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The multi-Regge prescription for the high-energy behavior of production amplitudes is derived starting
from multiparticle partial-wave expansions and by employing analytic continuation in the total angular
momentum of many-particle states.

I. INTRODUCTION
' "N 1963 Kibble proposed a set of rules for determining
~ - the high-energy behavior of multiparticle production
processes based on the exchange of many Regge poles. '
Similar multi-Regge-pole prescriptions have been given
independently by Ter-Martirosyan' and Zachariasen
and Zweig' and developed by several other authors. '
Recently Bali, Chew, and Pignotti, amplifying the
work of Toiler, ' have given the prescription for the
high-energy behavior of multiparticle production
processes a new basis. In their work the production
amplitude is expanded in the irreducible representations
of the group 0(2,1). This approach has the advantage
that, in contrast to the usual Regge-pole type of analysis,
the amplitude need never be continued into an un-

physical region in order to obtain the asymptotic
behavior. %hat is particularly appealing about this
recent work is its great unity and generality, based as
it is on the methods of group theory.

The purpose of this paper is to provide a formulation
of the multi-Regge-pole hypotheses complementary to
that of Bali, Chew, and Pignotti. ~ Here, we start not
from the group 0(2,1) and the Toiler expansion but
from the group 0(3) and conventional partial-wave
expansions. This approach leads directly to the deduc-
tion of asymptotic behavior from the assumptions of
analyticity and boundedness of partial-wave scattering
amplitudes in the total angular momentum j.Thus the
familiarity and insight gained from the study of the

II. PARTIAL-WAVE EXPANSION FOR THE
MULTIPARTICLE SCATTERING

AMPLITUDE

Ke rederive here a partial-wave expansion for a
scattering amplitude with many incoming and many
outgoing particles given by one of us. ~ The derivation
we give here di6ers somewhat from that previously
given by leaning heavily on the techniques of group
theory.

The process we consider is lV~ incoming particles
with four-momenta p~~, p~2, ~, p~~~ scattering to
produce a final state of X~ particles with four-momenta
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three-dimensional rotation group and complex angular
momentum in two-body reactions can be applied to the
multi-Regge case. For example, in the present ap-
proach the so-called Toiler variables just become Euler
angles. For another example, when the external par-
ticles have spin, this approach leads directly to the
asymptotic behavior of the convenient helicity
amplitudes.

Unlike the Toiler analysis, but like the usual Regge
analysis, it is necessary to continue to a crossed channel
to obtain the asymptotic behavior. One suspects,
however, that the assumptions of analyticity and bound-
edness made in the Toiler type of analysis are at least
as strong as those made here.

The results presented here for the asymptotic
behavior of the production amplitudes are identical
with those implicit in the rules of Kibble' (at least for
spinless particles), identical with those obtained ex-
plicitly by Bali, Chew and Pignotti, ' and presumably
the same as those obtained by some others authors.

The advantage of the present approach is that it
makes clear the connection between multi-Regge
behavior and analyticity in the total angular momentum
of multiparticle partial-wave amplitudes.



MULTI —REGGE THEORY 1565

psi, ps', , ps')s (see Fig. 1). The two groups of
particles will be called clusters 3 and 8, respectively.

In what follows we work in the c.m. frame where the
three-vector sum is zero.
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It is useful to define a primitive plane-wave state
similarly to that defined in Ref. 5. Ke designate it by

I
&,) or

I A.), in which one designated member of the
cluster has its three-momentum parallel to the z axis
of a space-6xed coordinate system, and in which another
designated member of the cluster has its three-momen-
tum in the zy plane with positive y component.

It is not necessary to de6ne the primitive states in

exactly this fashion, but it is convenient to do so. Any
method of specifying a body-6xed set of axes in the
momenta of cluster 2 will yield a partial-wave expan-
sion of the same general form as that obtained by this
method (see Ref. t). Indeed, this fact will be employed
in Sec. IV.

