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High-Energy Contributions to Current-Algebra Sum Rules. II
KASHYAP V. VASAVADA

Department of Physics, University of Connecticut, Storrs, Connecticut 06Z68
(Received 17 February 1969)

A method, discussed in a previous paper, of evaluating the high-energy contributions to current-algebra
sum rules is applied to several well-known sum rules. These include (i) the Adler-Keisberger sum rule for
the ~-~ system, using m-m- phase shifts, (ii) the Cabibbo-Radicati sum rule, (iii) n=X sum rules, and (iv) the
~-+ spin-flip sum rule. In the case of the m-~ Adler-%'eisberger sum rule, a substantial high-energy contribu-
tion is obtained which makes the sum rule inconsistent with a very large width of the 0 meson ()400 MeV)
for yg = 730 MeV. The ~-p sum rules favor a small width for the p (=100-120 MeV) and the A I meson
((100MeV).

I. INTRODUCTION
' 'X a recent paper (hereafter referred to as I)' we dis-
~ - cussed a method of evaluating the high-energy con-
tributions' to some of the current-algebra sum rules.
This method relies on the possibility of assuming a
Regge-like form for the high-energy part of the integrals
and eliminating unknown functions by writing some
finite-energy sum rules for the same amplitudes. %e
applied this procedure to sum rules of the Adler-
tA"eisberger type for the ~-~ and the E-x systems in the
narrow-resonance approximation and to several sum
rules for the pion-photoproduction amplitudes. These
lead to some interesting results. One can, equivalently,
look upon this procedure as a study of consistent solu-
tions of the current-algebra and the finite-energy sum
rules. In the present work, we apply these ideas to (i)
the Adler-Weisberger sum rules for the x-n. system (with
inclusion of a scalar resonance and the continuum), (ii)
the Cabibbo-Radicati sum rule, (iii) a number of sum
rules for the x.-p system, and (iv) some ~-X sum rules.
For the m-x sum rule we find results similar to those in
I. Detailed results for the other sum rules are discussed
in the following sections.

II. ~-~ SUM RULES

A. Adler-Weisberger-Tyye Sum Rule

Let v= 2(s va ') a—nd T~(v, O) be the forward invari-
ant amplitude for scattering of a zero mass ~+ by a
physical x+ meson. Then the Adler-%eisberger type
sum rule for the m-~ system is given by

1mLT (v,O) —T+(v,O)] 4
dv (1)

V2 f 2

where f (experimental)=135 MeV. The Goldberger-
Treiman relation gives f '= 2g~'ts', ~'/g'K'(0), X(0)
being the pionic form factor of the nucleon. The last
relation gives Z(Q) =0.86. However, in addition to the

I K. V. Vasavada, Phys. Rev. 178, 23SO (1969) As i», by
"high-energy contribution" we will mean a contribution from the
energy region above the low-energy resonant or nonresonant
region for which experimental information is available, and not
just the asymptotic region.
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possibility that IC(0) = 1, there are other corrections to
the Goldberger-Treiman relation. %e prefer to use the
experimental value of f obtained from the pion-decay
lifetime.

In terms of the I=0, 1, and 2 total cross sections for
the vr-7r scattering, Eq. (1) becomes

2 c&—~3«( )+~ ( ) —(5, 3)~~(v)j=—. (2)
V 2

In I, we estimated the left-hand side of Eq. (2) in
a narrow-resonance approximation (retaining only the
p- and the f'-meson contributions) and evaluated the
high-energy contributions. Recently, however, some re-
sults from the phase-shift analysis of the pion-produc-
tion data have appeared. ' There are a number of ambi-
guities in the analysis, and the errors are large, but an
s-wave resonance around the p-mass region is strongly
indicated. ' Hence, we have reconsidered this problem
using the S-, I'-, and D- wave phase shifts for all the
isospin states. Instead of directly using various experi-
mental results, we have used phase-shift expressions
obtained by Arnowit t, Friedman, Nath, and Suitor in
their work on the application of hard-pion methods to
the x-~ scattering problem. ' Their results agree with
the experimental results within the experimental errors.
At any rate, for our purpose, we can look upon these
expressions as convenient parametrizations of the data.
Our results will have no bearing on the fact that the ex-
pressions come from a particular theory for the x-m
scattering. Since these expressions are long, we will not
give them here, but will just refer to the equations in
Ref. 3, where the various symbols mentioned below are
defined by the authors.

We use their Eqs. (4.3), (4.4), and (4.5a) for (i) I=0,J=0, (ii) I= 2, J= 0, and (iii) I= 1, J'= 1 phase shifts,
' W. D. Walker, J. Carroll, A. Garfinkel, and B. Y. Oh, Phys.

