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Small-angle high-energy elastic proton-proton scattering, i.e., the Pomeranchukon contribution, is
determined through unitarity in terms of a model for the inelastic intermediate states. These are represented
by two contributions: (i) quasielastic production of free pions, described in terms of a ¢-number source
current 3(k) for the pions, assuming factorization of the production amplitude into a part proportional
to the elastic pp amplitude times a part depending on 8 (k) and the proton momenta; (ii) peripheral produc-
tion of a spectrum of N* states by the longest range possible force-single-pion exchange. The combination
of these two contributions leads to an inhomogeneous integral equation for the elastic amplitude F (s, 6)
of the form

2 TmF (500 =(§f;—21>2 d2(6,6) F*(s9)F (5.0)Z(00')+A(s,00)

which becomes the condition for elastic unitarity when Z(6,8')= (P+/s)™! and A(s,80) =0, i.e., when no
pions are produced. The inhomogeneous term is generated by the sum over peripheral N* states, while the
integral arises from the quasielastic contribution. The assumption of a ¢-number current implies that the
pions are produced in a coherent state. The unitarity sum over quasielastic states can be replaced by an
integral over coherent states, and their properties, familiar in quantum optics, as well as the factorization
assumption, are used to obtain an analytic form for Z(8,§’) in the high-energy limit. The kernel Z(6,6")
depends upon the average multiplicity 7 (P,6) of pions in phase space at c.m. proton momentum P and
scattering angle §, as well as on more detailed characteristics of the current 8 (k). However, 7(P,6) can
be determined from inelastic pp interactions and is used to establish the general behavior of 8 (&), since

_ d*k .

w(P0)= [ G B®L
The above integral equation for F(s,) is simplified under Fourier-Bessel transformation to its impact-
parameter representation when the high-energy, small-angle limit is taken. The resulting nonlinear, in-
homogeneous integral equation is solved numerically, and used to determine the elastic differential cross
section do/dt. Normalizing the amplitude to the total cross section oo in the forward direction, one finds
that the iterative solution can be considered to depend on oy, the elastic cross section oer, a parameter o
determined by 7(P,6), and a free parameter A that parametrizes the phase of 8 (k). With experimentally
determined values of otot, oe1, and «, the parameter X can be fitted to give do/dt in agreement with elastic
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data at 25 GeV/c for ¢ in the range 0 < —¢< 1.0 (GeV/c)2.

I. INTRODUCTION

A NUMBER of interesting approaches have been
made to the problem of calculating the elastic
scattering amplitude from unitarity, by imposing
suitable models for the important inelastic contri-
butions. On the one hand, there are the rather detailed
approaches based on Regge formulations such as those
of Fubini and collaborators,! recently generalized in
terms of multi-Regge contributions by Chew, Gold-
berger, and Low.? A recent approach of Freund,?® though
less ambitious, considers the Pomeranchukon as gen-
erated by a sum over all multiperipheral graph con-
tributions via unitarity. This sum is related to a sum
over two-body intermediate states by duality and then
restrictions are placed on the slope and intercept of
the Pomeranchukon at {=0.

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

T Present address: Center for Particle Theory, University of
Texas, Austin, Tex. 78712.
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On the other hand, there are the more phenomeno-
logical approaches. One is that of Van Hove,* which is
characterized by the separation of the unitarity integral
into an elastic contribution plus an overlap function,
the latter characterizing the inelastic contributions.
This formulation, however, proved to be inconvenient,
since simple models for the overlap function with
parameters determined in terms of inelastic data could
not adequately explain the elastic shadow scattering.®
Another phenomenological approach,® with the object
of determining the elastic diffraction peak or the
Pomeranchukon contribution as shadow scattering,
was to neglect all but two-body intermediate states,
peripherally produced by single-particle exchange.
This proved to be of limited value: For example, in
pp scattering, where the dominant contribution for
two-body final states proceeds via single-pion exchange
for small ¢, the resultant elastic differential cross section
do/dt agrees with the experimental diffraction peak
only for 0< (—2)<0.1(GeV/c)2.

4L. Van Hove, Nuovo Cimento 28, 798 (1963).

¢ L. Michejda, Nucl. Phys. B4, 113 (1967); K. Zalewski and
L. Van Hove, Nuovo Cimento 46A, 807 (1966).

®R. C. Arnold, Phys. Rev. 136, B1388 (1964); A. Bialas, Th.
W. Ruijgrok, and L. Van Hove, Nuovo Cimento 37, 608 (1965).
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Here, we consider a simple phenomenological model
for producing the Pomeranchukon contribution, i.e.,
the elastic diffraction peak, in high-energy proton-
proton scattering as shadow scattering, saturating
unitarity with two-body intermediate states plus the
contribution of inelastic production of free pions. The
general ideas of this approach can also be applied to
large-angle elastic scattering.”

In this model, as with previous approaches, spin and
isospin are neglected to avoid prohibitive complexities.
However, spin effects are believed to be unimportant
at high energies. Furthermore, based on the dominance
of pion production in pp processes over other inelastic
channels, we assume that at high energies only pion
production which is either free—phase space distri-
bution—or a part of an N* is important.

Our model for the inelastic pp states consists of two
contributions. One is the quasielastic or phenomeno-
logical sofi-meson® contribution whose major assumption
is that the pions are produced by a ¢-number current.
In such a model the recoil of the mesons on the protons
is negligible. A natural extension of this property is
the assumption that the inelastic amplitude for pro-
duction of free pions by protons factorizes into a pion
part characterized by a ¢-number current and a quasi-
elastic proton part that depends only on the proton
momenta. Numerous attempts at calculating the
secondary particle distributions based on this model
for the inelastic states have been made.® From the
results, it seems reasonable to conclude that the model
is quite useful provided that an adequate model for
the pion source current is used.”® Two aspects of this
model are particularly useful in simplifying the net
contribution to unitarity: (i) The norm of the ¢-
number pion source current is directly related to the
average pion multiplicity for free pions, which has been
inferred by Anderson and Collins" from an analysis
of pp interactions. (ii) This method of treating the
pions, i.e., as being produced in a statistically inde-
dependent manner—phase space—by a c¢-number
current, leads to the useful result that the pions in
this model are produced in a cokerent state.'*"® Making
use of this characteristic of the model provides a novel
approach that simplifies the relevant unitarity integral.

The other contribution to the inelastic pp states
consist of the sum over all two-body final states where

7 A more detailed model for the meson current than that con-
sidered here is necessary in the large-angle scattering case.
ha See H. A. Kastrup, Nucl. Phys. B1, 309 (1967), and references
therein.

9 Z. Chylinski, Nucl. Phys. 44, 58 (1963); A. Bialas and T.
Ruijgrok, Nuovo Cimento 39, 1061 (1965); R. C. Arnold and
P. E. Heckman, Phys. Rev. 164, 1822 (1967).

10 The applicability of c-number meson source currents at high
energies is discussed in Sec. III as well as Refs. 8 and 9.

11 E. W. Anderson and G. B. Collins, Phys. Rev. Letters 19,
201 (1967).

2 R. J. Glauber, Phys. Rev. Letters 10, 84 (1963); Phys. Rev.
131, 2766 (1963).

1B J. R. Klauder and E. C. G. Sudarshan, Fundamentals of
Quantum Optics (W. A. Benjamin, Inc., New York, 1968).
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at least one generalized N* state is produced.* This
sum corresponds to the peripheral contribution and is
dominated by the longest-range force, i.e., one-pion
exchange (OPE), near the forward direction. Similar
contributions have been considered by Arnold, Van
Hove,® and Freund.?

