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structed by Baacke, Jacob, and Pokorsky, " which is
symmetric under t~g and therefore decouples the
odd-spin states, gives Eq. (4c).'2

"J.Baacke, M. Jacob, and S. Pokorsky, Nuovo Cimento 62A,
332 (1969).

"On the other hand, the amplitude constructed in Ref. 2 for
mq —+ mp has CP = —1 natural-parity states, and as a consequence
the p and A. trajectories appearing are not degenerate.

Similar considerations for other processes all giving
results in agreement with (14) as well as results con-

cerning strange and unnatural-parity trajectories will

be published elsewhere.

%e gratefully acknowledge very illuminating dis-
cussions with H. Harari, M. Kugler, and H. J. Lip-
kin.
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A nonrelativistic model of hadrons as Ã-fermion bound states is proposed. It is concerned with the
relative motion of the subparticles and the intrinsic spins of the fermions; the dependences on center-of-
mass and internal variables (isospin, hypercharge, etc.) are separated out. Eigenvalue equations for the
total angular momentum, parity, and mass are written down, with the requirement of invariance under
the Born reciprocity principle applied to the relative coordinates and momenta. Ladder operators con-
necting different states are derived and are used to construct all solutions from a ground state. The solu-
tions for three-fermion bound states are applied to baryonic resonances, yielding mass formulas for¹,
Fo*, and F1* resonances.

I. INTRODUCTION

HE study of bound states of an arbitrary number
of fermions is an imporant one since nuclei, and

possibly also mesons and baryons, ' ' are composite
structures of more elementary fermions. The problem
is a dificult one, since the binding mechanisms are
either very complicated or completely unknown, and
the many-body problem, even with known interactions,
is hard to handle.

Our purpose is to investigate a model in which the
dynamics is dictated by the Born reciprocity princi-
ple. ~' Several authors have treated reciprocity-invari-
ant wave equations. Yukawa' has introduced reciprocity
into nonlocal fields, while Takabayasi's quadrilocal
model9 is reciprocity-invariant, because the invariant
binding potential in his model is the (3+1)-dimensional
harmonic oscillator with U(3, 1) unitary symmetry. The
difhculty arising within the relativistic treatment is
that the states are either not normalizable or that they
possess infinite degeneracy. ' Yukawa and Takabayasi

~ Present address: Jacksonville University, Jacksonville, Fla.
32211.

' M. Gell-Mann, Phys. Letters 8, 214 (1964}.
~ F. Giirsey, T. D. Lee, and M. Nauenberg, Phys. Rev. 135,

B467 (1964).' G. Zweig, CERN Report No. 8419/th 412 (unpublished).
4 M. Born, Nature 163, 207 (1949).
~ H. S. Green, Nature 163, 208 (1949}.
s M. Born and H. S. Green, Proc. Roy. Soc. (Edinburgh) A92,

470 (1949};Nature 164, 281 (1949).
7 E. E. H. Shin, Phys. Rev. Letters 10, 196 (1963); J. Math.

Phys. 6, 1307 (1965); 7, 167 (1966); 7, 174 (1966).' H. Yukawa, Phys. Rev. 77, 219 (1950}.
~ T. Takabayasi, Phys. Rev. 139, B1381 (1965).

introduce a subsidiary condition to remove this de-
generacy, while Shin, " in an attempt to establish a
connection between a reciprocal wave equation and the
theories of Nambu" and Kuryunoglu, 12 reduces the
problem to one in a one-dimensional mathematical
space.