An arbitrary plane-wave state can be brought into
the a,bove-defined primitive form by means of a rota-
tion. Thus we write, for example,

IA*)= lp», p», p» "),
where p~i is parallel to the z axis and pA. is in the zy
plane with positive y component. An arbitrary plane-
wave state

I A) can then be specified in terms of a rigid
rotation E(N) applied to one such primitive state:

IA)=E(N)IA, ).
The basic states in terms of which we perform the

pa, rtial-wave expansion are defined. as follows:

I z~~~t ~t»o)

i+1) f~ D „,'"(~)&(~)l&.), V.l)

where the integral in (2.1) means integration over the
entire rotation group. The rotations in (2.1) are para-
metrized as usual by means of the Euler angles:

In Appendix A, the properties of the states de6ned by
(2.1) are fully derived. Here we simply list these proper-
ties of the states lj ~m~p~tzsa):

(1) The state has well-defined total angular momen-
tum j~ and projection m~ on the z space-6xed axis.

(2) The quantum number pz is the projection of the
total angular momentum along the direction of p~i,
which is parallel to the s axis in the primitive state

I
A,).

(3) The variable tgs is the total four-momentum
squared:

us=(E p~~)'=(Z ps;)',

I' IG. 1. Multiparticle
scattering process.

PA2 PA%

ANa

and corresponds to the total c.m. energy squa, red, in
particular 4~&0.

(4) The symbol a denotes the "internal" variables
needed to specify the con6guration of cluster A in
addition to the energy which is given by 5». For
example, if cluster A consists of three particles, the
three-vectors pgi, p~. , and pA3 form a triangle. In this
case, a consists of two variables which might be specified
by two angles of the triangle (such as p~i y~2 and
p» p»), or, alternatively, by two Lorentz invariants
Lsuch as (p~i+p»)' and (p~, +p~3)'j. Since t~s is
given, the tria, ngle is then completely specified. Gener-
ally, a consists of 3AA —7 variables.

This development is similar to the helicity formalism
of Jacob and Wick, ' which deals with two-body scat-
tering in the presence of spin. In their case the helicity
is simply the projection of the total angular momentum
on the only natural body-fixed axis for the two-body
problem —the relative momentum.

The next step in obtaining a partial-wave expansion
comes by inverting the relationship given in (2.1),
thereby obtaining an expression for the plane-wave
states as a superposition of the angular-momentum
states. To this end we perform the summation:

(2j+1) D~xss''(I')
IttA= ~ &A=I ttAI mA jA

x Ii ~~~u~t»a).

Using the group property,

2A

x)x' ( ') ~ x'"*( )= )*s)~ "( ') ( ~
)'

mA Jg

and the identity,

(2j ~+1)D„„„„'~(u 'I') =t)(N 'I'), (2.3)-
t A—~ ~'A-If Aj

8 M. Jacob and G. C. Wick, Ann. Phys. (N Y ) 7. 404 (1959).
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2 ing, (2.6) just becomes the ordinary partial-wave
expansion.

III. THE COMPLETE MULTI-REGGE FORMULA
Fio. 2. Diagram for production process. FOR SPINLESS PARTICLES

In this section we apply the partial-wave expansion
(2.7) to derive a multi-Regge formula for the produc-
tion process (see Fig. 2),

we obtain from (2.1)

) A) =R(u) IA*)

( j&+ )' ~~»'"( )
0 PA 2A ~A &A

X
~
jzmxt x4aa). (2.4)

~e can now employ (2.4) to obtain a partial-wave
expansion for (B~ T~A), the connected part of the
multiparticle scattering amplitude. No loss of generality
results by evaluating (B

~
T

~
A) in a frame in which the

state ~B) is simply ~B.) Thus w. e wish to expand the
matrix element (B.

~
TR(u)

~
A,), where now the rotation

R(u) may be thought of as expressing the relative
orientation of the A and 8 clusters with respect to their
primitive states. The expansion for the state ~B,) is
simply

~B,) = p p (2ja+1)"'~jauava4ab), (2 5)

since D„„'(I)=b „.In (2.5), the equality of the helicity
pz with the z projection of jz is a special property of the
primitive state ~B,). The state R(u) ~A,) is given in its
expanded form by (2.4).