The impact-parameter or Fourier-Bessel represen-
tation of the scattering amplitudes, introduced for
dispersion theory by Blankenbecler and Goldberger,'®
will be used to formulate our final equations. Not only
the physical content but also the form of the expressions
is most convenient in this representation. The scat-
tering amplitude F(s,) which has the partial-wave
decomposition

F(s,)=2 2+1)P,(z)n,(s),
i

where z is the cosine of the scattering angle, becomes
in the Fourier-Bessel representation

F(s,t)= / " 2P Jolbv/—On(bys).  (1.1)

Here P is the appropriate c.m. three-momentum, and
b is the impact parameter; in the high-energy limit
Pb~1.

When the two contributions dicussed above are used
to saturate unitarity, one obtains an integral equation
for the elastic pp amplitude where the kernal depends
on the c-number source current and the inhomogeneous
term is formed by the sum over the two-body N* con-
tribution. The equation is solved in the Fourier-Bessel
representation in the high-energy limit, where it
becomes particularly simple and where the real part
of the elastic amplitude is negligible. The solution,
expressed in terms of the elastic differential cross
section, depends on the total and elastic pp cross
sections o and oge, and a free parameter A. For
reasonable asymptotic values of oy and ge1, A can be
fitted to provide the characteristic form of the elastic
diffraction peak from =0 to = —1.0 (GeV/c)?, where
the cross section decreases through four orders of
magnitude. The resulting value of \ can be interpreted
in terms of a simple model.

The development of this work will proceed as follows.
Section IT will be devoted to a discussion of the two-
body N* contribution to unitarity. Section III follows
with a discussion of the assumptions involved in the
quasielastic contribution and the relation of the pion
source current to experiment. The details concerning
the calculation of the quasielastic contribution to
unitarity in terms of coherent states is presented in

1 We consider a spectrum of N*’s of various masses and spins
that may be produced at a given energy and which may lie on
Regge trajectories. We assume that the number of such states
that are possible increases with energy.

18 R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 (1962).
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Sec. IV. The results of Secs. IT and IV are combined
in Sec. V, where the full nonlinear integral equation
and its solution are discussed. The work is then sum-
marized in Sec. VI. An Appendix follows which is
devoted to properties of coherent states that are im-
portant to the body of the paper.

II. N* CONTRIBUTION TO UNITARITY

The production of N*s in inelastic pp scattering
forms our peripheral contribution. In the high-energy,
small-# region it is reasonable to assume that this
contribution is produced via OPE; the longest-range
force dominates near the forward direction. We include
all such diagrams, summing over all N'* intermediate
states in unitarity up to the total energy available for
their formation. That is, we take the sum over all box
diagrams as given in Fig. 1.% Freund® considers a
similar sum over NV* states.

Following Arnold,® we note that the ¢ dependence,
and thus the & dependence, of each term in the sum
factors out of the sum in the high-energy limit. To see
this, consider, neglecting spin contributions, a single
term of Fig. 1 where an N* and nucleon with masses
M* and M, respectively, are in the intermediate state;
pions of mass u are exchanged. This single term has a
contribution to the imaginary part of the amplitude
which we denote by ImF @ (s,/). We then have

2ImF®W(s,4) = /Fin* (tin)Fin(Im)d@, (2.1)

(4m)2W

where lin= (p1— pin)? ltn= (Pin— p1')%, 5= W?2= (p1+p2)%,
and ¢; is the c.m. three-momentum in the initial state.
In our case, Fin and Fi. correspond to the single-pion-
exchange contributions, i.e.,

Fin=GnN*+GNN=/ (lin—p?)

and, similarly, for Fs,. Using these forms in (2.1) and
making a change of variables, we have!”

D dr 0(AM* M ,u,s,t'))
[ 2.2)

ImF® (s,) =— )
2r ) (—0) [rA(M* M us,t’) ]2

where

AM* M p,s,0")=[s— (M*— M) (¢ —4u?)
X[s— (M~+M*)]—4(M%— M)
—4(M*—My[(M*+M)M —p* ]
and
D= |Gyn*:Gnn-|2.

16 In addition to the sum of box diagrams of Fig. 1 there is
also a contribution to pp elastic scattering by the longest-range
force from the single meson exchange (tree) graph. This con-
tribution, however, is O(s™) and is negligible in the high-energy
limit under consideration.

17 S. Mandelstan, Phys. Rev. 115, 1741 (1959).
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UNITARY SUM OVER N* SPECTRUM

Fic. 1. Unitarity contribu- o IN* b
tion to pp elastic scattering of —1:;‘:[_—
the sum over two-body, periph- 3 o (gp* ! ! j
erally produced N* states. jor e il

P 1 P

Taking the Fourier-Bessel transform, we have

D
Imn® (b,s)=—
™

[Ko(ub(1+£))F

X b
G = O L= OO+
3

where Ko(- - -) is a modified Bessel function,'® and
(%= M242)
- (A
(M — ML (M*+M)M — 12
ws— (=ML~ 3071

We see that, in the limit of large s,
Imy® (b,5)~ (1/*) Ko(ub). (2.4)

Now we consider the sum over N*’s of Fig. 1. Using
(2.3), we can write the total contribution of A*’s as

Imy(b,s)| v*=2% Hi(N:*)
y {Ko(ub[1+£(s,V %) ]}

s2

, (29)

where the H;(V*) correspond to the appropriate
weighting factors for each V;* contribution. Taking the
limit of large s in going from (2.3) to (2.4), we obtain

Imy (b,s) | n*=C(s)K 2 (ubd). (2.6)

After factoring out the Bessel function from each term,
we are left with a sum over H;(N;*). We shall see below
that the actual s dependence of this sum is strongly
restricted by experiment. In fact, even here it is clear
that

C()=0(sm),

where #>0 in order that the total cross section g0t 70
increase with increasing s.

In order that C(s) fall off less rapidly than the
O(1/s*) of each term of (2.5), one can appeal to a
model of infinitely rising N* Regge trajectories such
that at each mass value, M,=+/sn, there are j, N*
resonances with the same mass but possibly different

18 Handbook of Mathematical Functions, edited by M. Abramo-
witz and L. A. Stegun (U. S. Department of Commerce, National
]S3ure§; of Standards, Washington, D. C., 1964), Appl. Math.

er. 55.



QUASIELASTIC CONTRIBUTION

F1G. 2. Schematic version of the unitarity contribution to pp
scattering of the phenomenological soft pion or quasielastic pp
states.

spins where j, increases with energy.?® In this case,
the sum on ¢ in (2.5) becomes

S HWNVH =T 3 Hn(M)=F Ga(M.).

n =1 n

Suppose, e.g., that we have
Gn(Mn)N (Mn)2

and the trajectories involved have a common slope o/,
with M ,? given by

(Mn)?=M¢+n/o,

where # is an integer. Then the sum of G, over # up to
some integer n= N is given by

1 N(N+1)

N N
> G(M )~ (M) =NM?+4—
n n o 2

Since N~s for increasing s, such a dependence on the
mass of the intermediate N* states could produce a
C(s) of Eq. (2.6) that is slowly varying with s.

In our model, which includes the above N* con-
tribution, i.e., Eq. (2.6), as well as the quasielastic
contribution to be discussed next, we shall see that
C(s) must be a slowly varying function of s in order
that the predicted falloff of the elastic diffraction peak
agree with experiment.

