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Regge-Pole Model for Invariant Functions. II. The Charge-Exchange
Processes pn ~ np and pp ~ nn
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The structure of the pn —+ np and pp~ nn charge-exchange data is described by three Regge-type
poles in two invariant functions.

I. INTRODUCTION

~ 'HE pn —+ np and pp ~ nn high-energy data
show pronounced structure near the forward

direction (t=0)' 2:

(i) The differential cross sections

do/d$(pn~np) do/dt(pp~nn) s'& " (1)

have a strong s dependence for 0&a& —2.
(ii) The sum

Z(t) =2srs(s 4M')—)do/dt(pp —+ nn)

+do/dt(pn ~ np) j (2)

falls by 20—40% in the small interval 0& 3&&—0.02
(GeV/c)'.

(iii) The difference

a(t) = 2srs(s 4M')(do—/dt(pp ~ nn)

do/d~(pn ~—np)] (3)

increases by 150—300% in the interval 0~&t~& —0.02
(GeV/c)'.

Similar structure can be observed in the photoproduc-
tion processes'

yp ~ em+ and yn ~ Pg

where the same Regge trajectories occur. The two
processes are related by crossing. Thus the I~=i+
Regge trajectories provide the same contributions to
both processes. The I~= 1 contributions have opposite
sign.

In Sec. II we derive bounds from the Pn ~ np and

pp —+nn data on the residue function (t—n')p~(s, t,u)
of the m pole, which appears only in the t-channel
singlet amplitude @~(s,t,u) At t= p',. the residue func-

' G. Manning, A. G. Parham, J. D. Jafar, H. B. van der Raay,
D. H. Reading, B.D. Jones, J. Malos, and N. H. Lipman, Nuovo
Cimento 41A, 167 (1966).

P. Astbury, G. Brautti, G. Finocchiaro, A. Michelini, D.
Websdale, H. C. West, E. Polgar, W. Bensch, %'. E. Fischer,
B. Gobbi, and M. Pepin, Phys. Letters 23, 160 (1966); 22, 537
(1966); O. Czyzewski, B. Escoubes, Y. Goldschmidt-Clermont,
M. Guinea-Moorhead, D. R. O. Morrison, and S. de Unamuno-
Escoubes, ibid. 20, 554 (1966).

3 G. Buschhorn et al. , in Proceedings of the 1067 International
Symposium on Electron and Photon Interactions at High Energies
(Stanford Linear Accelerator Center, Stanford, Calif. , 1967); in
Proceedings of the Heidelberg International Conference on Elementary
Particles, edited by H. Filthuth {North-Holland Publishing Co.,
Amsterdam, 1968); A. M. Boyarski, F. Bulos, W. Busza, R.
Diebold, S. D. Kcklund, G. E. Fischer, J. R. Rees, and B.Richter,
Phys. Rev. Letters 20, 300 (1968).
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tion (3—p2)gq(s, t,m) is related to the vr3' coupling
constant. The bound and the connection to the ~X
coupling constant require at least a 100% increase of
the residue function (t—p')p&(s, t,u) in the small interval
0&&t~& p,'. Within the Toiler-pole model4' this behavior
must be reproduced by the x residue function, if the x
trajectory is assumed to be a class-III or a class-II
conspirator. For example, the residue function of the
the class-III conspirator in the Arbab —Dash fit I (see
Ref. 6) increases about 200% in the interval 0& t~&p'
This remarkable feature can be understood if one
starts from invariant functions' instead of helicity
amplitudes.

pi(s, t,u) = —(4M' t)zHs tH—
&

4M2—H4 —(5).
As was pointed out in Paper I, the x trajectory may

be produced by Regge-type poles'n3& &(/) =a (t) —1 and
nq(+'(t)=cx (/) in the invariant functions H3 and H~.
The trajctory as&+'(t) leads to an evasive solution and
the trajectory ns' '(t) to a conspiratorial solution of the
kinematical constraint. However, the m pole at t=p'
(o =0) appears only in the invariant function Hs.
The conspiring trajectory o.s& )(t)=a (t)+1 does not
produce a j~=0+, 0 parity doublet at n =0.Therefore,
the ~cV coupling constant is related only to the residue
of the evasive trajectory n (t)=as(t). The increase of
the n helicity residue function (t—p')P~(s, t,u) can be
explained by a strong compensation between the
conspiratorial part (H3) and the evasive part (H5) of
the n trajectory Lsee Eq. (5)$. The pn ~ np and
Pp~ nn data and the mX coupling constant yield a
bound, which requires "only" a 20—30% increase of
the residue function (t—n')H5(s, t,n) in 0~& t ~& p'.