The same problem does not arise in a nonrelativistic
treatment, since in such a framework reciprocity in-
variance leads to compact unitary symmetry. One has
to assume, however, that the Born reciprocity trans-
formations4 for the spatial coordinates and momenta do
not change in the nonrelativistic limit. This is not ob-
vious, since reciprocity transformations introduce fun-
damental lengths, which could make reciprocity in the
nonrelativistic limit meaningless. If this is the case,
"nonrelativistic reciprocity" is to be understood to mean
a harmonic-oscillator type of binding mechanism. The
application of a nonrelativistic model to nuclear or
elementary-particle physics is limited and requires justi-
fication. The reader is referred to the literature for a
discussion on the feasibility of nonrelativistic ap-
proaches" and for pertinent models on baryons" and
mesons. "

~0 E. E. H. Shin, Phys. Rev. 171) 1652 (1968)."Y.Nambu, in Proceedings of the Coral Gables Conference on
Symmetry Principles at High Energy, edited by A. Perlmutter and
B. Kuryunogtu (W. H. Freeman and Co. , San Francisco, 1967),
pp. 62-75."B. Kuryunoglu, Phys. Rev. 167, 1452 (1968)."G. Morpurgo, Physics 2, 95 (1965)."P. G. O. Freund and B. W. Lee, Phys. Rev. Letters 13, 592
(1964).

"O. Sinanoglu, Phys. Rev. Letters 16, 207 (1966).
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Ke intend to construct and examine the consequences
of a nonrelativistic model of X fermions, where the in-
ternal parameters obey the assumed nonrelativistic
limit of the Born reciprocity principle. In Sec. II,
center-of-mass motion will be separated out; eigenvalue
equations for the relative variables will be studied in
Sec. III. In Sec. IV, we will construct ladder operators
connecting possible states. The solutions to the eigen-
value equations will be obtained in Sec. V, and applic-
ability of the model to elementary particles will be
examined in Sec. VI.

II. KINEMATICS

k a—Lamp. m

&
.P LIP n&, n

(2)

where n, P=O, 1, 2, ~, S—1, and summation over
repeated indices is implied. The transformations have
to preserve the canonical commutation relations

(3)
Then, we have

L L'&"[p,",x,")= il;,5""L "—L'~"

LamLI pngmn LamL~pm gap

Thus, Eq. (3) is satiated provided that

L~ —(L—1)T

To separate out the center-of-mass motion, we impose

L' =c and L""=IJ, /c,
where c (WO) is a constant, and p„=m„/P m„ is the
fractional mass of the nth subparticle. Xow, we have

k =cQ p;"=cP;,

1 1
yi 2 p»+i -~i~

n
C.

(6)

where I' and X are the center-of-mass momentum and
coordinate, respectively.

The remaining 3(V—1) pairs of variables k, y,',
with r, s= 1, 2, , V —1, are then relative variables,
obeying

For a system of X subparticles, there are X indepen-
dent momenta and E canonically conjugate position
vectors, obeying

[p m& a] g .$m»

~here m, n= 1, 2 ~ E andi, j= 1, 2, 3.
Alternate descriptions are possible through linear

transformations

tion of one parameter, the transformation L has S'
—2&+1= (X—1)' undetermined constants. These are
the parameters of the (X—1)-dimensional linear trans-
formations existing among the possible sets of relative
variables:

k"=A'"k "
yi' .a —gI

cry
.r

where A'= (A ')r to preserve the canonical commuta-
tion relations.

Ke will call a function of these relative variables
reciprocity-invariant, ' if upon the simultaneous replace-
ments, d„k —+ y, '/d„and y;"/d, ~ d„k;"—(no summa-
tion over r), the function is not altered. The d„are
constants, associated with the rth degree of freedom,
needed to make the reciprocity-invariant quantities
dimensionally uniform.

The requirement of reciprocity invariance in a given
representation of the relative variables ensures reci-
procity invariance in another representation only if the
transformations connecting the two representations are
themselves reciprocally invariant. The group of these
transformations is a subgroup of the (iV —1)-dimen-
sional linear group. Consequently, the requirement of
reciprocity invariance eliminates a number of otherwise
possible representations.

IIL EIGENVALUE EQUATIONS

In the study of the bound states, we would like to
select a representation in which the operators, corre-
sponding to the basic physical observables —total angu-
lar momentum, parity, and mass —are diagonal.