III. QUASIELASTIC PART—ASSUMPTIONS

The important assumptions concerning the quasi-
elastic part are® (i) that the pion source current is a
¢ number and (ii) the factorization of the inelastic
amplitude referring to the production of free pions.
Further, we neglect the pseudoscalar character of the
pions here. A possible justification of doing this as
well as our neglect of isospin is to say that we consider
only neutral, scalar combinations of pions.

We consider a boson field ¢(x) with a current source
B(x) satisfying, as usual,

(O+w2)e (x)=B(x).

Our first assumption, that 8(x) is a ¢ number, permits
us to solve exactly for the unitary operator Sg that
connects the asymptotic in and out states

Sﬂ_l¢inSﬂ = out -
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In this case ¢in and ¢oy¢ differ by a ¢ number and we
obtain?®®

s=exn| [ Zw(i?r)f(k)am*(k)}
Xexp[— / wa;)xﬁ*(k)am(k)]

1 ek B |2 3.12)
xea = [ 1o SBOF], e

where ain'(k) and ain(k) are the momentum-space
creation and annihilation operators, respectively, of
the meson field; 8(k) is the Fourier transform of 8(x),
and w=ko=[k24pu2]'"2

When we compare Sg above with the unitary operator
U(B) of Eq. (A13) that generates the coherent state
|8) from the vacuum, we see that

Sﬁ= U(ﬁ) ’

Ss[0)=8).

Our second assumption, factorization, corresponds to
a particular identification of the external source pro-
ducing the pion field. With the over-all S and T matrices
related by S=144T, the T matrix element between
an initial state of two protons with momentum P, and
P, and a final state of two protons of momenta Pj, P,
and a collection of pions of total momentum ¢, we have

(a(q)P3P4| T1P1P2>= (2m)%8*(Pr+ P,
- (P3+P4+Q))M12,34q. (32)

Our assumption is that the amplitude M factorizes, i.e.,

M 1z,350=(a(q) | Sp| O)ta2,34, (3.3)

where f15,34 equals the elastic pp amplitude when ¢=0
and varies slowly with energy in an energy region
including that taken off by the pions. Below, the
combinations of pions with momentum ¢ will corre-
spond to the coherent state of definite energy mo-
mentum?® which we use to saturate the intermediate
states for this contribution. The meson factor
{a(g)|Ss]0)={(a(g)|B) depends on the proton momenta
through the meson source current (k).

The factorization assumption is equivalent to treating
the over-all Hilbert space for the proton and pion fields
as some kind of semidirect product of proton and pion
parts. That is, we have

{out| = {a(q) out|®(PsP;out|,

ie.,
(3.1b)

(in| = |0 in)®| P1Psin),

1 J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill Book Co., New York, 1964), 1st ed., p. 202,

% See Part C of the Appendix for the definition of coherent
states of definite energy-momentum.
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where the semidirect product multiplication is such
as to give the amplitude factorization of Eq. (3.3).

Both the assumption regarding the ¢-number char-
acter of the meson source current as well as factor-
ization require that the pion production occur with
negligible recoil to the nucleons. This seems to be
supported by high-energy cosmic-ray data® on nucleon-
nucleon interactions. Another justification of these
assumptions is that properties of high-energy scattering
seem to be dependent on the transverse momenta of the
primary particles.’t? This would suggest that the
inelastic pion production amplitude (3.3) including
the proton part {1234 is not very sensitive to losses in
longitudinal momentum attributed to the final pions.

Descriptions of inelastic processes incorporating
these two assumptions have been attempted by many
authors®® with varying degrees of success, depending
upon their ingenuity in constructing an appropriate
meson source current. Arnold and Heckman® used a
detailed model for the current based on classical
synchrotron radiation and obtained good fits to in-
elastic data for single pion production.

Here we have attempted to restrict the form of this
current as much as possible from experiment. In this
model the average pion multiplicity 7(P,8) at a given
cm. incident momentum P and scattering angle § of
the primaries is given by

Pk
o= [ Solskrar, G

2u(

where we have explicitly put in the P, 8 dependence of
the current 8. Since our quasielastic contribution refers
to the production of pions in phase space, the multi-
plicity which interests us is the corresponding pion
phase-space multiplicity. Though direct measurements
of this quantity have not been made, Anderson and
Collins™ have inferred it from an analysis of p+p— p
-+anything, using the above phenomenological soft-
pion model for large angles where peripheral contri-
butions were believed unimportant. To do this they
fit the whole momentum spectrum d?/dQdP in the
c.m. for fixed 6 and P using the differential phase space
for two nucleons and 7 pions. They found that

7(P,0)=2aP sind, (3.5)

where
a=1.25+0.16 (GeV/c)!.

The contribution of the quasielastic part to unitarity
depends directly on 72(P,8). However, further character-
istics of the current B(k,P,0) are required. In what
follows, we assume that the current factorizes as follows:

B(k,P,0)= (P sinb)2(k,P)eis® (3.6)

where 3(k,P) depends on the magnitude of P and the
phase factor is such that g(8)~@ for small 6. A rea-

2t G. Cocconi, Nuovo Cimento 57, 837 (1968).
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sonable model for 3(%,P) is derived by considering the
pions to have a Gaussian distribution in configuration
space of width 4. Further, the Gaussian will be Lorentz-
contracted along the direction of the nucleon’s motion.
The corresponding form for 3(k,P) in momentum space
is given by?

B(k,P)~exp[— (3A%2+ A%/ 298],  (3.7)

where k1 and ki correspond to the meson momenta in
the directions perpendicular and parallel to the c.m.
nucleon momentum. We shall discuss implications of
this Gaussian form for the current in Sec. VI.

IV. QUASIELASTIC PART—CONTRIBUTION
TO UNITARITY

In our model for the quasielastic part, which we
described above, the pions are produced in a coherent
state characterized by the c¢-number source current 8
with Egs. (3.1b) and (3.3) satisfied. To determine the
contribution to unitarity, we take advantage of this
structure and saturate the intermediate states with
coherent states of pions plus two nucleons. The form
of the saturation is obtained by considering the nucleon
space to be contained in the vacuum of the pion part
so that Eq. (A20), the resolution of the identity for
coherent states of definite energy and momentum, can
be used directly.

A. Simplification of Unitarity Integral

The quasielastic contribution to unitarity is repre-
sented by the diagram in Fig. 2, where the various
symbols that are to be used are identified. There, P,
and P, refer to the incident c.m. four-momenta of the
protons, Pi, Ps. their intermediate-state c.m. mo-
menta, and Py, P, their final-state c.m. momenta;
the angles between the c.m. momenta of the initial-final,
initial-intermediate, and intermediate-final states are
denoted by 6o, 8, and ', respectively.

In order to obtain the general form for the quasi-
elastic contribution to unitarity, we begin with the
usual T operator form of unitarity

2ImT=T'T.

Taking matrix elements between initial and final proton
states and restricting the sum over intermediate states
to the quasielastic (Q.E.) states, we obtain

2 Im(Plng’lTlP1P2>’Q.E.
= Y (PYPY|T'n)n|T|PPy). (4.1)

n=Q.