Rev. Letters 18, 630 (1967); E. Malamud and P. E. Schlein, ibid.
19, 1056 (1967);L. J. Gutay, D. D. Catmory, P. L. Czonka, F.J.
LoeAier, and F. T. Meiere, Phys. Rev. (to be published). On
theoretical grounds, this resonance was predicted by M. M.
Islam and R. Pinon LPhys. Rev. Letters 12, 310 (1964)j; S. H.
Patil I ibid. 13, 261 0964)j; and L. Durand and Y. T. Chiu,
Libid. 14, 329 (196S)' R. Arnowitt, M. M. Friedman, P. Nath, and R. Suitor, Phys.Rev. 175, 1820 (1968).
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CURRENT —ALGEBRA SUM RULES. I I

respectively. Values for the various parameters used
are the following: x=y=s= 1, X"=0.5 (corresponding
to I', = 108 MeV) or X"=0.2 (F,= 127 MeV), m = 730
MeV with X'=X/=075 (F =246 MeV), or m, =930
MeV with X'=XP=0.9 (I',=611 MeV). These phase
shifts are used up to 1 BeV, beyond which they are
taken to be zero (or m). This is the region of validity of
of phase-shift formulas according to Ref. 3. If we con-
tinue to use these above j. BeV, we get large unphysical
phase shifts, especia11y in the case of the I" wave. This
mav be because the Breit-signer form gives too large
a contribution away from the resonance. While consider-
ing the solution corresponding to es = 930 MeV, we use
the S-wave, I=O phase shift up to the 6nal cuto6
(mentioned below) in order to take into account the full
contribution of the scalar-meson resonance. According
to Gutay et a/. ,

' however, the other solution (m. = 730
MeV, F,= 246 MeV) is preferable to this one.

For I=O, I=2 we use the Breit-Wigner form (fo
resonance)'

20m.yf'q"/(q'+m„')
F72, 0

(sf —s)'+Vy'q"/(q'+m ')
(3)

where

Vf'=L(qx'+m ')/qf 'jsfFI q =is m

sg ——mf' =81.5ns '-,

and Ff= 140 MeV.
Other phase shifts are taken to be zero.
Following Adler' we also rewrite the integrals in Eq.

(2) with the threshold-correction factors for zero-mass
pions and obtain

2 dv (s—m„')'
(3~' "—(5,'3)~")

v ~-o.2 s(s—4m. ')

(s—m ')' Ls(s —4m, ')7'" 4
+ f7 t (4)

s(s —4m. ') (s —m. ') f„'
a' r=(4' /q')(2l+I) sin'8(, r. (5)

Kith these cross sections, the low-energy integral is
evaluated up to the cuto8 value E=SSm (which corre-

' The experimental numbers used here are mostly taken from:
Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).All quanti-
ties will be in units of A=c=m =1, unless explicitly mentioned
otherwise.' S. L. Adler, Phys. Rev. 14P, 3736 {1965);149, 1294{K) (1966);
and 175, 2224(K) (1968). In contrast to this reference, we have
not multiplied the cross sections on the left-hand side of Eq. (4) by
K'{0),where E'(0) is given by the Goldberger-Treiman relation.
Unlike the case of m-E scattering, where the nucleon-exchange
term gives the closest. singularity, ~-m scattering has no such term.
Hence multiplication by this factor, in extrapolating from zero-
pion mass to physical mass, may not be realistic. In any case, since
there may be corrections to the Goldberger-Treiman relation itself,
we may take E'(0)=1.Taking E'(0) =0.74, and multiplying the
left-hand side of Eq. (4) by it would change the values given in
Table I by this factor. This would lead to disagreement with the
sum rule. Thus, our results indicate that for extrapolating x-~
scattering cross sections, multiplication only by the threshold
factors may be more reasonable.

TAm. E I. Left-hand side' of Eq. (4) for various values of the
parameters. The right-hand side is 4.28. II,= low-energy contribu-
tion; IH =high-energy contribution; IT = total contribution.

{MeV) X'{F (MeV)) ) g (I', {MeV)) JI, III IT

730
730
930
930

0.75 (246)
0.75 (246)
0.9 (611)
0.9 (611)

0.5 (108)
0.2 {127)
0.5 (108)
0.2 (127)

2.88b 1 03
3.20 1.09
3.01 1.22
3.34 1.32

3.91
4.29
4.23
4.66

a See remarks in Ref. 5.
b The I =0, J=0 and the I =1

~ J =1 contributions in this case are 1.03
and 1.82, respectively.

in a one-trajectory (p) approximation, where' is the t= 0
intercept of the trajectory. This integral is evaluated in
the same manner as above. The results are shown in
Table I for diferent values of X" (F,) and m, X' (F.).
The scalar-meson contribution is also showa. It can be
seen that the scalar contribution is substantial (about
35% of the low-energy contribution), but it is not large
enough to saturate the sum rule. A quite large high-
energy contribution is obtained, which brings the sum
rule into reasonable agreement with experiment.

In the above we have taken I' = 246 MeV for es = 730
MeV. Taking I' =400 MeV and 650 MeV gives I~=4.5
and 5.4, respectively, for I', = 108 MeV. These values,
especially the latter, are too large for the sum rule to be
consistent. Hence, a very large value of the 0 width()400 MeV) is excluded by our considerations. This
is interesting in view of the fact that Gilman and Harari'
are led to F =650 MeV for m, =m, when they neglect
the high-energy contributions. The value of width is
quite sensitive to the mass and phase-space factors, so
that when m =930 MeV, such a large value of I' is
permissible (see Table I).