These operators have to satisfy the following require-
ments:

(a) They must be scalars, to yield scalar eigenvalues.
(b) In order to be simultaneously diagonalizable,

they have to commute mutually with each other.
(c) Reciprocity invariance is required as a basic

postulate.
(d) Invariance under rotations for both integral and

half-integral spina, i.e., invariance under SU(2), is
required.

(e) They can depend on internal quantum numbers,
such as isotopic spin or hypercharge, but this depen-
dence has to be separable from dependence on spatial
variables.

To arrive at the total angular momentum, spin-orbit
coupling will be used; that is, we take the total, relative
orbital angular momentum to be

I,, =P L,,'=P(y; k, —y; k,');

next, we couple subparticle spins according to
[k,",y,'j= i8;,5"*—

S;,=Q So (10)
The choice of the relative variables is not unique.

Since Eq. (5) imposes 2X conditions with the introduc- where the S;, are components of the spin of the mth
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P
I
4&= p l)k) (13)

where P and P (= &1) are the parity operator and its
eigenvalue, respectively. Both Eq. (12) and Eq. (13)
satisfy conditions (a)—(e).

Now, we look for an equation of the form

Iclg&= f(M) l)P&, (14)

where E is an operator satisfying the requirements
(a)—(e), and f(M) is a real function of the mass of the
compound state.

The simplest reciprocity-invariant quantities in the
relative variables~' are

1[k (r)k (r)+y (r)y (r)/d 4]

and the total angular momenta

l.;,= (y,"k,"—y, "k ).

(15)

The operator E in Eq. (14) will have to be constructed
from these quantities coupled with operators in spinor
space; for simplicity we will only consider operators
that are not higher than bilinear in y and k. Such oper-
ators, corresponding to our coupling scheme, are

(16)

subparticle, and 6nally, we add total orbital and spin
angular momenta:

~'j= Le+5'j
The eigenvalue equation for angular momentum is,
then,

J'l0&= kJ,,J,, Iy&= (I.-"+2I. s+s2) ly&
= j(j+1)I)P&. (12)

We also require that

IV. LADDER OPERATORS

If each member of the set of mutually commuting
operators Q), (k= 1, 2, 3, 4) satisfies the relation

[Qk, U]= Ua&), , (26)

where U is an operator and cok is a function of the QA, 's,
the operator U will be a ladder operator between two
di6erent states, for

(QkU UQk) I)p &—= U(a) I)p ),
flak Ul)p )= (fl) '+~);.') U l)p.),

where QI,
' and coI,

' are the nth eigenvalues of QI, and co~,

respectively. Thus Ul)p ) is again an eigenstate of Qk,

with eigenvalue 0), '+~~~', unless Ul)p )=0.
We solve Eq. (26) for all possible U by means of

commutator algebra. Since one of the operators in Kq.
(19) is that of LV —1 three-dimensional harmonic oscil-
lators, we investigate 6rst the effect of the raising and
lowering operators for a harmonic oscillator. Let us
define

I-'l1k&= f(f+ 1) Itt ), (21)

~l~) = ~l~), (22)

S2 14&=s(s+ 1) I4&. (23)

Equations (20)—(23), together with Eqs. (12) and

(19), yield the formulas

j(j+1)=l(l+1)+()+s(s+1) (24)

and
f(M) = A'+B'y+C'b+D's(s+1), (25)

where A', 8', C', and D' are the eigenvalues of 2, 8, C,
and D.

LsjSsj=2L' S
y (17)

d() y. ( )

a;"+=
V2 d(„)'

(27)

5' = —,'5;j5;j.
If we take a linear combination of these, Eq. (14)
becomes

(.4+ Br+c~+Ds')
I
P&= f(M) Iy&, (19)

where A, B, C, and D, according to condition (e), can
depend only on internal quantum numbers.