This was probably the main motivation for the
Arbab —Dash fit II, where the m trajectory is assumed to
be evasive. The same compensation as described above
is achieved by the introduction of an additional
Io= 1 class-III conspiring parity doublet ns(t), od (t).
Within the Toiler-pole model one has to expect a

' M. Toiler, Nuovo Cimento 53A, 671 (1968).
'D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560

(1967).' F. Arbab and J. W. Dash, Phys. Rev. 163, 1603 (1967).' Y. N. Gribov and D. V. Volkov, Zh. Kksperim. i Teor. Fiz.
44, 1068 (1963) /English transl. : Soviet Phys. —JETP 17, 720
(1963)j.' K. H. Mutter, Nucl. Phys. BS, 311 (1968),

9 See, for example, Kq. (4) of Paper I. The identification
o. {t)=0.4(+) (t) has been shown to be inadequate.
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and
A2(1300), A&(1070), v» (1016),

A ...(1170), b(980),
(10)

with j2'=2+, 1+, 0+. The j2' assignment of the latter
resonances has not yet been determined. Ke have
shown in Paper I that a trajectory u3(t) has no coupling
to any two-scalar or two-pseudoscalar system (e.g. ,
v&r, EE).This is in good agreement with the dominant
decay rates of A2~ per and A&.&~ px, 3~, but in
disagreement with the large EK, ~ decay mode of
the x,y. The recent listing of particle properties by
Rosenfeld et al."gives two 3 ~ resonances:

j~=0+ particle at a&=0 and a j&=0 particle at
nq =0, unknown until now.

In Sec. III, we discuss a three-pole model for the
processes pn~np and pp —&nn. The m is assumed to
be evasive:

u (t) =u;&+&(t) =0.1(t—u').

The 8 is conspiratorial:

u (t) =u, &+&(t)+1= —0.14+t. (7)

In addition, we introduce an I@=1 conspirator C,
which is parametrized, as in Pignotti, by

uo(t) =u3' '(t)+1= —1+L«(0)+17'/
Luo(0)+1 —«'(0) t7 (8)

where uo(0) = —0.25 and uo'(0) = 1.9. The unconven-
tional sequence of the trajectories (6)—(8),

u.(t) &us(t) &uo(t), (9)

has an important eifect The. contributions of the con
spiring C LEIl. (g)7 and the evasive v LE&I. (6)7 provide
simultaneously the decrease of the sum (2) and the increase
of the difference (3).

Exactly the same mechanism works in the photo-
production processes (4)." As mentioned above, no
j2'=0+, 0 parity doublet occurs at 0,&=0, i.e., e3'
= —1. However, at" u~& &=1, i.e., t=1.19 (GeV/c)',
a quintet is predicted with jI'= 2+, 2, 1+, 0+, 0 . Four
1~=1 resonances can be found in this region:

II. BOUNDS FOR THE m RESIDUE FUNCTION

Ke calculate the.VA —+ cVE differential cross section
in terms of the invariantr functions H;(s, t,u), i=1,

~ ~ ~ ) ~

2&rs(s —4M') do /dt
=2~ (t 4M ).H, 4—M H, tH—,~—

+2
~
(t 4M') zH3 4M—'H4 tz(H—2+H3)+ —tH4 &

'
+2

~
tH2+4M'H3 —s(t—4M2)H,

~

'
+2~ tzH3 (t 4M')H —1—4M'zH2~'

—16tM'(s' —1) i H,+H, i', (11)
where

s= 1+2s/(4—M' t) . — (12)

The vr pole at t= p' can occur only in the s-u crossing-
symmetric part v&&&+&( st, u) of the t-channel singlet
amplitude (5).

our quintet. At the second recurrence nt.-=4, i.e.,
t= 2.3 (GeV/c), we expect a quintet jv= 4+, 4, 3+, 2+,
2 . The unnatural-parity members of this quintet
could be identif&ed with the resonance v ~(1640). The I3
trajectory (7) produces a j'= 1+, 1 doublet. The

partner of the 8 meson has not yet been observed.
At u&& =3, i.e., t =3.2 (GeV/c), a quintet j"=3+, 3,2,
1+, 1 is predicted. Candidates for the unnatural-parity
members 3+, 2, 1+ are provided by the resonance
p(1700). The p and It. trajectories are well determined
by an analysis of the charge-exchange processes
v. p~ v'n and s p~ rtn:

u, (t) =+0 57+0 8. t, .

ua(t) =+0.4+0.7t.