To check the validity of the method, one can go one
step further and attempt to determine e from the same
data by using the two higher-moment hnite-energy sum
rules:

N P$, a+I
dv ImLT (v,0)—T+(v,O)j=, (7)

0,+ j.

PA
dv v'ImLT (v, O) —T+(v,O)g= , (g)

o.+3
Ig/I3 ——X '(a+3)/(a+I). (9)

' F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).

sponds to W, =1470 MeV). This is the same as the
cutoff chosen in I and lies about half-way between the
positions of the f and g(1650) mesons.

As described in I, the high-energy correction term
(IH) to the left-hand side of (1) is given by

N

dv ImLT (v, O) —T+(v, 0)j (6)
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This procedure gives n=0.52 for X'=0.75, m, = 730
MeU, and I'p= 108 MeU. This is in excellent agreement
with the usually accepted value of the n for the p tra-
jectory and is very encouraging in view of the crudeness
of the input data. Thus the conclusions for the Adler-
Weisberger x-m sum rule remain the same as in I, even
with the inclusion of a scalar resonance and the con-
tinuum. The high-energy contribution is both substan-
tial and necessary for the validity of the sum rule.

B. I=2 Exchange Sum Rule

There is one sum rule for the m-x system which corre-
sponds to I=2 exchange in the t channel. This follows
from the assumption that

regarded as crucial tests of the local current algebra. '
The current commutator used here is

L~+' '(*)8 -* '(y) j*.=..=2&'(*—x)~ '(Y), (13)

where the 5's are the various isovector vector-current
densities.

From this commutator, one obtains the Adler-
Fubini —Dashen —Gell-Mann sum rule, and on diReren-
tiating with respect to q' (the mass squared associated
with the current) at q'=0, the Cabibbo-Radicati sum
rule can be derived. On isospin rotation, one obtains a
convenient form for the sum rule in terms of total cross
sections for the scattering of isovector photons off
protons:

L~.~.+(t),Q +(&)j= 0, (10) 2dI', '(q') Pv+ +-
2m, t K8where A„ is the axial-vector current, and Q; is the corre-

sponding charge.
This is consistent with most of the Lagrangian models

for SU(2)SU(2) current algebra and also with the
absence of any evidence for I=2 particles. Taking the
matrix element of the commutator between a x+ and a

state, one obtains a sum rule

ImTg(v, O)
dv =0,

where T~(v, O) is the forward-scattering invariant ampli-
tude for the x-m system with the t channel in a pure I= 2
state. The sum rule has been considered by Furlan and
Rossetti' and by Gilman and Harari. '

In terms of isospin I=0, 1, and 2 total cross sections,
Eq. (11) becomes

(12)dv (-,'a' ,'a'+-,'a'—) =—0.

Thus, there is a cancellation between the I=O and 1
cross sections. Evaluating the integrals in the same
manner as above, we find that II.= 4.6 for I'p 108 MeU
and 1.3 for F,= 127 MeV. The I= 1 (p) contribution in
these cases are —22.3 and —25.6, respectively. Thus,
because of the large cancellations, we conclude that the
sum rule is approximately satisfied by the low-energy
data alone and that there is no particular need for re-
quiring significant high-energy contributions. This is
consistent with the fact there is no known I= 2 trajec-
tory and that the cut contributions are likely to be small
at t=0.

III. CABIBBO-RADICATI SUM RULE

This sum rule and the original Adler —Fubini —Dashen-
Gell-Mann sum rule from which it can be derived are

~ G. Furlan and C. Rossetti, Phys. Letters 23, 499 (1966).

«1m~ j2m~ V2

XL2a, (y'+P ~ I=-,') —ar(y'+P ~ I=&)j
=0

7

where now v=(s —m ')/2m„; F~ and p are the iso-
vector form factor and the nucleon-isovector anomalous
magnetic moment, respectively, and ar(yv+ p —+ I= 2)
and ar(yv+ p ~ I=-,') are, respectively, the total cross
sections leading to the I=-,' and —,

' states.
Numerical evaluations of this sum rule have been

considered by Adler and Gilman' and by Gilman and
Schnitzer, ' using the pion-photoproduction data. We
have reconsidered evaluation of this integral, using the
recent pion-photoproduction-multipole fits by Walker. "
We will also discuss the high-energy contributions.
These multipoles include contributions from several ~E
resonances LX*(1236), A (1519), X(1672), X(1561),
X(1471), and $(1652)], the nucleon pole, and the
continuum.

In terms of single-pion-photoproduction multipoles,
we have

27r(p.)..
(c)..-.