In Eq. (16) we took r to be the sum of the diagonal
operators F;;".This choice corresponds to normal modes
of oscillations for the (Ã —1) harmonic oscillators. There
is only one representation of the relative variables in
which I' will be of this form; a reciprocity-invariant
linear canonical transformation on these relative vari-
ables will introduce cross terms in I' of the form F;;""'.

The operators Q~=F, Q2=L', Q3=6, and Q4=52
mutually commute; therefore, they can be simulta-
neously diagonalized:

and
I.;,'=i(a r a'+ a,' a, "+—)—

a," a;"+—
2 a;"+a; +2

F;;"=
d.2

(29)

(30)

with no summation over the indices r andi. Then,

a."+a." +3 3 "+3
n, =r=p r;;"=p =p, (31)

r r d 2

The commutation relations of these operators are found
from Eq. (7):

[a r as+] —$
—mrs

and
[a,"—,a, ]=[a;"+,a,'+]=0.

In terms of these operators, we have

r la&= &le&, (2o) Q —L —2L;,.L;, ,
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Q3 ——6 =L;;5g,
Q4=5 =25@5;;.

Now, we have

[Qg ag'+) =

map�

"~/d, ',
[0 ,2a~'~]=2iL~, a,'+ 2al,—"+=2ic~'+ 2al,—"+,

[Qa,ag'+) = 2iSl„a,"+=2—iel, "+,

,r~) 0

(33)

(34)

L;,Lg~LI ) = —eayLAL) —2sL)L;+ e;)ILg+ ib;)L'

i S'IL'+ (1 —L')Lg 2iL;;L—,t. —
Thus,

[02,ds"+]=2L' g"+a+2i(1 L')cg'~+4dl, '~ —2dg'~—
= 2al, '+(L 2)+2icI,"+—(5 L')+6dq'+, —

[03,dg'+] = 2iSp, L;(L(„a "~=2ivt,.'

[Q„d. ~)=o,
[Qg, hI, "+]= &hl, "+/d, '

[02,hg'+] = 2iv g'+ —2hk"+,

[03,hg"+) = 2iJg,S,gLg a„'~ 2ivt, '"=2iqg—'+ 2ivp-"+, —
[Q„h. +)=o,
[0~ f~"')= +f~"'/d'
[0„fI "+)= 2iql, "~ 2fl "+, —
[ ~,fQ~'+]= 2i J~,J,~S~ a '+ 2iqI, "+=2ig~"+ 2iqq—'+, — —

The a&"+ alone are not solutions of Eq. (26), because
their commutators with Q2 and Q3 contain new operators.
If, however, there exists a set of operators, which, to-
gether with the Qj„ forms a closed commutator algebra,
then it is possible that one or more linear combinations
of these operators will satisfy Eq. (26). To generate
such a set, we 6nd the commutators of each new member
with the QI, .

[Qg,cl,"~]=+cg"+/d, ',
[02,cl, '~) = 2iLq, L,~ay"+ 2cl,"+=2—idl, "~ —2cq" ', —
[03,cg"")= 2iSI„L,(a('+= 2ihp—"~,

[04,cp"+]= o,
[Qx,ej,"+)= aeg, "+/d '

[Qu, e"+)= 2ihk"+ 2e~'+—,

[Qs,el "+]= 2iJI.„,S,iai"+ 2ih '—~ 2if "=—+ 2ih "—+,
[Q4,ea "+)=0,

.']=
[02)dI "~]=2iLp)L, )L)~a„"+ 2d, —

The oPerator L~;L,~Limam"+ is exPressible in terms of
lower-order operators. If we de6ne L;= ~e;, I,L;y, or
I;,= e;,I,LI„ then