Using the rotational invariance of the operation T
which implies the conservation of angular momentum

j and its s projection m, we have finally from (2.4)
and (2.5):

(B f TfA)

00 g J
(2j+1)T„a»'(b, tea, a)D„a»'(u)

i-o tsar—i tsar

x+y —+ 1+2+ .+X
where the corresponding particle four-momenta are

p, p„, pq, pp, , p~, and alltheparticlesarespinless.
What we seek is a Regge-pole expansion that is valid
when the subenergies S;,=(p;+p, )' are all large.

To begin, we consider the crossed-channel process
x+1~g+2+3+ ~ +IV (Fig. 3). According to (2.6),
the partial-wave expansion for this process can now be
written

T= P e
—'»» g (2j+1)

XT»'(Vi, h)d„,p'(cos8y) . (3.1)

Here V~ denotes the variables that define the final
cluster (pp, . ,p„,p„-), and t, =(p,—p~)'. The absence
in (3.1) of a second t4 index and a corresponding de-
pendence on the third Euler angle P~ results from the
special case of the initial state being a two-particle
configuration of spinless particles. The two Euler
angles yq and 8~ specify the orientation of the initial
state with respect to the primitive final state

~ pp, pp, ~,p„-), which is analogous to the
~
B,) state of

Sec. II (for p, =e, =0, pr~jp, ).
One now makes the crucial assumption that T»&

in (3.1) possesses a continuation in jwith a Regge pole
at j=a&(t&) with the appropriate quantum numbers to
couple to x+1 which controls the asymptotic behavior. '
Furthermore, one assumes that the residue of the Regge
pole factorizes in its dependence on the variables charac-
terizing the initial and final states. These assumptions
are direct and natural generalizations of two-body
Regge theory. Thus we derive the following large cos8,
behavior of (3.1):

e ~ (gay+»e)'
ttB,yA j-~»{I tsar, /pa[ }

(2j+1) cpsgj ~oO»~oo
e '»»A»(l'~ t~)

Xfi(ti)(cos8i)»&'» (3.2)
XT»»'(btgaa)d»»'(cos8) . (2.6)

Equation (2.6) includes the definitions

T„,„,~(b,t», a) = (jmorat»b ~
T

~jmq&t»a), (2.7)

D~a» (u)=e ' " "" dla» (cos~) ~

As a consequence of rotational invariance, the ampli-
tude T»»& has no dependence on the azimuthal
quantum number ns. For the case of two-body scatter-

with y~, t~, and V~ aU held fixed.

9 The assumption that the multiparticle partial-wave amplitude
T~ has a continuation in J with Regge poles which control the
asymptotic behavior will be discussed in a forthcoming paper.
LT. K. Gaisser and C. E. Jones {to be published)g. We only
mention here that it is possible to de6ne a generalization of the
Froissart-Gribov amplitude to many-particle amplitudes. In
particular, the kinematic singularities in J of the dg functions are
combined with corresponding singularities in Tz in a way analo-
gous to that in the case of problems involving spin.
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The factor fz(tz) in (3.2) is essentially the square root
of P, the two-particle Regge residue for the process
x+1~ x+1, except that certain kinematic factors
including (sin&ra~) ' have been absorbed. The function
A» I is the other half of the factored Regge-pole residue
at j=o,&. It has the physical interpretation of being the
amplitude for the decay process (1)~2+3+ +&+g,
where particle (1) is a Reggeon at rest with mass 4't',
spin ~~, and projection p~ of its spin along the direction
ps. The asymptotic variable cosH& in (3.2) is linearly
related to s~2 by

FIG. 3. Crossed-channel process corre-
sponding to Fig. 2.