P(4I~,+I +1gI~,+I +2IE~I

+» I E~+ I '+36
I
E~+

I
'+»

I
~2-I'+361~3-I '

+4IE2 I'+18IE3 I'+2I3ll I'+ ). (15)

8 S. L. Adler, Phys. Rev. 143, 1144 (1966); R. Dashen and M.
Gell-Mann, in Proceedings of the Third Coral Gables Conference on
Symmetry Principles at High Energy, University of Miami (W. H.
Freeman and Co. , San Francisco); S. Fubini, Nuovo Cimento 43A,
47S (1966); N. Cabibbo and L. Radicati, Phys. Letters 19, 697
(1966); J. D. Sjorken (unpublished).' S. L. Adler and F. J. Gilman, Phys. Rev. 156, 1598 (1967);
F. J. Gilman, ibid. 167, 1365 (1968); F. J. Gilman and H. J.
Schnitzer, ibid. 150, 1362 (1966)."R.L. Walker, Phys. Rev. 182, 1729 (1969), and private corn
munications. The author wishes to thank Professor Walker for
communications regarding these multipole 6ts.
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a+1 1 2

n —1.3'~ 7re~
d t.2 r(-') —~r(-')] (16)

Taking n=0.5, this gives 537 pb. Although this is of
the right sign, " it is quite large. We can, of course,
attempt to determine n by writing two FESR:

The notation here is the same as that of Chew,
Goldberger, Low, and Nambu (CGLN). " (p ), and

(q), . are the c.m. momenta of pion and photon, re-

spectively. Fits for these multipoles are available in
Ref. 10, up to a photon-lab energy of about 1.2 BeV,
for the reactions y+p —+ or++n, y+p —+m'+p, and
y+n ~ o +P. The isovector amplitudes leading to the
I= —,

' and —,
' states can be extracted from these fits. We

have ignored the fact that pions have nonzero mass in
these considerations since the zero-mass approximation
will affect the amplitudes only in the region close to the
threshold.

The cutoff ~V is chosen to be 1.2 BeV. From the first
two terms on the left-hand side of (14) we obtain
—200pb. The integral term gives —73 pb. Thus, the
discrepancy is —273 pb, whereas in Ref. 9 it is found to
be about —300 pb, which is quite close. The major con-
tribution to the low-energy integral comes from single-
pion-photoproduction cross sections. This may explain
the closeness of our estimate to that of Ref. 9, where
some attempt is made to take into account inelastic
contributions.

The high-energy part of the integral will be dominated
by the multipion-photoproduction cross sections. If we
estimate this by writing a first-moment finite-energy
sum rule (FESR), assuming dominance by the p tra-
jectory, we find the correction term to be

trajectories in the case of single-pion-photoproduction
amplitudes. " In the present case, this result may be
interpreted as due to the non-Regge behavior of the
amplitudes under consideration. The fixed pole de-
manded by the current-algebra considerations in this
case has a vanishing residue because we are dealing with
a derivative sum rule. However, it has been suggested
on dynamical grounds that there may be fixed poles in
Compton scattering amplitudes. ' Although this is pos-
sible, it seems that our result is more likely due to large
cancellations between the I=2 and ~ terms and inac-
curacies in the data. Indeed, several I= —,

' mX resonances,
which are not included in our cross sections, "have been
suggested to exist near the upper limit of the integral.
Being highly inelastic, they will contribute significantly
to the double-pion-photoproduction cross section and
will particularly affect the higher-moment sum rules. It
can be seen that increasing the I= —,

' cross section will
lower n considerably. Hence, we adopt the following
procedure: We demand that n=0.5 be obtained from
the ratio (I~/Io).V', and we determine X from this. This
gives X=1.5 BeV. Remembering that the original cutoQ'

was X=1.2 BeV, this appears to be very reasonable.
Thus, because of the delicate cancellations the value of
o. obtained from the sum rule is extremely sensitive to
cutoff. With %= 1.5 BeV and n=0.5, we find that the
correction term is 344 pb, which is in fair agreement with
the value required to satisfy the sum rule. Thus, in
spite of the incompleteness of the data, one may at
least state that the magnitudes and signs of the low-

energy and high-energy contributions appear to satisfy
the sum rule reasonably well.

IV. ~-p SUM RULES

2
Ig ———

X'8

2Ig=—

P )'a+1
vdv[2o r(-,') —(rr($)] =

0!+1

P) a+3

v'dv[2or(-', ) —or($)] =-
El'+3

Current-algebra and superconvergence sum rules for
the m-p system have been discussed by several authors.
In particular, Gilman and Harari have given a fairly
complete discussion of the sum rules corresponding to
the I= 1 and 2 states in the t channel. "There are two
sum rules for the I= 1 state:

Using the above-mentioned data, we find that n=3,
which is entirely unacceptable. This is somewhat sur-
prising in view of the fact that such sum rules have
themselves yielded reasonable results for the relevant

» G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

"Sign of the high-energy contribution is important in view of
the recent controversy on modification of this sum rule. Barry,
Geunaris, and Sakurai )Phys. Rev. I etters 21, 941 {1968)j have
proposed additional q'-dependent terms in the Adler-Fubini-
Dashen-Gell-Mann sum rule. This would require the contribution
from the high-energy part of the integral to be about —350 pb.
I.S. Gerstein Lib' 21, 1465 (1968)g, on the other hand, has argued
that these modifications are inconsistent. With the Regge-behavior
assumption, we find that the high-energy contribution has posi-
tive sign.

aild

(&
Imfyo yo~ ~(v&0) =

p 2 2'

dv
&mfoo, oo~" (v,0) =

V2 2
(20)

"See, e.g. , K. V. Vasavada and K. Raman, Phys. Rev. Letters
21, 577 (1968); and K. Raman and K. V. Vasavada, Phys. Rev.
1?5, 2191 (1968).

