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Linear combinations of Veneziano terms, starting at J=0,1, are written for the invariant amplitudes in
AX — AA and NN — NN scattering. Using only the =, p, and Pomeranchuk trajectories, the residues in
helicity amplitudes at J=0,1,2 along these trajectories are required to correspond to the boson spectrum.
Then, it is found that the requirements of reality and factorization of coupling constants for the parent
particles are impossible to impose. In addition, the coupling of the pion and the 7 are found to be zero to

the accuracy of the calculation.

I. INTRODUCTION

ECENTLY, Veneziano' has suggested a repre-
sentation for the mm— mw scattering amplitude
which simply incorporates the properties of resonance
poles in the direct-channel energy and related asymp-
totic behavior in the crossed-channel energy for
linearly rising trajectories and which explicitly satisfies
simple crossing relations. Although the Veneziano
representation does not satisfy unitarity, it has been
hoped that a small number of the modified Euler beta
functions would be a good approximation to real two-
particle scattering amplitudes. A number of people
have applied this philosophy to PP— PP2*10 PP —
Pyt and PN — PN 2717 with reasonable measures
of success. We have applied the simplistic philosophy
of a small number of “low-order” modified beta
functions (MBF’s) to the equal-mass, NN — NN and
AR — AA, scattering processes. In Sec. IT we discuss
the basic restrictions imposed by requiring the poles
of the scattering amplitude for fixed direct-channel
energy to correspond to particles of a given spin J and
possibly daughters of spin J—1, etc. Since the Som-
merfeld-Watson transformation can be applied to
MBF’s, it is obvious that this will determine the
correct asymptotic behavior in the crossed-channel
energy. In Sec. ITI we describe the reasons for choosing
the set of MBF’s in our model and discuss the types of
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particles that we allow. We then discuss the results of
the computer calculations on the model.

We should mention that Harari® has pointed out
in an approximate and intuitive quark model of
baryons and mesons that the dual description of
scattering as resonances or Regge contributions should
be expected in the other reactions investigated with the
Veneziano representation, but not for NN — NN
reactions because of the lack of simple ‘“duality”
diagrams describing the NN process. Since the result
of this work is, in fact, that the simplest sets of MBF’s
do not provide acceptable solutions, one might be
tempted to conjecture that this is in verification of
Harari’s prediction. However, since all MBF’s exhibit
“duality,” this implication is valid only if it could be
shown that no set of MBF’s have acceptable solutions,
which we have not been able to show.

II. RESIDUES OF POLES

The suggestion of Veneziano was that the require-
ment of poles in one Mandelstam variable and a power
law asymptotic behavior in the crossed-channel
variable is explicitly satisfied by modified beta functions
of the form

T'(m—ai(t))T(n—a;(®))/T(p—a:i(t) —e;(w)) (1)

for linear trajectories, where m, n, and p are integers
(for meson trajectories). Poles occur where a;(f)=J>m
with residues polynomial in «;(#) [and hence in Z,
= (u—s)/(t—4m?)] of the order J4nr—p. Since this
is a finite polynomial, this can be related to the residue
of a parent particle and a finite sequence of daughters.

The analytic structure of MBF’s and their simple
crossing properties suggest that linear combinations
of MBF’s are appropriately written for the invariant
amplitudes of the process. For NN or NN scattering,
there are five independent, invariant amplitudes. A
convenient set g1, -, g5, which we choose to be the

18 H. Harari, Phys. Rev. Letters 22, 562 (1969).
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s(NN)-channel invariant amplitudes, is

a=>r,

g=V4+T,

g=S+4, 2
ga=—V+T,

g=—35+4,

where S, P, V, A, and T are the usual invariant ampli-
tudes of Goldberger, Grisaru, MacDowell, and Wong
(GGMW).2®* Fermi statistics [or equivalence of the ¢
and # (NN) channels] require g;(t,u)=— (—)ig;(u,t)
for isospin-0 nucleons or g;f(t,u)=— (—)T+*1g T (u,t)
for isospin-} nucleons in an I=0, 1 combination of
their s-channel isospin indices. Because of this sym-
metry, we will write linear combinations of MBF’s for
the s-channel invariant amplitudes [Eq. (2)].