2 3 N

s» ——es&'+nsss —2I E&E2—(E&'—mp) 't'

X(E 2 sos 2)&/2 cosH ], (3.3)
where has the asymptotic behavior in cos82 Lin analogy with

ty —m, 2+m g2 $1—f2+W2'
and E2 =

(3 2)3

A „,~': P e '"'"'.4 ~'(tp, Vs) fs(t2, t&,t»)
co8d p, ~oo

It is important to verify that (3.2) gives a well-defined
asymptotic limit by showing that there are no variables
left over. There are 3$—7 variables in V~ plus t~, q ~,

and 8&, giving a total of 3(X+2)—10, which is the cor-
rect number of variables.

The decay amplitude A» ' may be connected with a
c.m. production amplitude by first making a complex
Lorene transformation in the direction y2 to the frame
where y~~) —p2 vanishes, p(~) being the momentum of the
Reggeon. Under this transformation, p~ remains the
projection of the angular momentum in the direction
p2. The amplitude may then be analytically continued
in the four-vector p& along a path which takes ps —+ —pg.
The quantity p& becomes the helicity of particle (1)
and A„, 1 thus represents the c.m. scattering amplitude
for the process

(1)+2—+ 3+4+ .+E+g,

where (1) denotes the Reggeon with helicity t&~.

In the c.m. system of (1) and 2, we can apply the
multiparticle partial-wave expansion (2.6) to A„, '.

Xe '"'&'(cos82) ~""'. (3 5)

As before, cos82 can be related to s23 by a formula
analogous to (3.3).

It is important to observe the form of the factorized
residue of the Regge pole at j=o&(t2), as expressed by
(3.5) and shown in Fig. 4. That f2(tst&t») does not de-
pend upon p2 is part of the factorization assumption,
since p, 2 is quantum number pertaining to the cluster
V2. The function A» ', just as before, is the decay
amplitude

(2) —+ 3+4+ +E+g,
where (2) is the Reggeon n, . This form of factorization
may be shown to be valid for Feynman diagrams at
physical-particle poles.

By repeating the above process X—1 times, we arrive
at the complete multi-Regge formula for the original
amplitude T, x+y~ i+2+. .+&V, where all the

e
—&&a»»+»&t&) Q (2j+1)

XA„,„&&(V2&ts&e&g&tg)d„,„,&(cosHs)
&

(3.4)
, &c, ,v, )

where t2=(p, —p~ —p2)', V2 denotes the variables in
the cluster (p» p~,p„), and the Euler angles ys, 82,
and &f&s specify the orientation in the c.m. system of the
initial state (1)+2 with respect to the primitive fina
state ~ps p„-) (with p2, 82, and &p2 all zero, p2~~pa).
Note that the dependence on the third Euler angle &f&,

must now be kept in general, because one of the two
initial particles has spin.

The partial-wave amplitude A»„,& has a Regge pole
at j=as(t2) with quantum numbers of (1)+2 and A„, &

Fro. 4. Factorized Regge residue.

&z ~Ca. C1 Vf~
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FIG. 5. More general cluster decomposition.

where
~1=4"+1+P 1,

t*=(P -Pi —Pi —''' —P)'
Fl(tl) fl(tl)

FX(t~ 1) fn (4—' 1)—
F1+i(ti+i, ti,a)i) = Q e '""""f1+1(ti+l,t, t»i) .

pk=oo

Being held fixed as the limit is taken are the Ã —2 angles
au; and the X—1 momentum transfers t;. This, together
with the J&t 1cos8;, m—akes a total of 3Ã —4=3(N+2)
—j.0 variables, which is the correct number.

IV. MORE GENERAL CLUSTER
DECOMPOSITIONS

In this section we illustrate the generality of the
theory developed in the previous sections for spinless
external particles by obtaining a multi-Regge formula,
not for the complete decomposition of Sec. III, but for
a cluster decomposition illustrated in Fig. 5. In that
figure the lines connecting the clusters represent Regge
poles with appropriate quantum numbers and serve
to define the momentum-transfer variables which are
held fixed in the multi-Regge limit. The variables
which are becoming large in this limit are then the
cosines of the scattering angles connecting successive
clusters in the crossed channel. These will be defined
more precisely in what follows.