'4 M. J. Creutz, S. D. Drell, and E. A. Paschos, Phys. Rev.
178, 2300 (1969).Previous theoretical references are mentioned in
this work.

"Phase-shift analyses of the CERN group. See Ref. 4.
~6F. J. Gilman and H. Harari, Phys. Rev. Letters 18, 1150

(1967);Phys. Rev. 165, 1803 (1968).Previous references are given
in these papers.
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Similarly for I= 2, we have

JV
4I Iiiifio, io& i(v 0) =0

o

ancl
dV—Imfoo, oo& i(v,0) =0,

o

(21)

(22)

4 2 4 Q 3 a+1
VA gA2pn. VA2 Pl- 6 1

V~ gap~ + gr + (24)
0!+1mAg

6 2 6 f? 4 a+8
VA gA2pir VA~ pl. il

V(u g(gpss' + gP +
mA

(25)
Q+3mA 43

4g 2
VA2gL2 8 P2-~' 2a 1

+ + 0 ~ ~

m' m'mA' f ' (26)
A —1

4g 2 P23 2
+'

V 2+ — gL2+ a ~ ~

m m mA

VA

(27)
&+1

6 P $ a+3

v, '+ — gL'+ = —
, (28)

mp mA El+3

36vagapa (VA jmA )gZ' =0 )

4yvagpaa +(vA /mA )gL

(29)

(30)

Here the notation is the same as in Ref. 16: gz and

gz, denne the A~ couplings; g„, and g, describe the
co~ and pate couplings. The factors on the right-hand
side of Eqs. (23)—(28) represent the high-energy contri-
butions; n, pi, o, and Ei, o are, respectively, the trajec-
tory parameter, the residues, and the cutouts for the
p-trajectory contribution.

Where v=o(S —m, ').
Here fio io&ri is the s-channel, kinematical-singu-

larity-free helicity amplitude with the initial and final

helicities of p being X and the t-channel isospin I. The
erst two sum rules are the Adler-%eisberger-type sum

rules, and the last two follow from the commutator in-

volving B„A„,as in the m-m case.
In Ref. 16 these sum rules have been studied by using

the resonance-saturation approximation, retaining co,

m, A&, and A2 contributions, and consistent solutions
have been suggested. Ke can calculate the high-energy
contributions to the I=1 sum rules by assuming p-

trajectory exchange. Instead, we follow an equivalent
procedure and consider the following sets of equations

by writing two more higher-moment FESR for each of
Eqs. (19) and (20) and by studying consistent solutions.
In the resonance-saturation approximation for the low-

energy integrals, we have the equations

VA gA2p VAg 8 Pl. l

g...'+ gr'+ ——= —, (23)
mA4 mA' f ' n —1

We assume that there is no leading I= 2 trajectory
or cut giving significant contributions to Eqs. (21) and
(22). However, the I= 0 and 1 states in the s channel for
these I=2 sum rules occur with alternating signs be-
cause of the crossing matrix. Hence, there are delicate
cancellations between various resonant contributions.
In order to take these into account, we have multiplied
the left-hand sides of Eqs. (29) and (30) by unknown
constants x and y. Ke will not use these equations in
our analysis. Their content has been discussed in Ref.
16, where it is found that x, y=1. If we take x=y= 1,
Eqs. (29) and (30) imply that

gP VL4igco p ir mA2 2 2

gJ 4Vn gpn ~

Now from the Gell-Mann —Sharp —Wagner" model of
co —+x+y, we have g„, =17&3 BeV '. Kith 90&Fp
&125 Mev, Eq. (31) gives

0.12&gro/gL3& 0.23.

Because this approximately agrees with the preliminary
experimental results on A& decay parameters' which
give gro/gL3=0. 16&0.08, the assumptions leading to
Eqs. (29) and (30) may be reasonable. Now we look
into the possibility of consistent solutions of Eqs.
(23)—(28). These are very stringent conditions, especi-
ally in a saturation scheme with a few resonances.

Eliminating Pi and Xi between Eqs. (23), (24), and
(25), we find that

'7 M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters S, 26j. {5962}."J.Ballarn et a/. , Phys. Rev. Letters 21, 934 {1968}.