Obviously, they cannot reproduce the strong s depen-
dence" (1) or any other of the characteristic features of
Eqs. (1)-(3).The same holds for the p and I&'. contribu-
tions in the photoproduction processes (4). We therefore
conclude that they cannot play a dominant role in the
description of these processes, at least for small
values.

A2H(1315): Ia=1, j v=2+,
dominant decay mode px,

A2r, (1270): Io= 1 j "= (—1)',
dominant decay mode p~.

&t»&"&(s,t,u) = ,'$p&(s, t,u) ~-y (&u, t, )s7.

The residue of this pole,

&+(&st, )u=(t — p) &t(&st, )u,

(13)

(14)

The latter resonance may provide the 0+ and 2+ in
our quintet. Furthermore, according to Rosenfeld et al. ,

"
the A&(1070) may have two parts, with j&=1+ and
j"=2 . A j&=0 part in AI.& or 8 would complete

' K. H. Miitter and E. Trankle, following paper, Phys. Rev.
j.84, 1555 (1969)."This point is reached by a linear extrapolation nc (t) = —0.25
+1.9$ of (8), for t &0."¹Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H.
Rosenfeld, P. Soding, C. G. Wohl, M. Roos, and G. Conforti,
Rev. Mod. Phys. 41, 109 (1969).

is related to the ~rV coupling constant

lim ,v&&+(s&,t, )u=-'u'g'.
)~y 2

Only objects with unnatural parity and Ia= 1+ (e.g. ,
the 8 meson) can be exchanged in the antisymmetric
part &t&,

& '(s, t,u).
From Eqs. (5) and (11), two simple inequalities can

"H. Hogassen and A. Frisk, Phys. Letters 22, 90 {1966).
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l~(t) & I4 '+'(s, t,g) I'/I t—t 'I' (18)

Obviously, the connection with the mÃ coupling con-
stant (15) requires an extremely strong increase of the
sr residue function &t&r&+&(s,t,g) Wit.hin the Toiler-pole
model, this behavior must be reproduced by the x
residue function (if the sr is assumed to be a class-III
or class-II conspirator). Starting from invariant
functions, we have the following situation. The x pole
appears only in the s-u crossing-symmetric part
Hs&+&(s, t,g) of the invariant function Hs(s, t,m). The sr

trajectory may also occur in the s-u crossing-antisym-
metric part Hs& &(s,t,l) of the invariant function
Hs(s, t,m). However, there is no pole at t= ts' in
H, & &(s,t,u). The &ran coupling constant is related only

100,'

be seen:

2srs(s 4—M')da/dt(pn ~ np)&)2I 4&r&+&+&&», &
—

& I', (16)

2srs(s 4M—')d&s/dt(PP -+ nn) &~ 2
I Pr + —P, —

I
'. (I'i)

Inserting the Pm ~ mp and Pp —+ szn data, a restriction
shown in Fig. 1 (dotted curve) is obtained for the sr

residue function (14):

to the residue

lim Bs+(s,t,u) = lim (t y,—')H5&+&(s, t,m) = ——',g'. (19)
g~~m t&~~/

Two inequalities can be derived for Hs&+&(s, t,g) in
the approximation It/4M'I((1, independently of all

other contributions to the dilf erential cross section (11):

2srs(s 4M—')da/dt(pn ~ np)
& Lt/(t —t ')]'I& '+'+H ' '(t —t ') I', (2o)

2srs(s 4M2)do—/dt(pp ~. nn)
& Lt/(t —t ')]'IE"'—H ' '(t—t ') I', (21)

which give the sum

—.
' ~(t) & Lt/(t-")]'LIH "'(,t,n) I'

+IHs& &(s,t,u)(t —&us)Is]. (22)

Figure 1 (dashed curve) shows the bound (22) for
H5( )=0. However, this bound cannot be reached,
since the inequality (20) yields a lower bound in this
case Lcf. Fig. 1 (solid curve)].

It should be emphasized that, up to this point, our
considerations have been model-independent. In any
case, the bounds (20) and (22) and the connection (19)
to the mA coupling constant require a strongly de-
creasing pionic form factor of the nucleon.

90)
lg t'2

80.I

III. THREE-POLE MODEL FOR CHARGE-
EKCHANGE PROCESSES Pn —+ nP

AND pp —+ nn

Ke are restricting ourselves to the contributions of
the ~, 8, and C trajectories. The last is an I~=1
conspirator.

70.'
n. (t) =as&+&(t),

n»(t) =as&+& (t)+1,
n, (t) =n, &-&(t)+1.