Within our model the sum over the quasielastic states
corresponds to the sum over all possible meson states that

2 See, e.g., A. D. Krisch, Lectures in Theoretical Physics (Gordon
anc} Breach, Science Publishers, Inc., New York, 1967), Vol. IXB,
p- 1
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can be produced. In the entire space of states modulo
the two-particle states where this sum occurs, we assume
that the unitarity sum can be saturated by the coherent
states; i.e., we replace the sum by the unit operator in
this space,

1
= = o 4 4k
> |n)n|=IqE. 2 /[d d*qd

n=Q.E.

dePlndsPWLla(q)PlnPhL)(a(k)PlnP?nE I} (42)

where the measure [de] is defined in the appendix.
Using Eq. (4.2) in (4.1), we find

2 Im(Pl'lei TI P1P2>= (21r)2/d4qd4k[da]

Xd3P1nd3P2nl*1/2',1n2n11n2n,12<ﬁ’ l a(q))(cz(k) 15}

Xt (k+Pp,—P)s*(Py—g—P,), (4.3)
where we have used the notation of Egs. (3.1)-(3.3)
and B'=pB(¢"), B=p(0), the angle argument of the
external current B distinguishing between the two
vertices of Fig. 2; we also have put Pp=Pi,+ Psn,
P;=P,+P, and P;=P/+P;. Note that (8’| and
|B) are coherent states that depend on the ¢-number
current source 8 while |a(g)) is a coherent state of
mesons with definite energy-momentum as defined in
the appendix. We can simplify the form of Eq. (4.3)
considerably by using the properties of coherent states
discussed in the appendix. Consider the part

y= / diqd**[da)(B' | a(g) (k) |8)
X (k+Pu—P )5 (Py—Pu—q). (44a)

This reduces to

y= / dgd[da (' (@) a)(al BR))
X3 (k+Pn—P)5*(Py—Po—q).

Now since /"[do]| @){e| =1, we have, with some further
simplification,

Y =8(P;—P) / 9(8|8(0)) (Pi—Pu—g). (44b)

This result when put into the unitarity integral (4.3)
with

M2
——————F(5,040)
(EEsE Ea)'?

M2 d*Pi, d*Ps,
Jes
(27")2 Eln E2n

Xﬁ“(P.-—Pn—q)F*(S,g')F(S;a)Qs'lﬁ(Q));

la b,cd=
gives

2 1ImF (s,80) |q.8.=

4.5)
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where s= (P1+ P,)2=1W? M is the nucleon mass, and
cos@’ = cosfy cosf+sind, sinf cos¢, with ¢ the azi-
muthal angle of the intermediate-state momentum
vector.
The integrations over the intermediate-state momenta
yield
2

2T (slas = f d'q PAQ(0.6)F* (5,9)

)?

F(s,6)(8'18(9))
(W —qo)P+(Eai/P)q-P’

(4.6)

where P is the c.m. three-momentum of the proton in
the intermediate state with magnitude P. Since the
recoil to the protons is negligible in our model, P is
assumed to deviate negligibly from the magnitude of
the initial c.m. momentum—small inelasticity. This
allows one to treat P as a constant in Eq. (4.6) and
thereby reduce the complexity of the ¢ integrations
considerably. Taking advantage of this fact, (4.6)
becomes

V2

2 ImF(S,ﬂo) IQ,E‘ =
(2

/ 19(68)F*(5,0')

)2

X (F(s,0)Z(s,6,6"), (4.7a)

where one finds after some simplification that

1

1 o0
2G00)=— f dxoe(w0)e (B (a(x0))B), (4.7b)

with |(a(x¢))8) the coherent state translated by the
four-vector a(xo) and defined in Eq. (A18). The four-
vector a(xo) is given by

a(x0)= (xo,x0(W/2P2)P) (4.7¢)
and
e(xg)=—4+1 for x>0
=—1 for x<O0.

The form of the inner product of coherent states that
appears in (4.7b), using the results in the Appendix
and the relation of the current to the pion multiplicity
of (3.4) and (3.5), has the form

ak

(2m)32w

@ Lol 19) =P 00 expl /

><l3*(k,P,0')B(k,P,0)e""““"WP"‘/””]. @.8)

We now take up the question of reducing Z(s,6,6’)
to an analytic form in the high-energy limit and then
derive the form of the quasielastic contribution in the
impact-parameter representation.
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B. Z(s,0,0’) in the High-Energy Limit

The kernel of (4.7a), i.e., Z(s,0’,6), can be simplified
in the high-energy limit by standard asymptotic
approximation methods. For purposes of discussion,
we rewrite the kernel in the form

Z(5,0,0))=(1/P)eaP.00+a.001] (5 00"), (4.9a)
where .
](S,B,G’)E; f dxoe(x) e =0eZE0) - (4.9b)
with 2
2 (x0) =Zp(x0) +iZ1(x0) ,

Zr(x0) d%k cos(xb - k)
- Re[ M (k6,6
(21(x0)> / (21r)32w{ LM 60)]<sin(xob.k)>

sin (xob k)
qzlmf:M(k,G,G’)]( >} . (4.9¢)
cos(xob-k)/ !
For later use, we define
PAR(xo)EER(xo) , PAI(;XJQ)E El(xo) . (49(1)
In this final equation, we have defined,
u,’
b-k=w——P-k,
2p? (4.10a)

M (k,0,6")=p5*(k,0')8(k,0)

where the energy dependence in B and M has been
suppressed.

We have already introduced our general model for
the current 8(k) in the form given by Eq. (3.6). In
terms of it, M has the form

M (k,6,8')= P(sinf sing’)!2| (k) |2eilv@—=0 @)1 (4.10b)

It is clear from the definition of M that for ,=0, we
have ImM =0, since §=6" at that point. Furthermore,
at this point ImJ (s,8,8’)=0 as well. However, J (s,6,6’)
develops an imaginary part as ImM deviates from zero
when 6o moves away from the forward direction. In
our considerations we shall assume that the energy is
sufficiently high and 6, small enough so that the
deviation of the absorptive part of the amplitude from
ImF is negligible. Thus, in the high-energy, small-angle
region we have

J(5,6,0)~ReJ (5,0,8")
1 o0

=E/ dxo {ePAR GO sin[ Wao+ PAr(x0) ]
0

~+ePAR(—20) sin[on—PAI(‘xO)]} (411)

using Eq. (4.9d).
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In the high-energy limit, the integrals (4.11) can be
approximated by their values near the maxima of
Ag(xo) and Ap(—xo), provided that Ag(xo) is suffi-
ciently well-behaved.?

For the simple case that §,=0, where ImM =0, we
see that

Ar(x9) = (sind sing’)V2 / ;

3

|B(k)|2 cos(xok-b).

T)32w

With 3(k) given by a Gaussian such as Eq. (3.7), the
maximum in this case occurs at xo=0. Furthermore,
this maximum dominates, since damping due to oscil-
lations of the cosine factor for xo>0 reduce the value
of the integral. The effect of the small imaginary part
of M in Ag, Egs. (4.9c) and (4.9d), produces a small
shift of this maximum away from xo=0 to some point
=g for the first term of (4.11) and a symmetrical
point xy=—a for the second. The conditions for these
dominant maxima are

d d
Ag'(a)=—Ar(x0) =——Ag(—x0) =0,
dxo z0=a Xo )zo=—a
(4.117)
d2
Ag"(a)=—Agr(x0) =——Ag(—xo) <0.
dxe? z0=a X0 z0=—a

We evaluate J(5,6,6') of (4.11) by noting that as IV,
P— < only a small region § about the maxima at
29==a determines the value of the integral.?® This
permits us to expand Agr and Ay in the first term of
(4.11) about xy=ga, and about xy=—a in the second
term. Taking & here finite with §>0, we have after
changing variables

5
J(s,6,6")= / dy €P(5r(a) +35248" (@)
0
Xsin[yW +yPAy'(a)] cos[aW +PAr(a)]
+ / dy €P(8r(@) +1y287" ()
0

Xsin[aW+PAr(a)—yW —yPAy (a)].  (4.12)