(n+1)'/(n —1)(n+3)= AC/8'-', (32)

where A, J3, and C are the left-hand sides of the three
equations, respectively. Since the p trajectory is in-
volved, we demand that even in such an approximate
treatment, 0&0.&1 should be obtained. Since this re-
quires that A must be negative, it places restrictions on
the acceptable values of g„, ', gz', and gA, p At present
there is considerable confusion regarding resonances
near the A2 mass region. Two or more resonances, with
perhaps diA'erent quantum numbers, appear to be in
the region. First we consider the unsplit A3(1300), and
take FA, =80 MeV. Kith g„, =17 BeV ' and 0&gy
&27, values of n between 0 and 1 are obtained. For
g„, = 20 BeV ', no value of gy2 can give n in this range,
whereas for g„p 14 BeV ', 0&g'&51 is acceptable.
If FA, = 30 MeV, then the three values of g„, , respec-
tively, give acceptable values of n for 0&g'&33,
0&g~2&6, and 0&g~2&57.

Thus, depending on the values assigned to the width
of the A2 and to g, , there is a rather wide range
of values of gz2 which give reasonable results. The
corresponding transverse widths for the A~ meson
LI', = (gzo /63r) (q'/mA'), where q is the c.m. momentum
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A', B', C' being the left-hand sides of Eqs. (26), (27),
and (28), respectively. Again A' should be negative in
order to obtain 0&o.(1.This requires that g, ' and
gl.' not be very large. The I=0 and 1 states both enter
with the same sign on the left-hand side of these equa-
tions. Hence, the contribution of the additional resonant
states cannot amend the situation. These states will
contribute much more to the sum rules (27) and (28)
than to (26). Thus, they will affect the actual value of n
obtained. As some typical cases, one may consider both
resonances with J =1+ or 2, and relatively large
longitudinal couplings around the A2 mass region or
near the 1640-MeV resonance (A). Then, we let
a=4g, ~~2/m, '+v@'gz'/m, 'm~' and b be the contribu-
tion of this last resonance. Ke now have

(n+1)' (a+b —8/f ')(av 4+bvg4)

(n —1)(a+3) (av '+bv~')'
(34)

This simplification occurs because v = —v~ when one
takes mA'=-2m ' —m '.

For various values of a and b, n can be determined.
For the A resonance (1640 MeV) we 6nd that values of
b between 0 and 1 lead to acceptable values of ot for
a& 7. For 3 near the A2 mass, however, only values of
a&6 are acceptable. For a given value of a and the p
width, we can find the corresponding gl, '. Thus a=6
leads to gz'= 17 (I', = 125 MeV) or 26 (F,=90 MeV),
while a=6.5 or 7 lead to gL,'=21 or 30 and gL, '=25 or
35 in the two cases. Smaller values of a, of course, are
acceptable as far as output values of o, are concerned,
but they lead to very small values of gz, '. As mentioned
above, the experimental indications are that gr /gz is
quite small. Hence, small values of g&' imply quite a
small width of the Ai —+ gnr decay.

The corresponding values of the longitudinal widths
Fz, = (gz, '/127r)q'/m, ', are the following: 0&gz &35
corresponds to 0&Fz(m =0)=3.03gz'&104 MeV and
0&F (m =1)=1.65gz'&57 MeV.

Thus it appears that the sum rules show definite pref-
erence for smaller p width (F,= 100 MeV) and not too
large Az~ p~ width (&100 MeV). Finally, Eq. (30)

of the pion at the position of the resonance] depend
sensitively upon whether m = 0 is taken for the phase-
space factor. (The current-algebra sum rules are written
for the zero-mass pions. ) Then 0&gr'&57 corre-
sponds to 0& F~(m, = 0)=3.03gr'& 173 MeV or to
0&F,(m„= 1)= 1.65g&'&94 MeV.

In view of the uncertainties in the values of the other
coupling constants, precise values of g~' satisfying the
sum rules cannot be given. However, it is satisfying that
for a range of these values reasonable values of u can be
obtained; hence, the sum rules seem to be satisfied.

Similar consideration of the sum rules (26)—(28) lead
to interesting results. Ke find that

(a+1)'/(a —1)(a+3)= A'C'/B", (33)

with y= 1 gives gz'/g, '= 1.1. This is not inconsistent
with the above values. To conclude the discussion of the
present set of m-p sum rules, we note that they seem to
lead to reasonably consistent results, aI.though a definite
conclusion regarding the actual magnitudes cannot be
reached unless experimental results become more
precise.

V. m-N SUM RULES

In this section we reexamine two of the x-E sum
rules: (i) the Adler-Weisberger sum rule' and (ii) the
corresponding spin-Rip sum rule. "

In I we made some remarks regarding the Adler-
Keisberger sum rule for the m--1V system which we now
write as

2f ' " 1m[A +vB ]
g~ =1— QP (35)

2f 2 o+1
+

mA o.—1 m

dv 1m[A +vB ], (36)

where E is chosen to be sufficiently high to make the
dominance by the p trajectory (n) reasonable. If we
wish to determine o. from the same data, we can use the
two FESR

Ij=m '
N

P $'a+1
dv 1m[A +vB ]=

&+1
(37)

I3——7r '
N P) a+8

v'dv 1m[A +vB ]= — . (38)
tx+ 3

The above integrals can be readily expressed in terms
of the x-~V total cross sections, and reasonably accurate
data are available up to very high energies. To illustrate
our point, however, we have considered the narrow-
resonance-saturation approximation. This will be used
also for the spin-flip sum rule, which cannot be expressed
in terms of the total cross sections.