(23)

(24)

(25)
60

RC

The invariant functions H;&~&(s,t,m), i=3, 5, are
Reggeized like the amplitudes in the spinless case:

H, &+&(s,t,ss) =H ~'(t)r( —n;&~&(t))

X f 1&expL —isrn &+&(t)]}(s'Is&&) "+'&'&, (26)

s'= s+-,'t —2' (2't)

Then the sum (2) and the difference (3) can be written
as follows:

Z(t) =4(LXc(1+cossrnc)+tX (1+cossrn )/n ]'
+LXc sinsrnc+tX sin&ra /n ]2

+4X&&'(1—cossrn»)+2Xc2(1+cossrnc)}, (28)

t (I, (- eg/'c)2)

6(t) = 8X»(2Xc(1+cossrnc —cossr(nB nc) cossrna]

+tXgrL1+ cossrn~ —cossr (na —n3)
—cossrns&]/n }, (29)

FIG. 1. Bounds for the 2i residue functions, calculated from the
pn —+ np and pp ~ nn data for Ei,b=8 GeV. Dotted curve:
iy1'+' (s,t,u} i

/p'= ~ LE (t) j'"(y'—t)/pP Lcf. Eq. (18)js dashed
curve: iHs&+&(s, t,u)

i

= (t/x'2)/Z{&) j'&s{t &s')/t fct. Eq. (22)j;—
solid curve: ~H5(+) (s,t,u} j

=
L 2ms(s —4M )do/d't(pe ~ np))'"

)&(t—p~)/t |cf. Eq. (20}j. For t=p, ', the residue functions are
related to the 2rcV coupling constant pcf. Eqs. (1S) and (19)j.
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where

Xc=2sDHq~ &(t)F(—uc(t)+1)(s'/so) «'&, (30)

X»= 2s&&&+&(t)I'(—a»(t)+1)(s'/so) ~&'& (31)

X-=~.(~)r(---(f)+»("/")-.«&.

The bound (21) (Fig. 1, solid curve) leads us, for
the x residue function, to the parametrization

&~"'(~)/o- = —-'. ((4—
& ')/(&'0 —~)1Y (33)

where tfj——13.5p'.
As mentioned in the Introduction, the strong decrease

of the sum can be understood by a compensation
between the conspiratorial and evasive parts:

C J

O J

Q&

0 ~

0.01 , =BGesic.

Xc(1+cos&rnc)+tX (1+cos&rn )/a . (34)

On the other hand, the two contributions yield an
increasing diGerence D(t), given opposite signs for the
signature factors

and
1+cos&roc —coss'(Q&& ac)——cos&ra&&

1+cos&r&~ —cos2f (tx&& &~)——cos&l cR&&.

(35)

(36)

This follows from the assumed sequence (9) of the
trajectories. The small value 6(0) can be reproduced by
a small signature factor (35) at t=0, i.e., at a small
diBerence a»(0) nc(0—) The .choice of the intercepts

Ba(0) and nc (0) in (7) and (8) is suggested by the s
dependence of the photoproduction processes (4).

The large difI'erences in the slopes n ', o.~', and n~'

LEqs. (6)—(8)j lead to increasing signature factors
(35) and (36) and in this way support the increase of
the difference (3).

Ke have tried to 6t the data with a linear C trajectory

n, (t) = —0.25+1.9t

0 0,2 0.4 0.6 0.8 ".0
~~t (Ge', '. c)

FIG. 2. Fit for the Pn —+ np differential cross section
at 3 and 8 GeV/c.

10)
5.

10

.55e'f/c

Figures 2 and 3 show our its for the pn ~»p and

pp ~ nn data. The scaling factor so is assumed to be
M for all trajectories; for the +X coupling constant in

Eq. (33) we took the correct value g'/4&r=14. The
masses of the resonances s, 8, and (A&, A&) fix one

rather than the Pignotti form (8).The sum (28) remains
unchanged. However, the difference (29) is 10—30%
smaller for larger values of 3 (—0.2&&t~&—0.5). This
results from a change in the sign of the signature factor
(35) at nc ———1. One could argue that this de6cit in
the difference h(t) may be compensated for by p and R
contributions. However, all interference terms which
enter into D(t) are very small: pR because of the
smallness of the diGerence n, —n~, p~ because o.C= —1

for t= —0.4; and pm, which is exactly zero.
The only relevant interference term may be the

RB one. Thus a considerable increase of the difference
can be achieved only by large p and R residues, which
enter quadratically in the sum. The critical quantity,
however, is the ratio Z(&!)/D(t). For example, the data
for E~,b ——8 GeV give

Z(t)/a(t) =1.6 for —0.2& t& —0.5.