Turning next to explicitly introducting the limit
W — «, we see that (4.12) can only be defined if aW
is some finite quantity. In fact, for the simple model of
the current with 3(%,P) a Gaussian, Eq. (3.7), one
can show that a~tan[g(6)—g(#’)], and this gives, for
sufficiently small 6y, a~8,. Thus, for small angles and
W— o, aW~~/(—t). [We will limit our analysis
to —£<1.0 (GeV/c)2.] It may be possible to construct
other models of B(k,P) that give a=0O(W—*), where

% For a discussion of the method of approximation applied to
various problems see D. V. Widder, The Laplace Transform
(P(riinceton University Press, Princeton, N. ]J., 1946), pp. 227
and 296.
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n>1. However, for » sufficiently large, the resulting , PAR(G)ZD‘*‘%AI'(G)]
form for J(s,0,0') and thus the quasielastic contri- Jo(s,0,00=¢ Yo(a)
bution cannot produce the characteristic diffraction 0
peak of pp scattering when combined with the N* Xcos[aW +iWAr(a)]
contribution. x
In addition to those properties of Ar(xy) and Ar(xo) ul1 3 _W[1+7AI (@)] (4.162)
already discussed, the evaluation of J(s,6,8’) in (4.12) X ’ 2 Yo(a) ’ :
also depends quite critically on the energy dependence
of Ag(a) and Ag"(a). For Ar(a) we note from (4.9) 2[1+34/(a)]
and (4.10) J1(5,0,0") =ePor@— =
PVYl(a)
= (sind sing)"2 6y —g (6
Ar(a)= (sinf sind’)"*(cos[g(6") — g (6) Jor(a) cos[alW-+3WAr(a)]
—si ") —g(6 4.13
sin[g(8)—g(6)]or(a)}, (4.13a) [1+iA7(a)
or(a) &k cos(ab-k) XM(L 1 “_—“‘_“>
( >= / |B(k,P) |2< ) . (4.13Db) Vi(a)
o1(a) (27)32w sin(ab-k) Wy
a q y ’
With our assumption that g(8')—g(8)~8, which is + / %em’g (@egvri(@e
small and a~6, as well, we have 0
. 111
Ag(a)>2(sinf sind’) 205 (0). Xsin[aW +3WA;(a)
—y(1+3a7(@)], (4.16b
In terms of our general form for the pion current and y(A+3ar@)], ( )
its relation to the pion multiplicity, i.e., Eqs. (3.4)- T 172
(3.6), we see that for a in (3.5) which is a constant Jm(8,0,0’)56“““)<_~—m—+1>
from 10 to 30 GeV/c in the lab,! we have Vn(@W
a=%¢m (0) . (413C) Xsin[aﬂ"-{-—%W'Az(a)]
- — 1 ’ 2 /
Thus, Az(a)>~Ar(0) is either a constant or very slowly Xexp{ —[1+34r'(a) I/
varying with energy. Wn1Y,.(a)}. (4.16¢)

In the case of Ar"'(a), we consider the general form
Ag”(a)=—W=Y,(a), (nosum) (4.14)

where 7 is an integer, #=0, 1, -+, and V.(a) is the
appropriate coefficient corresponding to a particular
assumed power of W. With this form for Ar'(a),
J(s,6,8") of (4.12) becomes with change of variables

Ta(s,0,6)= /
0
Xsin[yW t=m2(14+-3A7' (a)) ]

SW (n+1) /2 d
i ePAR(@) =2V n(a)/4

W (nt1)/2

aW (n+1) /2

dy
W(n+1)/2

Xcos[aW—{-%WAI(a)]—l—/
0

X ePAR@gvYn(@)14 sin[ aW 43 W A;(a)
—yW (AL (@),

where the subscript # on J denotes the energy de-
pendence of Ag'’(a). Three different forms for J,
arise in the limit W — < and oIV independent of
energy corresponding to #=0, n=1 and z=m, where
m>1.

(4.15)

2% See the discussion of the results in Sec. V for further details
and comments.

Here M (a,b,c) is a confluent hypergeometric function.®

The energy dependence of Ag'’(a) corresponding to
Jm with m>2 cannot be obtained by any reasonable
form for the current 8(k) such as the Gaussian form
of (3.7) without introducing an energy dependence in
Ag(a) of (4.13a). Further, the resultant general form
for Jm(s,0,6") of (4.16¢), with m>1, has the undesirable
feature of vanishing at the forward direction 8,=0,
since aW+3WAr(a)=0 at this point, and at ’=0 and
6=0 as well, since V.(a)~ (sinfsinf’)¥/2. This leads
to the unphysical result that the quasielastic contri-
bution has zero contribution to the total pp cross
section.

When one considers the full integral equation for
the elastic scattering amplitude alternatively with the
kernel given by Jy and J3, only J, leads to the experi-
mental falloff of the elastic differential cross section
do/dt in t. This will be discussed more fully in Sec. IV C,
and in Sec. V.

It is interesting to note that if one constructs a
Gaussian pion current 3(%,P) which has at least the
w= (k24pu2)!2 dependence of d-function source currents
of classical models® for small pion momenta %, then one

is led to
epl =34 hi+Hh) ]

(6}

B(k,P)=¢ ., (4.17a)
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where g is a constant. For this, one finds that
Ar(0)~O(Inl), Agr"(0)~O(nW),
AL (Q)~O(W).

Jo would be preferred on this basis alone.?s It is clear
that Ag(0) and its derivatives would be a constant if
the Lorentz contraction of the meson cloud could not
continue indefinitely, i.e., if the Gaussian in (4.17a)
had instead the form

exp[ — 342 (v 2%k 12+k.2)— 8k12"]

with >0 and # an integer >1.

The forms of Jo and J; given by (4.16a) are still
quite complicated. However, the projection of only
the small-angle contributions at high energies, i.e.,
small 8, 6’, and 6y, that occurs in the impact-parameter
representation of the unitarity condition simplifies
(4.16) considerably as we shall see in Sec. IV C. Briefly,
this simplification occurs by noting that Ag(a), Ar(a),
Ar'(a), and Y.(a) are all proportional to f(6,8")
= (sinf sin#’)V2 and that this as well as a are negligibly
small and can be set to zero, while Wa and W£(6,6)
are finite and at least of order unity-

(4.17b)

(4.17¢)

C. Quasielastic Contribution in the Impact-
Parameter Representation at High Energy

We obtain the Fourier-Bessel transform of our
unitarity condition for the quasielastic contribution
Eq. (4.7a) using the notation of Eq. (1.1) and the
various relevant relations among Bessel functions
given in Ref. 15. Suppressing energy dependence in
the partial-wave amplitude 5(b) we have

M2 0 0
2 1Imn(d)] q.x. =—P/ b1db1/ bodban* (b1)n (bs)
27t Jo 0

2P 2P 2T
X/ 702d1’02/ 1’2(]7’2/ ([¢Jo(bf02)]o(b11’2)
0 0 0

XJo(bar®e D] (Prr’), (4.18)

where
r*=2P sin}b,, r*=2Psinig,

r'i=r+r—2rdr? cos ,

r'?=2P sin6’,
(4.19a)

and where J,(P,r,r"), for n=0 or 1, is given by Eq.
(4.16). We have used (4.9a) for Z(P,6,6'), and Eq.
(3.5) for 7#(P,0) and 7(P,0").