The independent, reduced helicity amplitudes (half-
angle factor removed) are

Joox= frits— fre—,

Joor= frstst+t for—0

fus= (1/1+Z)f+—+—— (A/1=2) fr——+, (3)
Jus= (1/1+Z)f+—+—+ A/1=2) fr——+,
frox=(—=23)71f

where fiagaa, are the Jacob-Wick® helicity ampli-
tudes; the upper sign of fiue is chosen in the NN
channel and the lower sign in the NN channels;
A=XNa—Xp, w=Ac—Mg. The partial-wave series for
these amplitudes are®

fae=2 s QIFDF et (2)+F~en'~(2)]. (4)
The relevant e’s for NN scattering (from Ref. 21) are

eOOJ+=PJ, eoo"'=0;
en’t=(P,/+ZP,")/J(J+1), en’==—P,"/J(J+1);
e/ t= —P.I'/[f(]‘l‘l)]”?, en’~=0.

Note that

811°i= e1’*=0.

The normality of particles contributing to Fj”/¢ is e.
When a Regge trajectory of normality e passes through
a non-negative integer, there is a pole in F;7¢ with a
residue proportional to the product of appropriate
coupling constants. In terms of the s-channel invariants,
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the #-channel amplitudes are

foot= (mi—1=0)grrt (dmo+1—D)ge
+ (2m*4-§1—5¢)gs+ (—4m*+51—)ga
+ (6m*+-5t4-38)gs,
Joor'= (—4m*+145) g1+ (20m*— 5t
HL 4/ (=m0 gt (10wt
+LGt+6m?)/ (t—4m*) [)gs+ (dm*—14-1)ga
+ (= 6mi+-31—30)gs,
fut= 4m*—1t) (g1t go+3g:—gat3gs),
Juyt= (dm*— g1t (dm*+1)ga+ (2m*+31)gs
+ (dm*—Oget (—2m*+310)gs,
fop!=—8m?(g+g3),
where {=u—s=numerator of Z,. In order to be able
to expand the residues of poles in fi, as finite poly-
nomials in Z, for an arbitrary number of sequential
poles (due to a finite set of MBF’s), we must require
p<m+nin Eq. (1). The residues of f)..due to particles
of spin J or less are polynomial in Z, as follows:
foox+ are polynomial order J,
fu1+, for are polynomial order J—1.
In order to bound the order of polynomials occurring
when «;(¢)=J to these values (for an arbitrary number
of values of J), we must require p>max(m,n). In
addition, the residues of the g’s must have certain
relations. For instance, at a,(t)=0,
to= —g,2/16t0 y
to= 0 y
t=0,
to=g.%/8t,
to= g,z/glo .
More complicated relations exist for the residues,

polynomial in Z, for higher spin particles, and are
easily derived from Egs. (5) and (4).

residue of g; at
residue of g at
residue of g; at
residue of g, at

residue of g5 at

III. MODEL

If a trajectory a;(¢f) evaluated at f; is such that
ai(ty)=J, it produces a pole in Eq. (1) with residue
=)=/ (T—m) I n—1—a;(u)]

X[n—2—a;j(w)]---[p—T —a;(w)]. (6)
The terms which contribute to fi,e with highest Z,

power come from that set of MBF’s with largest
n—p (=0). The coefficient of the Z,7 term is

(=)

o, ,
(J—m)!

where 91; is the slope of the jth trajectory. Therefore,
if there are v different values of m in the set of MBF’s
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and all trajectories have the same slope, it is possible
to eliminate all particles with spin greater than «;(f)
by eliminating them at v different integral values of
ai(¢). From the form of Eq. (5), the residues of foos
proportional to Z7 and of f114+ and fi04 proportional to
Z7~! have contributions from terms (1) with n—p=—1,
0, and hence, as a result of the expansion (6), have
residue contributions dependent on «;(0), #, and p.
Many more than v values of J are required, therefore,
to set the parity of the parents on a trajectory. There
are further restrictions to make the daughters come
out right. Since there is some evidence that the pion
has a natural-parity conspirator (at {=0), we do not
require a definite parity for parents along the entire
trajectory, only at the low-spin sense points where the
parity of the particles are known. However, we require
the contributions from terms with spin=a;({)4+1 to
vanish everywhere.