In order to obtain the multi-Regge formula, we begin
by decomposing the external particles into two clusters,
as shown in Fig. 6. To make a partial-wave expansion
it is convenient to cross to a region where all the par-

Fro. 6. Two-cluster decomposition.

cos8; (or, alternatively, all the subenergies s;,) are large

T - Fl(tl)(cos81) '""Fi(tg,il, M&)(cos82) ""'
coses ~or&

)&Fg(4)hp&p). (cos8&l; 1) "-'&"-1&F&ll(tg i), (3.6)

ticles in cluster A are incoming and all the particles in

cluster 8 are outgoing. The partial-wave expansion
then has the form of Eq. (2.6) where the Euler angles
express the relative orientation of clusters A and. 8
in the c.m. system. These will be denoted by +zan, 8&z,
and &Phiz, and may be defined by specifying two-body
fixed frames as follows. The body-fixed frame for cluster

may be chosen arbitrarily and this arbitrariness
simply corresponds to the complete freedom one has in
choosing the primitive plane-wave states discussed in
Sec. II. In particular, one need not assume that any
particle of cluster A has its three-momentum in the s
direction. The body-fixed frame of cluster 8 is picked
more specially because of the later decomposition of
cluster 8 into the 8', C', of Fig. 5. The body-fixed
8 frame, while defined in the over-all c.m. system, must
be specified in terms of only those three-vectors corre-
sponding to the particles of cluster 8'. Otherwise the
frame is arbitrary.

With the assumption of Regge poles in the partial-
wave amplitudes of (2.6) we arrive at the following
asymptotic behavior in cos8~». , in analogy with (3.2);

T + p p ~& +»~4
~1 (b t~&&') p s—i~o&i»

(1)+8' -+ C =C'+D'+ . +Z', (4.2)

where where the primed letters in (4.2) stand for the
clusters of particles in Fig. 5 and (1) is the Reggeon of
mass tl't' and spin nl. For (4.2), we pick a. region where
the particles in cluster 8' are all incoming and those
in C are all outgoing.

We now go to the c.m. system for process (4.2) and,
just as before, we select an arbitrary body-fixed frame
for the incoming particle cluster (1)+8', and a body-
fixed frame for the cluster C, which is defined purely in
terms of the three-vectors of cluster C'. Again we
perform an expansion of the type (2.6), now in the vari-
able cos8~ q . It is important to note that if cluster 8'
consists of more than one particle, then p& is not the
helicity of the Reggeon (1) in the c.m. system of process
(4.2), but is a spin label specifying the state. This fact
in no way invalidates the use of expansion (2.6) for
A» 1, but it must be remembered that p, ~', the pro-
jection of the total angular momentum of the cluster
(1)+8' along the body-fixed s axis, is no longer the same
as p&, and consequently the partial-wave amplitude for
A» will depend both on p~ and p~'. This fact has the
important consequence that the final amplitude depends
upon both &Ps z and rpz» , not only. their sum as in
Sec. III with one-particle clusters. In fact, if the end

Xf '(a, t~s )(cos8~s )~l~'»'& (4 1)

where f„o 1 is essentially the complex conjugate of the
decay amplitude for the Reggeon o & going into cluster A.

As before, the appropriately continued A„, 1 can be
identified with the amplitude for the process
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V. ANALYSIS WITH SPIN

The multi-Regge analysis for amplitudes describing
the scattering of particles with spin may be found by a
similar method to that given above for the spinless
case. The only additional complication comes from the
crossing matrices.

Consider the process shown in Fig. 2, and suppose
that the external particles have spins s„s~, ~ ~ ~, sN, s„,
helicities X ., Xi, , X~, P„, and that the amplitude is
written Tq )„...q„q„. This amplitude is written in the
c.m. frame for which

px+py=pl+ +pÃ=0- (5.1)

It is to be related by crossing to that for the process
1+x~ 2+ ~ +g, and the result is to be partial-wave-
analyzed as in Sec. II. The method for finding the
crossing relation has been given by Trueman and Wick"
and consists of two steps:

(1) Make a Lorentz transformation from the c.m.
frame of the xy system to a frame where the total
c.m. momentum has an arbitrary value Pi.e., the mo-
menta are not restricted by Eq. (5.1)).The amplitude
T$ )t1 ppf$ is related to the "generalized helicity ampli-
tude" T'„....„„in the arbitrary frame by

2 Agcy" x»')i» ~ g1"»»x»l(~»»»'»&t ~

&» & '*(&*) ' 'D» & '"(r»)~'»»i" »x»» ~

where r; is the %'igner rotation associated with the
Lorentz transformation and the momentum p;, and g
is a phase which does not concern us here.