L ~Lgl = —&;~L'+LkL;,
and

[04,f, +]=o,
[%)v~"+7=~vt "+/4',
[02,v~~~] = 2e~ ~~(L 2—)+2ihq ~+(5 L—)+ 6vg "+,

[Q~,vq"+) = 2iJq,S;~L~„L,a„"++2eq'~(2 L')—

2i—hj,"~(5 I '—) .Sv—t„.
"+=2i—wk"~

+2eg'+(2 —L') —2ihI, '+(5 —L') —Svg"+

[04,vg"+]= 0,
[Qg, qp"+]= &qg"+/d, '
[02,qg'+) = 2iwp"+ —2qp"+,

[Qg, qg"~]= 2iJI„J,(Sg L.„„a"+ 2iwg'—+

—= 2Zt I„-"+—2$ZOttc
"+

&

[04,qp"+]= 0,
[0~ g~"+)= ~gA'+/d. '
[02,gg" ]=2zty" 2gl"—
[03)gk"+]=- —2ek'+ (2 J')+—2i f&~~(5 J')—

+Sgj "+—2it~ "+,

[04,ga'+] =o,
[Qi,wa"+]= gawp"+/d„'

[024 k"+]= 2f~""(L'—2)+2iq&"+(5 —L') + 6w„"+,

[03%~'~]= 2iJI„J,&S&~L„„L„„a„"++2f, '+(2 L2)—
2iql, "+(5—L') —Sw~—"+——2iz, ~+

+ 2fa "~(2—L') —2iq„~+(5 —L') —Sw~ "+

[04,ws'~) = O,

[Qx,4"~]=~ t a"+/d, '
[Q„t„+)= 2iz„"+ 2t;+, —
[Qz t~'+) = —2h~" (2 —J')+2iq~"'(5 —J')+St,"+

—2isI, "+,
[04,tg"")= 0,
[Qg,zg"+]= azg"~/d '

[Qg,za"+)= 2gl, "+(L' 2)+2itg, "+(—5 L')+6z„"+,—
[Q3,zq "+]= —

2vq "+(2 J')+ 2i—wj, "+(5—J')
2gI, "~(2 L'—) 2itp "+(—5 —L—')

[04,zg'+) = O.

The set of 12 operators found, together with the QI„
forms a closed algebra. If we exclude the operators u~"+,
c~"+, and d~"+, the resulting subalgebra is also closed.
The linear combination of the remaining operators,

UA,
'+——eg'+Xq+ fp'+) 2+gl, "+Kg+hg "+@g+qg "+p2+ tI, '+@z

+&I +~i+~I ~2+~I

then satishes

[Qg, Ua"~)=&Up"~/d '= U "~cog, thus a)g=&1/d ''

(35)
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and

[Qs, Ug"+]= eg'+[ —2Xz+2(L' —2)v,]+fg'+[ —2hz+2(L2 —2)vs]+gg"+[—2X3+2(L2 —2)v3]

+kg"+[2ihz —2Z43+ 2i(5 —L )vz]+ qg'+[2ihz —2342j2i(5 —Ls)vs]+ ig'+[2ikg —2Z43+ 2i(5 —Ls)v3]

+»"+[23143+6»]+~3'+[2zzss+ 6vg]+sg "+[2izzg+ 6pg] = Ug "Ms,
provided that

—2XV+2(L2 —2)v„=X~g,
2ikv —244,+2i(S —I.')v„=34~2,
2ip, „+6v„=v~2, p= 1, 2, 3.

These nine equations have three solutions:

(1) 402=0, Xp= (L' —2)v„, Zzv=3zvv',

(2) 442
——1+(1+ 4I. 2)'~ 2= L+, Xv= „(L+ —4)v»—zzp= si(6 L+)—v»

(3) 442=1 —(1+4L2)'~2=L, Xp= 23(L -4)p„—, Izp= ',i(6 L—)v„—.