The particles we assume to exist in the model are
determined as follows: Since there are only weak forces
in the B=2 channel, we do not include any s-channel
trajectories and try to obtain consistency with meson
forces alone. In the meson channel we assume isospin
degeneracy as an approximation. It is known that the
p and w are almost degenerate in mass,? as are the 42
and f. The I=0 axial-vector meson which we have
assumed degenerate with the A1 is not yet established
[it could be the D(1285)], but this is not too surprising,
since the neutral member of the A1 is not established
either.?® The = and 5 are admittedly not degenerate,
but we take them to be so to keep the calculation
manageable and because it is not in disagreement with
other results from the Veneziano model.’ In addition,
we do not include the ¢, X9 and their trajectories. In
the nonet model, the physical ¢ is assumed not to
couple to baryons and, so, is consistently left out of this
calculation. In Wong’s calculation of the boson spec-
trum from pseudoscalar-pseudoscalar scattering in the
Veneziano model,’ it was not necessary to include the
X° and we leave it out for simplicity. We have the
following three trajectories: (m5), (pw), and
Pomeranchuk.

We assume that the slopes of all trajectories are the
same. This is consistent for the (r;) and (p,w) tra-
jectories if the A1 lies on the (,n) and if the 42 and f
lie on the (p,w). The slope of the Pomeranchuk tra-
jectory has been the subject of much discussion. Most
fits to data in the physical region would have its slope
near zero. However, Miller* claims to have found a 2+
particle at 1 BeV which is just where the first correct
signature point of the Pomeranchuk trajectory should
be if it has the normal slope of ~1/M,2. In the pseudo-
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scalar-pseudoscalar problem, Wong® has shown that
it is possible to allow the Pomeranchuk trajectory to
have a canonical slope within the Veneziano model.

Experimentally, there are two 42 mesons of about
the same mass. Since we have assumed the = and 73
degenerate, it is consistent to assume that the two 42
particles are degenerate, since it has been possible, in
Wong’s boson spectrum,® to show that the 7-y mass
splitting leads to 427, A2y separation from the soft-
pseudoscalar consistency conditions. The other low-
mass particles are the §(962), (1070), and B(1220).
These particles can be considered as daughters of the
f» f», and f whose masses have been shifted because
of unitarity.

The trajectories and particles allowed are shown in
Fig. 1.

The set of MBF’s we choose to satisfy the implicit
residue restrictions are determined as follows: For the
pion trajectory m (or #) is >0; for the p and
Pomeranchuk trajectories m (or n) is >1; p is re-
stricted by max(m,n)<p<m+n. The only other
decision is to determine the largest acceptable m (or #).
We choose this to be one. With this set of acceptable
MBF’s, there are 66 parameters in the isospin-0 nucleon
scattering and 125 parameters in the isospin-3 case.

The results of the computer analysis for AA scattering
is that the restrictions at J=0, 1, and 2 on the three
trajectories provide 35 [33 if apom(0)=1] linearly
independent restrictions. The residues of the w, f, and
fpom in the amplitudes foot, fi1+, f10+ depend on only
2 (3) of the remaining 31 (33) independent parameters.
However, there are further restrictions on these resi-
dues, since they are (essentially) gz?, gu? and gegm
of the w, f, and fpom, respectively, and hence must
satisfy a positivity condition for the gg?, gu® and a
factorization condition for grga. The dependence of
these numbers on the 2 (3) parameters is such that
neither positivity nor factorization can occur for any
of the three parent particles. In addition, the residue

n
\Poneranchuk,

//(rhc)
,‘/

i /(pion)
e 7:{-1—:’,:3—'—(2:{'75 o

/ E,

F1c. 1. Plot of the trajectories used and the particles on them.
The notation (J7¢) is for a particle of spin J, parity P, and
G-parity=C(—1)1.
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of the # trajectory at the 5 pole is zero to the accuracy
of the calculation.