The X*(1236)resonance itself gives rather large value
of g~ when the high-energy contribution is neglected,

"This sum rule has been considered by several authors. Some
of these references are E. S. Gerstein, Phys. Rev. 161, 1631 (196/);K. Raman, ibid. 159, 1501 (1967); H. Goldberg and F. Gross,
ibid. 162, 1350 (1967); E E. Radescu, ibid. 171, 1655 (1968); L.
Maiani and G. Preparata (unpublished).

The o6-mass-shell contributions are significant, but
for the purpose of our consideration we will ignore them.
They have been considered extensively earlier. Here
v=(s —m ' —m ')/2m„and A and B are the usual
m.-X amplitudes corresponding to the I= 1 eigenstate in
the 3 channel.

Kith the high-energy correction, this equation reads

2f ' .~ Im[,.f +vB ]
gg =1— c&
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and gives contributions to the correction term in the
wrong direction. It was guessed in I that the higher
resonances will change the sign of the correction term
to bring it in the right direction to satisfy the sum rule.
In this work, we have indeed verified that this is the
case.

In the narrow-resonance approximation we have

ImLA +vB ]
dv

2s. C„ri„lV„'I'„(J„+-,')
(39)

q&v&
2

where O'„ I'„p„,J„,and q„are, respectively, the values
of energy, width, inelasticity, total angular momentum,
and outgoing-pion three-momentum of the resonance.
C„=3 for I=~ and C„=—

3 for I=2 states. The ques-
tion of the choice of X is 4'+cult here because of the
large cancellations between the I=-,' and —,

' resonances.
This fact has been discussed by Dolen, Horn, and
Schmid, "who suggest that a suitable value of V for this
amplitude may be around 2.5 BeV. Kith this choice of
E and with data from Ref. 4, we find that I= —0.4,
I&= 7, and Is=827. First of all, this shows that Ij and
I have opposite signs. Hence, the correction term will

be in the right direction. Values of Ij and Is give n= 0.17,
which is rather low for the p trajectory, though under-
standable, because of the cancellations and the narrow-
resonance approximation. Also, it should be noted that
there may be several resonances making important con-
tributions to the higher-moment sum rules, which are
not included in our evaluation (see Ref. 15). These are

automatically included when one uses the total cross-
section data. These will change the results for n sig-
nificantly. Now, when the high-energy part is neglected
we find that g~ = 1.32.The correction term is found to be
2f 2(0.031), leading to gg= 1.30. Thus, the contribution
from the region above 2.5 BeV is about 8% of the low-

energy integral. As mentioned in I, the values of g& are
not sensitive to rather appreciable changes in the values
of the integrals. Now if we demand that an 0,=0.5
should be obtained from the values of I& and Is and
adjust E accordingly, we have %=2.7 BeV. This
clearly shows the sensitivity of the results for n on the
cutoff value. With this cutoff, the correction term be-
comes 2f '(0.056), leading to g~=1.28. The negative
sign of the correction term persists even for such low
cutoffs as 1.5 BeV. In the latter case we have I= —0.42
and I&=3.17, leading to g~= 1.34. If only X~(1236) is
retained, it is found that I= —0.66 and I~= —3.75.
Without the high-energy contribution, this leads to
g&=1.49, and as mentioned above, the high-energy
contribution increases the value of g~.

~o R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, j,768
(~968).

Ke may add that when the total cross-section data
are available and usable for the sum rules, they should
be considered in preference to the narrow-resonance
approximation. However, the above discussion shows
that even in the case of the original Adler-Weisberger
relation our method yields a correction term of the right
sign and of a reasonable magnitude.

Now we consider the corresponding spin-Hip sum rule
given by

2f ' " ImB (v)
1+p„—p„—g~ — dv

where p, „and p„are the anomalous magnetic moments
of the nucleons and D-(0) is the coeflicient of the term
uio, „X2Lr',r~]u in the expansion of the axial-vector-
current —nucelon-scattering amplitude in a complete set
of independent kinematical-singularity-free covariants.
The nucleon-pole term is understood to be already ex-
tracted from this. As has been discussed by previous
authors, " the appearance of the axial-vector-current—
nucleon-scattering term makes the sum-rule model-
dependent, and there is no way of eliminating this term.
Goldberg and Gross, " in particular, rewrite this sum
rule by combining the amplitudes D and 8 in terms of
a single amplitude for the axial-vector-current —nucleon
scattering. They find rather large high-energy contribu-
tions by making some estimates of the residue P(0) for
the p trajectory. Ke have studied this sum rule using
the resonance approximation for the 8 amplitude.