)10

E
'l0

D
cj

0.1

0.01

5 Ge'&//c

&Ce' /c

7GeV/c

9GeV/c

0 0.'2 0.'4 0.'6 0.'9,.'0 '
&.
'2

0—t (GeV/c)
This value cannot be reproduced with large p and E.
contributions.

Fro. 3. Fit for the pP —+ nn differential cross section
at 3.5, 5, 7, and 9 GeV/c.
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parameter of the trajectories:

a.(u') =0, an(ttsz') = 1, ac(m„„,g,') = 2.

In addition we used the six parameters

a, '(0) =0.1, tp 1——3.5u',

ao'(0) = 1.9, Hs& '=24.49 mbU'/(GeV/c),

as'(0) = 1.0, Hs&+&= —14.85 mb'~s/(GeV/c) .

The pn ~ np data seem to be more energy-dependent
than the pp ~ nn. Much like Arbab and Dash, we were
not able to reproduce this behavior correctly. '4 However,
it should be emphasized that there are still systematic
errors in the data. According to Refs. 1 and 2, the
systematic normalization error of the g-GeV/c pn ~ np
data is 30—45%, and that of the pp ~ n8 data is 15%%u~.

IV. CONCLUSION

We have succeeded in giving a simple description for
the structure of the pn~np and pp~nH charge-
exchange processes. One strongly varying contribution—i.e., the contribution of the ~ pol- is available
to explain two pronounced features:

(i) The sharp forward peak of the pu ~ np differen-

'4 Arbab and Dash have multiplied (i) their pn ~ np calcula-
tions for 3 and 8 GeV by 1.0 and 0.75, and (ii) their pp-+ nn
calculations for 5 and 6, 7, and 9 GeV/c by 1.0 and 1.115, respec-
tively. Our calculations are not normalized.

tial cross section. This is reproduced by subtracting the

strongly increasing contributions of the evasive ~
trajectory from the large contributions of the con-

spirator C.
(ii) The forward dip of the difference da/dt(pn ~ uts)

do—/dt(pts ~ np) T. his results from the increasing

m-8 and conspirator-8 interference terms.
The similar structure of the photoproduction pro-

cesses yp~uw+ and yn~ pr is explained by the

same trajectories x, 8, and C. The I~= j. conspirator

ac(t) with intercept ac(0)= —0.25 and slope ac'(0)
=1.9 predicts (i) no resonances for ao(t)=0, (ii) a
quintet jp=2+, 2, 1+, 0+, 0 for ac(t) =2, i.e., t=1.19
(GeV)s, and (iii) a quintet j&=4+, 4, 3+, 2+, 2 for

ac(t)=4, i.e., t=2.3 GeV'. Candidates for the first

quintet are A2L, , AI.~, A I, x~, and 8; for the second x~.
The Regge-pole model for invariant functions

provides a simple method to reproduce conspiracy
eBects. Only one trajectory and one residue function

are needed. The number of the parameters is much

smaller than in the Toiler-pole model, where two

trajectories and three residue functions enter into the
description of a class-III conspiracy.
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Regge-Pole Model for Invariant Functions. III. Photoproduction for
Unpolarized and Linearly Polarized Photons
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It was shown in Paper II that the three Regge-type poles m, B, and C reproduce the pn -+ np and pP ~ nn
data. The same trajectories are used in this paper to give a description of the m+ photoproduction near the
forward direction (t=ol For larger . values of ~t[, however, inclusion of the p and R trajectories become
necessary.

I. INTRODUCTION

'T is well known that the Reggeization procedure for
~ ~ helicity amplitudes is complicated by kinematical
singularities and constraints. Therefore, we have pro-
posed' in Paper I to Reggeize the invariant functions
F,(s, t,u) in a decomposition of the scattering matrix in
terms of standard covariants' Q;:

T=g F,(s,t,u)Q;.

This expansion reproduces the kinematics exactly.
Therefore, the invariant functions are free of kine-
matical singularities and constraints and satisfy the
Mandelstam representation. The simple Reggeization
procedure of the spinless case can be applied. The physi-
cal interpretation of a Regge-type pole j =a,(t) in the
partial-wave amplitudes

dz F,(s,t,u)P; (z)

' K. H. Miitter, Nucl. Phys. 88, 311 (1968). K. H. Miitter, and %. R. Theis, Nuovo Cimento 62, 385 (1969);
fl K. Hepp, Helv. Phys. Acta 36, 355 (1963};K. Hardenberg, H. Kleinert and K. H. Miitter, 'bid. (to be published).