(36)

Furthermore,

U r+]—g„r+[ 2(2 Js)g +2(2 Lg) p ]+fg"+[23/3+23(5 —Jz)As+2(2 —L )vs]+gg"+[23~2+84+2(2 L )"3]
+Qg~+[ 22&, 2(2 Jg)343 22(5 —Lg) p,]+ps"+[—2i) 2+ 2234,+2i(5 —J')343—23(5—L') vs]

+is~+[ 2iyg+—2i142+SZ43 2i(5 —L')v ]—+3»'+[ 2iZ43 ——Svz —2(2 —J')vs]
+.zv„'+[ 2i14—242ivz -8vs+—2i(5 J')—vs]+sg' [ ass—g+2ivs]= Ug" 4»s.

Equating coef6cients results in nine equations:

—2(2 —Jg)hz+2(2 —L')vs= 4443,

2&4+22(5 —J')As+2(2 —L')ps= Xws,

2zks+ SX3+2(2—L') vs = 'Ascvg,

—2A, —2(2 —J')343 —23(5—L')vs= 3444d 3,

2ih2+ —2334,+2i(5 J')zz3 2—i(5 L'—)vs = zz—ws, (38)
2&3+231—42+ 8143 23(5 L'—)vs 34—3443 &——

—23344 —Svz —2(2 —J')vs= vzzgg,

—23342+ 2zvz —Svg+ 2z(5 —J')vs = V2442,

(2) ~2=L+

(a) U4. 443 L+ ~ vz ——(J'—2)v3 p V2

(b) Ug: us= J+ L+ vs= V3~

2+J+

Vs = —
2 z(j+—6)vgi

(C) Us.'~s =L+—J—4

2(J' —2)
p, = vg (J W —2)

2+J
—2',q+ 2zv2= v3Mg. 3V3 (J = —2),

These equations have to be satished simultaneously
with the conditions imposed in Eqs. (37). With the
substitution of Xp and zsv in terms of v„ into Eqs. (38),
one arrives at the following solutions:

(1) 442=0

(a) Uz. 443
——0, vz ——(J —2)vg, vs=3ivg.,

(b) Ug. (us ——1+(1+4J')'"=J+,
2(J' —2)

v, = -vs, vg =-,'z(6 —J+)vs,.
2+J+.

(c) U3 (03 1—(1+4J2)&ts=J

(3) 442 =L

Vs= 21(6—J )Vs.

vz ——(J'—2)vg, v2=3zvs,

2(J'-—2)

(a) Uz. 4dg=L

vs =-,'z(6 —J+)vg,

(c) Ug. a&3 J L—— —

2(J'—2)
p, = p, (J 4 —2)

(b) Ug. &43=J+—L, P3~
2+J+

2(J'—2)
-vs (J A —2)

2+5 vs= sz(6 J )vg.

(J = —2),

3@8

vs=-,'i(6 —J )v, .
(J = —2), Finally, we have

[04,Ug"+]=0, 4d4= 0. (39)
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TABLE I.Tabulation of the operators U&-U9.

(U8}

V&

V2

{U1)'"

(J'-2)(L'-2).

3i(L' —2)v8

{L'—2) V8

3i(J'—2) p8

—9v8

32v8

(J2—2)v8

3zv8

(U }.r+
2(J'—2) (L' —2)V8

(2+J.)
—,'2(6 —J+) (L2—2)v8

(L'—2)v8

6i{J'—2}v8

(2+J,)
—;(6—J,)»
32v8

2(J2—2)p,

(2+J+)
—,'i(6—J+)v8

{2+J-)
~i(6—J ) (L —2)p8 4i{L —2)v8

{L'—2)v8 (L8—2)»
6i(J'—2)v8

gi(L —4)

(L 4)„

—9iv8 —,'i(J' —2}(6—L+}v8
(2+J }

——;(6—J )»
32v8

2(J'—2)

{2+J )

pi{6—J }v8

12v8

32v8

—3v8

42v8

—8(6—L+)»
qi(6 —L+)v8

(J2—2)v,

3zv8

2{J'—2) (L'—2)v8 —3{L—2)» -,'(L,—4) (J2—2).