Following Blankenbecler and Goldberger,!® we make
use of the fact that the Bessel functions in (4.18)
oscillate rapidly for large arguments to simplify our
unitarity contribution. Because of this property the

% The introduction of a Gaussian form for B(k,P) with a
Lorentz contracted factor exp[—3A42(82/42)ket] in addition to
that given in Eq. (4.17a), as is done by Krisch in Ref. 22, has
no net effect on the energy dependence of Agr(r,) and its
derivatives.
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major contributions to the integrals in the limit that
P— o« occur when 7¢, 72, and 72 are finite, i.e., for
small angles 6, ', and 6. Applying the small-angle
and small-g limit to Jo and J; of (4.16), we note that
with

PAR(a)~PAgr(0)=2r"a,

(4.19b)
Wa+iWAr(a)~Wa,
and since!8
()
lim M(ab,z)= (—2),
2l r'(—a)
for Rez<0, Jo and J; become
Jo(s,0,0" )€ "' *(cosaW) /W, (4.20a)
J1(s,0,0 ye?rr'«/W . (4.20b)

The derivative A7/ (a) is a constant in energy for both
cases covered by Jo and J; in any reasonable model
including (4.17a). Since the form J, is a special case
of J,o that occurs when aW=0, hereafter, we take
J=J, and consider the comparison of theory to experi-
ment for various limiting values of aWV.

In order to take into account an averaged effect of
the contribution of nonzero 6 and ¢ in J we introduce
the multiplicative constant A4 which will be fixed by
the normalization of the solution of our final integral
equation. Thus, we have for J

J(5,0,0")=A(et?r'¢/W) cosaW .

The value of 4 should be close to unity if our argu-
ments provide a reasonable description of pp scattering.
Our final form for the quasielastic contribution is then
obtained by substituting (4.21) into (4.18). Rewriting,
with

(4.21)

Imn=n;

and neglecting (Ren?) compared to (Imn)2, a reasonable
assumption above 20 GeV/c¢ laboratory momentum,
we have

n1(0)|Q.E.=AQ-9:(b), (4.22a)
where the integral operator Q is defined by
M2 P
Qnr(b)= - /b1d51/b2dbaﬂl(bl)ﬂl(bz)
Q@rew
X/fo2dfo2/f2ll17’2/ dd) Jo(b?’()?).]o(blf‘z)
0
XJo(bor?)e= 222 cosaW . (4.22b)

V. FULL INTEGRAL EQUATION AND
ITS SOLUTION

When we combine our results for the N* [Eq. (2.6)]
and quasielastic [Eq. (4.22)] contributions to unitarity,
we obtain our full nonlinear inhomogeneous integral
equation

n1(0)=AQ-nr(5)+C(s)K2(ubd). (5.1)
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F1G. 3. Plot of do/dt in mb/(GeV/c)? versus —¢ in (GeV/c)?
showing solutions to the inhomogeneous integral equation (5.1)
for A=0, 3r, 7, and 3=, with 04,1=38.2 mb, ¢e1=8.8 mb, and
a=1.25 (GeV/c)™1. Experimental points are from Ref. 29.

A. Normalization Condition and Parametrization
of Solutions

The constants 4 and C(s) of (5.1) are completely
determined in terms of the total cross section oy and
the elastic cross section oe1 by the requirement that
the solutions be normalized to ot in the forward
direction via the optical theorem.

An immediate condition on 4 and C(s) occurs when
we reexpress (5.1) in terms of scattering amplitudes
by the Fourier-Bessel transform. Equation (5.1) then
becomes

21mF (s,00)=A

2

P
— | d F*(s,0F
T / Q0. (5,6)F (5,0)

Xe~atr=")% cosalW +C (s) (2P)?
X/ bdb Ko*(ub)Jo(bre®), (5.2)
0
where 7, 7, and 7’ are given by (4.19a). At the forward
direction, 6,=0, the optical theorem gives
2 ImF (s, 00=0)= (WP/M?%)0co. (5.3a)
Furthermore, the right-hand side of (5.2) simplifies
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considerably at this point; e.g.,

/

ro=0, r=r'", a=0,

which enables one to relate the first integral to the
elastic cross section. The final form for the right-hand
side of (5.2) at 6,=0 is

A(WP/M2)ea+2PC(s)/ 2. (5.3b)

Combining this with the optical theorem (5.3a), we
express 4 in terms of C(s), dtot, and e by

A= (010t—CM?/u2)/7er. (5.4)

(We suppress the possible energy dependence here and
in the following.) Replacing 4 by (5.4) in the integral
equation (5.1), the solution appears to depend yet on
C. When, in fact, we solve the equation by iteration
we find that the nonlinearity of the operator € and the
optical theorem are sufficient to fix C. Thus both 4 and
C are fixed in terms of o and oe1 Which we have taken
from experiment. The asymptotic value of o as
determined from the data of Foley et al.2% is

otot=38.2 mb, (5.5a)
while the best value” of oe at the highest available
energy of 24.5 (GeV/c) is

0ea1=8.8+0.8 mb. (5.3b)

Since the normalization condition may not fix C
uniquely, we note some additional restrictions. First
of all, we only obtain a trivial solution to (5.1) if
C= (4®/M?)01o, since this leads to the vanishing of 4
by (5.4). Second, those values of C which give negative
A, again by (5.4), are unphysical since this requires
the quasielastic contribution to be negative in the
forward direction, 6,=0.

The solution to our integral equation depends on
only one free parameter. That is the one associated
with the quantity ¢ that appears as the argument
of the cosine in the kernal in Eq. (4.22b). During our
discussion in (4.3) about the significance of a as a
measure of the phase of the product of currents
B*(k,0")B(k,0) we suggested that a be proportional to
6o for small 6. Following this point of view, we take

(5.6)

where X is a free parameter to be determined by fitting
the elastic differential cross section obtained from
(5.1), given ot and oe, to the experimental forward
elastic diffraction peak. The special case of A=0 corre-

aW = r@=\W sinib,,

2% K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love, S.
Ozaki, E. D. Platner, C. A. Quarles, and E. H. Willen, Phys.
Rev. Letters 19, 857 (1967). A fit to the total cross section got
yields owi= (38.151+14.16/P*®) mb (private communication
from S. J. Lindenbaum).

%7 Summary of experimental data presented by Y. Sumi and
T. Yoshida, Progr. Theoret. Phys. (Kyoto) Suppls. 41 & 42
(extra Nos.) 53 (1967).
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sponds to the energy dependence of Ag(xy) that gives
J11in Egs. (4.16b) and (4.20b).

We can relate N above to parameters in a model for
the current. Suppose we take the Gaussian form
(4.17a) which is consistent with J, i.e., Ag’/(0) inde-
pendent of, or slowly varying in energy W and with the
general form (3.6), (4.10a), and (4.10b). Then using
the condition (4.11a) of a maximum in Ag(xy) at
x0=a, one finds that with

g(6)—g(8")=xb, (5.7)

where « is a finite constant, A is determined by the
product k4. Here A is the width of the pion cloud
surrounding the nucleon. The result, assuming small q,
is

A= —m32%A /[8 In(2y2+1)—1], (5.8)

where 8 is the transformation velocity from the c.m.
to the lab system, and 2= (1—p3%)~L. If one uses a
current of the form of (4.17¢), then \ is independent of
energy as W — «.

B. Detail Characteristics of Solution

A solution to (5.1) for each value of A was generated
by iteration with the restrictions (5.3a) and (5.4) and
is represented by the series

711(0)=CK *(ub)+AQ-[CK *(ud) ]
+A4Q-{AQ-[CKPub)]+---}. (5.9)

This series was found to converge quite rapidly for the
experimental values of o and g1 given in (5.5) and
for appropirate values of C. The multiple integrations
that were required in each iteration of the integral
equation were performed numerically on an IBM 360
Model 75 computer with appropriate precautions to
ensure accuracy and reliability of our solution.?