The results of the computer analysis for NN scat-
tering is that the restrictions at J=0, 1, and 2 on the
three trajectories provide 71 [67 if apom (0)=1] linearly
independent restrictions. The residues of the natural-
parity parent particles in the amplitudes fooy, fi14,
f10+ depend on only 3 (5) of the remaining 54 (58)
independent parameters. Again it is impossible to
satisfy either mutual positivity or factorization for
any of the coupling-constant residues. It is also true
here that the residue of the pion trajectory at the 79
pole is contrained to be zero to the accuracy of the
calculation.

In neither the AA nor the NN calculation do we
believe it is an important point to discuss the residue
of daughter particles, since these are expected to be
changed considerably by inclusion of MBF’s with m,
n>1 and by imposing, in some way, unitarity.?? How-
ever, that the residues of the p, etc., are so well con-
strained to violate the reality and factorizability of
coupling constants we believe to be important. Adding
higher MBF’s may change these results, but it is
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precisely the simplicity of the Veneziano model in in-
corporating duality which is most appealing. In the
mm— ww scattering amplitude, Oehme?* found an
analogous problem. He was able to show that all but
the first MBF term have an infinite number of negative
g%s and thus, that it would probably require an infinite
sequence of MBF’s to satisfy positivity.

The results of our calculation are with the input
parameters a,(0)~—0.02, «,(0)~0.5, apom(0)~1.0,
and slope ~1.0, although the results do not change
critically with small variations of the parameters about
these values.

To summarize, it is not possible, with 66 (Ix=0) or
125 (In=1%) parameters to set up a Veneziano model
which allows the correct parent structure up to J=2
on the pion, p, and Pomeranchuk trajectories.
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Isospin currents are constructed in second-order perturbation theory by iterating the Yang-Feldman
equations and renormalizing. The conventional method of subtracting divergences is replaced by a deductive
approach in which Lorentz covariance and locality of the currents determine, up to a polynomial, the form
factors which remain after renormalization. It is observed that any such polynomials occurring in addition
to the usual expression for the form factors will cause not only an undesirable increase in the currents them-
selves at high energies, but also to a series of extra terms in the commutators of the electric currents. The
commutators of the currents so defined are calculated by smearing the commutator in the time difference
with a test function of class § which is allowed to approach a & function in the appropriate topology
(6 sequence). Attention is restricted here to those parts of the commutator connected with the vacuum-
polarization correction to the electric form factors. It is found that the equal-time commutator does not
exist in those cases where the result expected on the basis of a calculation with canonical commutation
relations does not vanish. In this case, the renormalized current reappears along with several divergent
integrals which are damped by the test functions of the & sequence in p space. This causes the limit to be
strongly dependent on the choice of the sequence, enabling either finite or infinite results to be obtained.
The reason for this is that the commutator as a function of the time difference is not a continuous function
at the origin, and thus the “equal-time value” has no meaning. The nature of the singularities occurring is
studied, and they are displayed explicitly in x space. The question of the existence of time-ordered and
retarded commutators is investigated.

I. INTRODUCTION
A. General Discussion

HE proposal that the equal-time limit of com-
mutators of current operators could be abstracted
from simple models and postulated as exact has had

* Present address: Purdue University, Lafayette, Ind., 47907.

many experimental successes. It is therefore worthwhile
to explore the foundations of this physical idea and
hope that in the future it will be possible to establish
a rigorous mathematical foundation for calculations in
particle physics. Several problems have appeared during
the development of local field theory because of the
highly pathological behavior of expressions involving