(2) An analytic continuation is performed to the
c.m. frame of the crossed channel where —pi and —p„
are then timelike and P„...„„becomes the helicity
amplitude for the process 1+x—+2+ - *+y in its
c.m. frame, the continued rotation matrices becoming
the crossing matrices. Alternatively, one can make a
complex Lorentz transformation to the frame where

p —p~=0, and then reach the crossed channel by a
continuation in the time components of the four-vectors.

"T.L. Trueman and G. C. Kick, Ann. Phys. (N. Y.) 26, 322
(&964).

clusters in Fig. 5 have three or more particles and if
each internal clusters have two or more particles, then
the amplitude depends on all 3.V Euler angles, where
.7+1 is the total number of clusters. In the case just
described, the asymptotic formula for Fig. 5, analogous
to (3.6) for cos8gz, ~ ~ ~, all large, is

T~ Fq(tzz, a,tt gg )(cos8gz~) '&'"z'~

XF2(tB'c~,tAz, b'A'B'c', pgz )(cos88 c')
X(cos8r z ) ""r'z'FN+i(tr z p', pr z ) (4 &)

Exactly which particles are incoming or outgoing in

Fig. 5 can be determined by the values of the internal-
cluster variables a, b', ., s'.

For our purposes we would follow this procedure by
(a) expressing the crossing matrices in terms of the
invariants, (b) a partial-wave expansion of T», ...»„',
(c) a Regge derivation of the asymptotic behavior in the
6rst subenergy, and (d) a continuation of the invariants
back to the region of interest for the process
x+y —+1+ . .+&V.

All the succeeding steps in obtaining the multi-Regge
formula as described in Sec. III involve considering
Reggeon decay amplitudes of the form (j—1) —+ j+
+y. As discussed in Sec. III, the crossing of particle j
will not aA'ect the helicity of the decaying Reggeon so
that crossing matrices are needed only for external
particles. Proceeding in this way one arrives at the
complete multi-Regge formula for particles with
spin:

~& 4" &x& ~»*»i" »x» D» & '*(r*)D»&xi"*(&&)' ' '

XD„„x„"(r„)Fg(pg,p„t,) (cos8,) ~ t'»

XF2(p2t2tg&aly) (cos8~)

X (COS8%—1) FK(pNp»tN 1)~—
Here successive rotation matrices a6ecting the same
particle have been combined. The signer rotations
r, rj, , r~, r„are expressible as

r;=h '(/, p;) ;it(gp), i=x, 1, , V, y (5.2)

where h '(q) is a standard Lorentz transformation to
the frame in which q is at rest and /; is the Lorentz
transformation from the frame where p +p„vanishes
to the following:

(a) for i=x to the frame where p, —p~ vanishes;
(b) for i =1, ~, X—1 to the frame where

p —pi —. —p; vanishes;
(c) for i=&V, y to the frame where p, —p&

— p~ &

vanishes.

It is important to note that the Lorentz transfor-
mations I; will be complex transformations since the
vectors p —p~ —p; are in general spaceiike in the
physical region for the process x+y ~ 1+ +E.Even
though the Lorentz transforrnations are complex, it is
shown in Appendix 8 that the r; remain real rotations.
This means that the elements of the crossing matrices
are each bounded by 1 so that the asymptotic behavior
in the cos8; remains the same as in the spinless case.