(U ).r+

(L+—4) (J2—2)v8

(2+J+)
42(L+—4) (6—J+)v8

—,'(L+—4)v8

i(J'—2) (6—L+}V8

(2+J+)
—-', (6—J+) (6—L+)v

—(6-L ).
2(J2—2)p8

(2+J+)
—,'i(6—J+)v8

P8

V1

V2

{L+—4) (J2—2)..
(2+J )

—,'i(L+—4)(6—J )v8

-', (L,—4)v8

i{J'—2) (6—L+)»

(2+J )
——,'(6—J )(6—L ) 8

-', 2(6—L+).8
2(J2—2)v8

(2+J )

,'2(6-J )..

(U }.tk

-'(L —4) (J'—2)V8

-', i(L —4)v8

${L —4)v8

—;2{J2—2)(6-L ).8
3.(6 L )

—,'2(6-L )»

(J'—2)V8

32V8

{I —4) {J'—2)v8

(2+J,)
—;2{L—4) {6—J,)»
g(L —4)v8

2(J'—2)(6—L )v8

(2+J+)
——.'(6—J ) (6—L-)
~i{6-L )»
2(J2—2)v8

(2+J )
—,'i(6—J+)v8

{L —4}(J2—2}»

(2+J )
~i{L —4)(6—J )v8

(L 4}
2(J -2){6-L).

(2+J )
——;(6—J )(6—L }.
xi{6 —L )v8

2(J'—2)v8

(2+J )
-', i(6—J )v8

—
2 (L —4)v8

2i(L —4)v8

-'(L —4)~8

—-', i(6—L )v8

—2(6—L }v8

—,'i(6—L )v8

3V8

42v8

The coefFicients of the corresponding nine solutions
U~—U9 are listed in Table I; the effect of these operators
on eigenstates is shown in Table lII.

Constructing ladder operators from the members of
the whole algebra, i.e., with the inclusion of the three
operators aI,"+, cl,"+, and dI, "+, will not produce new
solutions, since the coefficients of these terms in the
ladder operators will have to be identically zero to
satisfy Eqs. (26).

The ladder operators constructed so far are the only
linearly independent vector operators that can be gen-
erated from Euclidean three-vectors of the 6(iV —1)-
dimensional phase space. One can easily construct tensor
operators by taking the product of two or more of the
operators U~—U9.

All of the operators Ui—U9 commute with 04,. there-
fore, they do not produce spin fIip of the subparticles.
However, one can generate another closed commutator
algebra by starting from the basic elements of spinor
space, the S;j .

For this purpose let us define

Si 2 CsjkSj k j
then

5* =2~*,AS&

[Q4,E;"]=
[Q P m]

[Q P,m]—

[Q P m]

[Q Pm]—

—2iQ;"+2iS; L S,
0,
0,

2iQ;"+2iS—; L S+2E;",
2iS;S S—+2iS,"(S' 2)+4F, —

2iH, +2iS; (S'—2)+4F;—
[Q G~m] —0

[Qg G ]=0

Now,

[Q„S,-]=0
[ Q, 2;5™]=0,
[ g,QS, 7= 2ie;;gL;Sg~—= —2iE;

[Q4,5; ]=—2ie;, 1,5,5p —25, =— 2iF, 2S,—", —

[Q Em] 0

[ g,QE]=2iS,L S —2iL,S S —2iL,L S
+/&5 mr2+2E m. .