We present the elastic differential cross section do/dt
as a function of ¢ for 0K (—#)<1.0 (GeV/c)? deter-
mined by the convergent iterative solutions of (5.1)
for various values of the free parameter A in Fig. 3
with o4 taken to be 8.8 mb and a=1.25 (GeV/c)! as
given in Ref. 11. The values of 4 and C fixed by the
normalization are given for each curve; unphysical
solutions, 4 <0, have been ignored. The general trend
of the experimental points® is adequately provided by
the curve for A== We note from the curves that
values of \>= tend to produce shrinkage of the dif-
fraction peak while A<7 leads to antishrinkage. The

28 We have not investigated the question of the existence of
noniterative solutions. The existence of at least the iterative
solution is sufficient for our purposes.

% Data at 26.2 GeV/c by A. N. Diddens, E. Lillethum, G.
Manning, A. E. Taylor, T. G. Walker, and A. M. Wetherell,
Phys. Rev. Letters 9, 111 (1962). Data at 24.63 GeV/c by K. J.
Foley, R. S. Gilmore, S. J. Lindenbaum, W. A. Lover, S. Ozaki,
E. H. Willen, R. Yamada, and L. C. L. Yuan, bid. 15, 45 (1965).

% If we use Eq. (5.8) relating X\ to k4 we find that for Pj.p,=25
GeV/¢, A= gives kA =0.25 F. In the event that k=1, then this
gives a reasonable value for the size of the interaction region.

pp ELASTIC DIFFRACTION SCATTERING

1547

102_ T I T l T I T ] T I T T
ELASTIC PROTON — PROTON SCATTERING
©26.2 GeV/c,AN. DIDDENS et al.(1962)
*24.6 GeV/c, K.J.FOLEY et al. (1965)

BN

THEORETICAL CURVES FOR VARIOUS a WITH
Tyor=38.2mb ; O, =88mb
A=

1

TTTTT

/
Ll

Q= , C=4.36,A=0
N\ ~~

1

~

%

T TTTTI

do/dt{ mb/(Gev/c)?)

SO\ @= 2,50 (Gevre)”!
MO (=143, A=0.76
\\\

NERN
~

Lol

T
|

N
AN
SN @ =100Gev/)!
C=1.13,A=0.76

Ll

T T TTTT

a=125Geve)
=104, A=1.05

162 1 | ! 1 L 1 L | 1 | L 1
o o1 02 0.4 0.8 1.0 1.2

06 2
-t (Gev/e)

F16. 4. Plot of do/dt versus —1, showing solutions of the integral
equation (5.1) for «=1.00, 1.25, 2.50 (GeV/c)™}, and a— .
Here A=, o1,t=38.2 mb, and ¢.1=8.8 mb. Experimental points
are from Ref. 29.

importance of including the phase contribution in
B*(k,0')8(k,0) is seen by the fact that the integral
equation only has a trivial solution, 4 =0, for the case
A=0 (no phase contribution). This is the pure N*
contribution which clearly does not fit the experimental
diffraction peak.

Recalling that the A=0 solution also corresponds to
the kernel function J; of Eq. (4.20b), its failure also
excludes J; and the corresponding energy dependence
of Agr"(x0), i.e., AR’ (a)=0(W). Thus, the data and
our model are consistent with Jo, i.e., Az”(a) slowly
varying in energy and a Gaussian form for the pion
current (4.17a) or (4.17¢).

In Fig. 4, we show the effect of varying the inelastic
parameter « for A= and oo, oe set to the values used
in Fig. 3. Again, the value of 4 and C for each solution
is indicated. A significant variation of & away from the
center value of 1.25 (GeV/c¢)™! disturbs the fit to
experiment as shown by the change in the solutions
for «=1.00 and 2.50 (GeV/c)~'. Note that antishrinkage
of the diffraction peak for the normalized solutions
occurs for both cases. When a— «, the quasielastic
contribution vanishes and one is left with only the
normalized N* contribution, the same solution as that
for A=0 in Fig. 3. On the other hand, when a=0,
corresponding to zero average pion multiplicity, then
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in (4.7a)
Z(s,0,0/)=1/2P2

and the quasielastic contribution corresponds to elastic
unitarity. This leads to an algebraic equation for n(b):

11(b)= (M*/4m)[n1 () P+CK(ub),  (5.10)

which unfortunately has complex and thus unphysical
solutions for 7;(d) in this model.

The normalized solutions to the integral equation
vary with o as well. One finds that as o decreases
from its center value of 8.8 mb, the resultant diffraction
peak shrinks, with the most change occurring for large
¢ values. On the other hand, one has antishrinkage with
increasing oq as expected. If another value of o within
the experimental errors were chosen, an appropriate
change in A would be made to reproduce the form of the
experimental diffraction peak in Figs. 3 and 4.

Finally, an effort was made to solve the homogeneous
form of the full integral equation (5.1), i.e., the case
C=0. For a trial solution corresponding to

do/di=es+bt,

where ¢ and b were fitted to the elastic diffraction peak,?®
the resulting solution under successive iterations con-
verged to zero.

VI. SUMMARY AND CONCLUSIONS

In the preceding sections we have presented a spin-
less model for the elastic diffraction peak for pp scat-
tering and thus the Pomeranchukon as a sum over
direct channel contributions via unitarity. The latter
consist of (i) the sum over peripheral, two-body pro-
duction dominated by the longest-range force—pion
exchange—near the forward direction, and (ii) phase-
space production of mesons represented by a phe-
nomenological c-number current that allows saturation
by coherent states and is directly related to the average
pion multiplicity determined from experiment. In
terms of the model, the unitarity condition is trans-
formed into an inhomogeneous, nonlinear integral
equation for the elastic amplitude. We found that this
integral equation simplifies in the impact-parameter
representation in the high-energy, small-angle limit.
The solution was found to depend on oo, oel, and a
free parameter N that characterizes the phase of the
c-number current as described in Secs. IV and V.

Some of the important features of the model are as
follows.

(1) The solution of the complete equation (5.1)
normalized to the optical point gives the elastic dif-
fraction peak, in terms of a free parameter A, reasonable
values for ot and oe and inelastic pion production,
which, as is seen from Fig. 4, can be fitted to agree
with experimental falloff for 0< (—£) < 1.0 (GeV/¢)2.

(2) The model does not introduce a detailed form
for the c-number meson current except for the factor-
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ization of the proton momentum dependence as shown
in Eq. (3.6). However, the energy dependence of the
current and explicitly in terms of the integrals Ar(a)
and Ag”(a) defined by (4.9c), (4.9d), and (4.10a)
is quite important. One finds that Ar(e) and Ar"(a)
must be constants or slowly varying with respect to
energy W in order that a fit to experiment be possible.

(3) The phase of the meson current is quite crucial
since it determines the maximum of Ag(xo) and is
eventually the source of the interference of the quasi-
elastic and V* contributions. Neglect of the phase effect,
i.e., A=0, in Fig. 3, makes the model disagree violently
with experiment.

(4) Both the quasielastic and two-body N* con-
tributions are necessary in order that the falloff of the
elastic diffraction peak be produced up to —¢=1.0
(GeV/c)2 These two contributions add at (=0 but
interfere for larger values of (—¢). The pure N* con-
tribution as characterized by the a= « is seen to fail
in Fig. 4. Further, the solution of the homogeneous
equation, i.e., C=0, cannot produce anything re-
sembling the elastic diffraction peak. Thus, C(s) [see
Sec. IT or Eq. (5.1)] must be a slowly varying function
of energy.