In terms of resonances, we have

Ima-
dv

1=/+1, —/

C„q„F„

s

Here

)&(lL(H~, —m )' —m 'j —2IV„m„l(1+1)}. (41)

according as J=l&~, where l is the orbital angular
momentum. The two higher-moment FESR are given
by

N P) a+I
vdv ImB (v) =

tx+ 1
(42)Ig=~ '

I3—Ã '
N p.'v +'

v'dv ImB (v) = (43)

Here we find that most of the resonances add con-
structively; hence, the cutoff difhculties may not be
serious. This is confirrned by taking E= 1.5 BeV, which
leads to I=3.9, I~=62.9, and Is=3150. This gives
u=0.55, in excellent agreement with the usually ac-
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= —10.9. (44)

This is larger than the value (=8) obtained by Hohler
and Strauss, "who used the available ~-cV phase shifts.
However, the narrow-resonance approximation is known
to lead to some overestimation of the contributions. It
should be pointed out that in the present case, this
procedure appears to be necessary. In order to estimate
the right-hand side, one is forced to use the resonance
approximation in any case. Hence it will not be correct
to evaluate the B term exactly, since there are cancella-
tions between these terms. This fact has been empha-
sized by Goldberg and Gross. "The value quoted by
Radescu"' for the 8-integral contribution (=4.9) is
much smaller than either our value or that given in Ref.
2i.

The first three terms in Eq. (40) give 3.3. If we

crudely simulate the off-mass-shell correction by multi-

plying the results of the 8 integral by IC'(0) = 0.74, we
find its contribution to be —8. This makes the left-hand
side of Eq. (40) equal to —4.7.

Evaluation of resonance contributions to the right-
hand side of Eq. (40) brings in considerable model de-
pendence. Inclusion of sV*(1236) and iV**(1538) leads
to 4mD(0) = —2.8Hi'(0) —0.8, where Hi(0) is a param-
eter giving one of the couplings of the axial-vector-
current rV-fV* vertex. The second term is the contribu-
tion of E~* obtained from the known md%** coupling
constant and the hypothesis of partially conserved axial-
vector current (PCAC). (We have followed Radescu's
notation. His convention for the sign of the B term,
however, is opposite to ours. ") Satisfaction of the sum
rule then requires that Hi(0)2= 1.4. This is roughly con-
sistent with some of the values obtained by Albright, "
Schnitzer, "and Raman. "

Finally, one could argue that since only the E* and
."Lt** are included in the 2-X scattering amplitude, the
same thing should be done for the B integral for con-
sistency. This gives I=3.2 and I&=26.2. In this case

"G. Hohler and R. Stauss (unpublished)."C.H. Albright, Phys. Letters 248, 100 (1967); H. Schnitzer,
Phys. Rev. 158, 1471 (1967);K. Raman, ibid. 159, 1501 (1967).

cepted value of the p-trajectory parameter. Data up to
X= i.5 BeV may be quite accurate, and the result gives
us con6dence in using this cutoff.

Kith these values the B contribution to the left-hand
side of Eq. (40) becomes

—2f„' " ImB—
(v) 2f 'n+I

QV 2f—'I — Ii
mn V 3' n —1

we adjust 3, in a one-trajectory approximation, to give
+=0.5 from the sum rules for Ij and I3. This leads to
&V=800 MeV (corresponding to a c.m. energy =1550
MeU), which is entirely reasonable. Then we find the
contribution from the B integral equal to 7.7. This
value is quite close to the previous value obtained when
other resonances were included and leads to Hi(0)'
=1.28. The high-energy contribution to D(0) is likely
to be small, since there are indications that D(v) -+ 0
at least as fast as I/v as v ~~ ."Thus we conclude that
the sum rule would seem to be satisfied if the AXE*
coupling is large. The high-energy contributions are
quite substantial. However, owing to the strong model
dependence of the low-energy amplitude, no definite
statements can be made until more is known about the
coupling of the axial-vector current to the nucleon
resonances.

VI. CONCLUDING REMARKS

In I and in the present work, we have considered
several examples of estimating the high-energy contri-
butions to the current-algebra sum rules by using the
finite-energy sum rules. In all the cases we found that
the correction terms were of the right sign and of rea-
sonable magnitudes. The main advantage of the method
is that one uses the same low-energy data for all of the
sum rules, and that there is no need to get residue func-
tions from the high-energy 6ts. This is especially impor-
tant when the cutoff energy is so low that one-trajectory
dominance is approximate at best. In this case, one can
evaluate contributions of the effective one-trajectory
parameter with an effective-residue function. Of course
in practical cases, when there are large cancellations be-
tween various amplitudes and where the experimental
information is inadequate, a certain amount of caution
is necessary. But in general, one can attempt to have a
completely consistent dynamical scheme including both
the current-algebra sum rules and the 6nite-energy sum
rules, which a pnori depend on entirely different
assumptions.
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