained from
the symmetry relations among the d's and the e's

given in Ref. 12.
Analysis of the background integral of A„.(j) pro-

ceeds in analogy with Secs. II and III for the spinless
case. Throughout this section, however, we assume for
simplicity that we are in a region of the variables such
that F„,(z) &~ (1/z)'&z for large z, then A„„(j) as defined
in Eq. (33) converges for j~& ——,', i.e., the Regge poles
lie to the left of —~. At the end of the analysis one can
continue in the energy of the Regge pole to the region
of interest; Regge poles may then move to the right of
Rej= —2. Alternatively, one could carry out the whole
analysis with Regge poles to the right of ——,', as we did
above for elastic scattering, at the expense of carrying
along a discrete sum, e.g. , in Eqs. (7) and (17).

Following the steps of Sec. II, we find that the back-
ground integral

Defining"

/g S(z)—= (1+z)&b+"&&~(1—z)&~—«&&2d ~(z) (29)

converges for s on the real axis ~&
—1. The region of

convergence may be larger depending on the location
of singularities in z. Similarly, we may expand F„,(—z)—=G„„(z) as follows:

g..'(z) = (1+z) '"'"'"(1—z) '" "'"e''(z)
~ (30)

"The functions d~&(s) and corresponding functions of the
second kind, e„,j{s),are discussed by M. Andrews and J. Gunson,
J. Math. Phys. 5, 1391 (1964).

"W. Drechsler, Nuovo pimento 53, 115 (1968).

G„„(z)= P (2j+1)B„„~d„„~(z),
j=M

(35)

where B„„&and its continuation 'B„„(j)are defined by
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analogy to A„„'and A„„(j)above; namely,

B„„(j)= ds g„„&'(z)F„„(—s),
2%i

1
F"(z) =—.

2i

+ioo+M—q

ioo+M—e

dj (2j+1)

B.—.U)d"'(z)
X (37)

sinn. (j—p)

converges for s on the real axis ~& 1.
The representation (37) is related to the Toiler ex-

pansion for F„„(z)in a way analogous to that discussed
in Sec. III. In order to make the connection with the
Toiler expansion explicit, it is necessary to move the
background integral contour left to Rej= —~. In the
process one encounters singularities of the integrand
in j at integer values of j—p,&0. The contributions of
these so-called nonsense singularities are related to the
discrete representation terms of the Toiler expansion.
Similar singularities in j are encountered when the
contour in Eq. (34) is shifted to the left. The result of
displacing the background contour in Eq. (37) to

] 0——1s

where C" encloses the singularities of F„„(—s). The
background integral

An integral representation for F„„(j)is found by com-

paring the definition (39b) with the integral representa-
tion of B„„(j).The latter is the generalization of
Eq. (23) of Sec. III. We find that

00

f„.(j)=— ds k„.'(s)F„„(s).
2

(40)

Equations (39) and (40) constitute the Toiler expansion
and its inverse for F„„(z).

Ke employ the formula"

d„„'(s) 1
=—(e„„'(z)—(—1) "e„,

'

'(s)j
tanz (j—p) vr

together with the s~Tnmetry properties of the integrand,
to rewrite Eq. (39) as

F„„(s)= — d, (2j+1)f„„(—j—1)e„„~'(z)
2&1 QQQ

where

1 B.—.(j)—(-1)"+"B.—.(-j-1)
f"(j)= -—

2 coss-(j—p)

=(—1)' "f (—j—1) (39b)

1
F„„(z)= ——

2i

B.—.(j)d..'(z)
d, (2j+1)

sins (j—p)
+ Q (2k+1)b„„"d„„"(s). (41)

let —1

+ P (2k+1)b„„"d„„'(z), (38a)

where
1

k

2
dz k„„"{z)F„„(s). (38b)

1
F„„(s)=-

2i

ZOO f"(j)
d, (2j+1)— d„„&'(z)

tanv (j—ii)

We note that although Eq. (38) is valid for p~&
~

v
~

&~0,

both b„„~ and d„„"(z) are zero in this region of indices
when k ~v~ and v&0. Fork —p=integer with 0& k v.
d„„'(s) s ~ ', so there is no confhct between Eq. (38)
and the assumed high-z behavior of F„„(s).

Ke now exploit the symmetry properties of the
integrand, as we did in Sec. III, to rewrite Eq. (38)
in the form

The background integral is now in a form appropriate
for moving the background contour to the left, because
e„, r '(z) s'forlarges. IfB„„(j)—(—1)"+"B„„(—j—1)
vanishes for j—p= s-integer (Mandelstain symmetry),
then the integrand of Eq. (41) has singularities
only from Regge Poles of B„„(j)for j&—s and
from singularities of e„„ i '(z) at "nonsense-nonsense"
points (i.e., for j=k, where —k —1—p is an integer and
0~& —k —1(v. The contributions from the nonsense
singularities exactly cancel the discrete representation
sum leaving only contributions from poles of B„„(j)
of residue p„„'at j=n;. Thus,

(2o'+1)v"*(—1)" "e,. " '(z)
F„„(s)=P

cosv (n, —p)

+background integral (42)

holds for s~&+1 with the rightmost Regge pole provid-

+ Q (2k+] )b Qd Q(z) (39a) ing the leading asymptotic behavior as s + xi . A
k=0 similar expression valid for s~& —1 may be found.