For a model of the current such as that in Eq.
(4.17¢), where N and « are constants with respect to
energy, the change in slope of the diffraction peak with
energy would depend entirely on ¢ei. For constant
oa the diffraction peak in our model would remain
unchanged and the net result would be equivalent
to a fixed pole in the complex angular momentum
plane.

In the case that A and « are slowly varying with
energy, i.e., such as the current model of Eq. (4.17a)
then decreasing of o1 with energy does not necessarily
imply shrinkage or antishrinkage. Unfortunately, our
model does not give very much information about the
exact nature of the singularity in the complex angular
momentum plane that generates the elastic scattering.
In the event that o, is given, however, then the details
of the model for the meson source current determine
the nature of the singularity.

The novel application of coherent states of mesons
in our simple model for high-energy pp scattering has
permitted a simplification of the unitarity integral
and led to some interesting results. In this model we
have established a clear connection between the elastic
diffraction peak and the driving force generated by the
inelastic states. Perhaps an extension of these techniques
to different processes as well as more detailed and
realistic models will provide a deeper insight into the
properties of various scattering processes.
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APPENDIX: SOME IMPORTANT PROPERTIES
OF COHERENT STATES

Here we will discuss properties of coherent states
that are necessary for the various developments in the
body of the paper. In Part A, we will briefly discuss
the coherent states of a single-mode harmonic oscillator
where the properties are the simplest.® Then in Part B,
we consider the form of the coherent states corre-
sponding to a system with an infinite number of modes
—the field case. Finally, in Part C, we introduce
coherent states which are eigenstates of the energy-
momentum operator.

A. Single-Mode Case

For a harmonic oscillator of one degree of freedom
the states in Fock space are defined by the creation
and annihilation operators ¢ and af, which satisfy

[a,a']=1. (A1)

One usually considers the eigenstates |#) of the number
operator :V=a'a in the Fock space with the properties

N|n)=n|n); a|n)=n'?|n—1);

at|n)= (n+1)"|n+1)
|n)=(a")"/(n!)"2]0), (A3)

where |0) is the vacuum state. Since the number
states are complete and orthonormal, one can construct
the unit operator in the Fock space in the form

1=% |n)nl.

(A2)
and

(A4)

On the other hand, one can also construct a set of
states in the Fock space that are eigenstates of the
annihilation operator ¢ which are complete, normalized,
have a resolution of the unit operator, but are not
orthogonal. These are the coherent states |ag), which
we denote by the complex number ay since ¢ is not
Hermitian. Since they satisfy

(A5a)

then, using (A4), we see that the states [ao) are related
to the number states by

ala0>=ao|ao>,

ao"

[ao)=(0|a0) 2=

w (n)12

In), (Asb)

where (0|ao)=e¢#=!" when we normalize the states
by {ae]ao)=1. One also finds that one can generate the
coherent states from the vacuum by the displacement

% We refer the reader to Ref. 12 for details concerning the
derivation of the properties of coherent states discussed here and
to Ref. 13 for numerous applications and further discussions.
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operator D(ay), i.e.,

lao)=D(a0)|0), (A6a)
where
D (ao) =exp (aoaT—ao*d)
=exp(—#|ao|?)exp(asa’)exp(—ac*a). (AGb)

The resolution of the unit operator is furthermore
expressible as an integral over the complex plane,

1=1 /dzaolaoxao] , (A7)

™

where d?ap=dxdy when a¢=x+1y. Finally, an inner
product for the coherent states has the form

{@o|Boy= exp(ad*Bo—% || ?—%[B0l?). (A8)

B. Infinite-Mode Case

The various properties of coherent states discussed
above can be generalized to the infinite-mode case.’®?
Consider the inner-product space 3¢ in which annihi-
lation and creation operators a(k) and af(k) for a
scalar-meson field are defined. They satisfy the usual
commutation relations

La(k),a' (k") ]= (2m)*2ws*(k—K') (A9)

where w?=k?+u2, with u the meson mass. We further
define in 3C the complex functions a(k) with bounded
norm which we identified with the ¢-number meson
source current in Sec. III. It is convenient to define
the functional

*B)= o *(k)B (k) (A10)
@ [ o ws;

the norm of a(k) is (a*,e) in this notation. From (A9)
and (A10), the functionals (af,a) and (a*,a) satisfy

[(@*a),(a",8)]= (c*8), (A11)

and give a generalized form of (A1), the commutation
relation of the single-mode case.

Now, we define the generalized coherent state |a)
as an eigenstate of the functional annihilation operator
(B8*,a) as follows:

(ﬁ*,d) [a>= (,3*,0!) ,a> .

One can then show that for normalized states (a|a)=1,
the unitary operator U(a) that generates |a) from the
vacuum, i.e., |a)=U(a)|0), is

U(e)=exp[ (a',a)— (a*,a) ]
= exp(a’,@)exp[ — (a*,0) Jexp[— 3 (e*2)];  (A13)
2T, W. B. Kibble, J. Math. Phys. 9, 315 (1968); Phys. Rev.

173, 1527 (1968); 174, 1882 (1968); 175, 1624 (1968); J. K.
Storrow, Nuovo Cimento 54A, 15 (1968).

(A12)
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this is the generalized version of (A6b). The inner
product of coherent states then has the form

(8= exp[(6*,@) —3 (@*a) — 3 (6*8)],

corresponding to (A8).
The resolution of the unit operator in the field case
becomes

(A14)

1= f [da|a)al , (AL5)

where the measure [da] can be defined in terms of an
orthonormal set of functions {f;} defined in 3¢. With

a;= (fi*ya) y 0= (fi*aa) )

wrri(2).

™

(A16a)
then

(A16b)

Furthermore, we can relate the a; above to distinct
modes, i.e.,

Ul@)=1I Ula),

=1

(A17a)

where

U (a,-) =exp (aid,'f—ai*di) . (Al 7b)
The individual @; and a; have all of the independent
properties of the single mode of Part A.

C. Coherent States with Definite Energy Momentum

The coherent states discussed above do not have a
well-defined energy and momentum. They correspond
to a combination of states with any number of particles
that have any energy and momentum. Since we wish
to use these states in an S-matrix formulation it is
important to obtain a representation of them that is
translation-invariant. Such a representation has been
discussed by Kibble and by Storrow.*

M. G. GUNDZIK

184

To do this we note that the transformation of a(k)
and af(k) above under a translation x= (x¢,x) is

e—z‘P-za(k)eiP-z= eik~za(k) ,
e iP-2qt (k)eiP-z=¢~i*-2qt (k) ,

where P is the four momentum translation operator.
Then a translation of the coherent state of Part B is
given by

| (¥)a)=e~P | @) =Pl (a)eiP = | 0)

& |
=exp[—3(a*,a)] exp[/ (27r)32wa(k)af(k)e_lk‘{|
d*k
Xe-\P[‘" mﬂ*(k)a(k)e“"f]. (A18)

In terms of the above, the state of definite energy and
momentum ¢ is obtained by the Fourier transform of

| (®)a).
la(g))=

=8(g—P)|a), (A19)

where we now have

Pla(g)=qla(g)).

Finally, we can write the resolution of the identity
(A15) in terms of the states |a(g)). We find that

1=/[da11a><as
- / [dadei™ <] (W)a)((s)ale#v,  (A20)

1= / [dadqd | a(g))a (k)]