awhile the power-law dependence in the cos8; remains
the same as in the spinless case, the question naturally
arises as to whether the same factorization of the resi-
dues holds. It is shown in Appendix 8 that if the energy
of the ith particle becomes large in the multi-Regge
limit (s,, —+~, t;, co; 6xed), then the crossing angles are
functions of the invariants t;, t;, (in the case of par-
ticles x and 1 the crossing angle is a function of
alone and for particles I' and cV of t~, alone). Thus if
the multi-Regge limit is taken so that all the particle
energies become large, then the amplitude will factor
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as in the spinless case:

Tl~ll. ..l~lq ~ Gl(kl, kg, tl) (cos81) Gl(l( ltltl(dl)

X(coaxal)"("& ~ . (coseg l)~" "-'—Fg(zulu„, t~ l).

It is not necessary, however, to take the multi-Regge
limit in a way in which all the particle energies become
large. It is possible (as is shown in Appendix B and Refs.
3) to have at most one of the particle energies small and
still have all the s;; large, and the 3; and co; fixed. If
this is the case, the amplitude will not factor in the
way described above.

defined on the manifold of the rotation group, then

du f(u) = du f(uu) = du f(uu),

where the integration is carried out over the entire

group manifold and Q is some element of the group.
The second equality in (A2) follows from the invari-

ance of group integration. However, since

D--~"*(u 'u) =2 D-~-'"*(u ')D--"'(u)

VI. CONCLUSION

The multi-Regge analysis for production amplitudes
has been developed using partial-wave analysis tech-
niques. While proceeding in this way leads to the
same general prescriptions as those obtained by pre-
vious workers using different techniques, this approach
does have some advantages. At each stage the asymp-
totic behavior in a subenergy is derived from an
analyticity and boundedness assumption of a scattering
amplitude in an angular-momentum variable. This
allows the intuition built up about complex angular
momentum to be applied directly and may provide a
somewhat simpler kinematic understanding of the
multi-Regge decomposition than that provided by
other derivations.

APPENDIX A: MULTI-PARTICLE ANGULAR-
MOMENTUM STATES

In this appendix, we wish to derive the properties
of the states

I y~m~u~«)

=(2j+1)'" d D-...' ( )R( ) I~*) (A1)

=Z D-~"(u)D-.A'"*(u), (A3)

it follows that

R(u) I jgmaugta) =p D ~'4(u)
Ij~o(tlgta) (A. 4)

The behavior of the state
Ijzmzu&ta) under rotations,

as expressed by (A4) proves that this state has a total
angular momentum j& and z projection m&.

To establish property (iii), we first form a state It(z),
defined as follows:

2x

Iu~)
—— dp e FAv'e P+

I
Q )2'

(AS)

1 2

e(es, I&&) d& eiyxqe i(q e *I 4
—
)

271 0

1
=e'e""— dp e'"""e 'l' 'IA, ), (A6)

2'

We now show that It(g) is an eigenstate of J, with
eigenvalue p&, and consequently an eigenstate of p» - J.
To see this, we transform the state It(a) as follows:

We wish to prove that they are eigenstates with (i)
total angular momentum jz(j&+1), (ii) z projection of
angular momentum mz, and (iii) projection of angular
momentum along ply of t(g.

Properties (i) and (ii) can be proved by operating on
both sides of (Al) with an arbitrary rotation R(u)

R(u) Ij am~u~ta)

= (2j„+1)'(' du „D„„„'"~()u(Ru)uI A.)

again using the invariance property of the group inte-
gration. Thus,

e*&'Iu~) =e'&""
I u~), (A7)

(2j~+1)»l du D ~„~'&*(u)R(u) Itis). (AS)

and Iu~) is an eigenstate of J,. It is also an eigenstate
of p~l J since pl~ is along the s axis in the state

I A.)
and, according to (AS), only rotations around the s
axis are involved.

Now we wish to form states

=(2j„+1)l&& du D„ l l~(u-'u)R(u) IA,). (A2)

We state here for reference the invariance property of
group integration which we shall use repeatedly in the
arguments that follow. If f(u) is a continuous function

Since the operator p~g. J commutes with the rotation
R(u), these states (AS) are clearly eigenstates of pl J,
corresponding to a projection of the total angular
momentum along pJ of p~. We now show that the states
(AS) are the same as the states (A1), which completes
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the demonstration. We have from (AS)

(2t'g+1)'t2 du D ~„„'~*(u)R(u)Iu&)

2x

=(2j~+1)'"— d(p du D '&*(u)
2'7l O

=
I j~m»&«),

)&e*&' "R'(u) e '&~-I;1,) (A9)

where again we have used the invariance property of
the group integration.

APPENDIX 8: CROSSING MATMCES IN THE
MULTI-REGGE LIMIT

We first give the argument that the operator defined

by Eq. (5.2) still is a rotation even when the Lorentz
transformation l; is complex. Denote by q; the momen-
tum-transfer variable (typically p, —pi — —p;),
which l; transforms to rest. Consider Eq. (5.2) as a
4)(4 matrix equation first for timelike q;, where r; is
then a genuine Kigner rotation. As such it is real and
orthogonal, (F;)r, =1.Now, continue the components of

q; until the vector assumes its spacelike value. The r;
continues to be orthogonal, and operates only in the
3X3 spatial subspace. If the matrix elements are real
at the end of the continuation, it will be a rotation. To
see that this is the case, we note that we can pick /;

to be the boost in the direction of q; which transforms

q; to rest. The only two Lorentz transformations in

Eq. (5.2) which involve q are then 1, and tt '(l~p), and
it suffices to verify that their product is real. A conse-
quence of rotational invariance is that this can be done
in the frame in which q, points in the s axis and p;
lies in the xs plane. This is suScient because in contin-
uing q; from a timelike to a spacelike vector only the
component q' need be varied through real values and

q may be left unchanged. It is then an easy matter to
write out the matrices for the two boosts and one ro-
tation involved and verify explicitly that the product
is real.

%'e now consider the crossing matrices for a complete
multi-Regge decomposition (Fig. 2) in which all the
external particle energies become 1arge. In this case,
q, =(q,',q;) is the momentum-transfer four-vector such
that q =t;. From the conservation of energy it is clear

that all the q must become large in this multi-Regge
limit with the possible exception of one which we

denote q, .Let us consider a typical vertex with momenta

p, q, p+q, in which all of the vectors are becoming
infinite with p', q', and (p+q)' finite. Then

cosQ =
cosho. cosho' —coshp

sinho sinhcr'

Here,

tanh~=p'/Ip. l, «nh~'=P. '/Ip. 'I, «nhp=q. '/lq. l,

and (p,",p, ') are the components of the four-vector p,
in the frame in which q, =0. In the limit as p ~~, one
finds

cosQ =
qs' pe t~i —t~ —m'

I q, p, q, 'm'j'" $—(t, i t, m) —4m't—,]'"—
Since without loss of generality we may take q, in the
s direction and p, in the xs plane, the rotation becomes
one about the y axis by an angle which depends only on
the invariants t i and t . This is enough for the factori-
zation of Sec. V to hold.

It is not necessary for all the particle energies to
become large in the multi-Regge limit (s,, —mao, t;, ce;

fixed). It is easy to see that one can have p„q„and
q, ~ finite for some a and still satisfy the multi-Regge
constraints. In fact, at most one p, can remain finite,
since this condition implies that q, q & are finite and
by conservation of energy this can happen for only a
single a. In these cases it is no longer possible to express
the angle co in terms of t and t, i so that the factori-
zation will not hold.

p. q= (1/I p I I q I
)Lp'+q' (p+—q)'+p'q'0

One concludes, therefore, that in the multi-Regge limit
where all the particle energies become large, all the
vectors (p„p;,p„,q,) become collinear or anticollinear
except for the q, corresponding to the one q which

may remain finite. Thus in the infinite-energy multi-
Regge limit, all the crossing matrices as described in
Sec. V, except that for the particle a, become trivial
since no directions need be changed in the crossing
process. For particle a, the signer rotation associated
with the crossing is in the direction q )&p, through an
angle obtained by appropriately continuing a formula
given by Trueman and Kick":