= 2iQ; 2iGg 2iX—; +2i—S,"L'+2E;~,

where Q
"=—5;L S" G "=—L,S S" and X;~=L,L S—
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[Qs,G;"]=2ie;,,L,54S S"=—2iK;",
[Q G.m] —0
[Q H .m] —0
[Qs H; ]=0,
[Q„H,-]= —2zZ, -,
[Q4,H; ]=0,
[Q„Z,-]=0,
[Q„Z,-]=0,
[Qs)K; ]=2zH; (L S+L') —2iG; (L S+Ss)+2K;",
[Q, Z-]=0
[Q„N,-]=0,
[Q N, m] —0
[Q Ns; ]=2ie,;sL,SkL S +2iec;eL;L45,54 +2A'4

=2iR; +2zT; +2';
where E; =E'gI,LjSpL S and T; =—~)j&L LPj'SI,

[Q4,N, ]= 2iT, —2N, —
)

[Qs,Q; ]=0,
[Qs,Q;"]=0,
[Qs,Q;"]= —2ie,)sL,SsL S"+2iec;eS,Lc5,54"+2Qc

2iR—; +2iV,"+2Q,",
[Q4 Q.m] — 2iV.m 2Q m

[Q,,R,"]=0,
[Qs R, ]=0,
[Qs,R, ]=2zQ;"(L'+L S+1)+2iN,"(1—L.S—S')

2V, 2T; —+2ze;;s—ec Q)54L)5 5„
+4R; = 2iQ, (L—'+L S+1)
+2iN;"(1 LS——5') —2 V;"—2T,"

+2iW; +48;
[Q4 R ]= 2iW m —2R m—

satisfy
[Q),U; ]=U;"co4=0 with cog=0,

[Qs, U; ]=U; cos 0=with cos=O,

(40)

(41)

[Qg, T, ]=0,
[Q„T,"]=0,
[Q s, T; m]=2iG, L S 2—iN; (S' 2—) 4—T; +2iW,
[Q4,T;"]= 2—iG;"L S+2zN;m(5' —2)+4T;",
[Q V "]=0
[Q Vm] 0
[Qs, V; ]= 2iH, "—2iQ,"(S'—2) —4V, —2iW,

[Q4, V, ]=—2iH, "L S+2iQ, (S' 2—)+4V,
[Qz,W; ]=0,
[Qs W m]=0
[Qs)W;m]= 2iV,™N(LS+L'—2)+2Q;m(S-' —2)

—2H, mL. S—2iT;"(S'+L S+2)
—2G; L S—2iR,m(S' —2)+2iE, L S

+2N, m(Ss —2) —2W;m,

[Q4,W, ]= 2il—t, L S+2iR, (S' 2)+—4W,"
The operators S, , E;, F, , G;, Hc, K ) N* ) Q' )

g;~, T;~, p;~, and 5;, together with the Ol„ form a
closed algebra. Two kinds of subalgebras exist: The
smaller is composed of the elements 6;,B;,E;", and
Qk, while the larger is made up of the operators 6;,

m Q.m NN) Qm R.m, Tm V.m W.m and Q

the larger type of subalgebra contains the corresponding
smaller one for giveni and m, we can form a linear com-
bination of the nine operators (excepting the Qs) of the
larger subalgebra and examine the e6ect of the exclusion
of 5;, E;, and F,™later. The linear combinations

Uc"= Gc"ps+ He"ps+ K"ps+Ncaz+ Q'"as+ R,"as
+T~™~j.+~' ~2+~' ~3

[Qs, Uc ]=U; cos=G,"[—2i(L S+S')ps+2iL Sr)—2L Srs]+H, [2irs+2i(L S+L')ps —2L Srs]
+&4 [2zp& 2zps+2p—s+2iL Srs]+N, "[2az+2i(1—L S—5')os —2i(5' —2) rs+2(5' —2) rs]
+Qc [2as+2i(L'+L. S+1)os—2i($' —2) re+2(S' —2)7s]+R; [—2io s+2io z+4as —2i(Ss —2) 74]
+T; [2ia& 2os 4—74 2i—(S +—L S+2)rs]+ V, [2ios —2as —4rs+2i(L S+I. —2)Ts]

+W; [2zo's —2zrs+2zrc —2rs],

with

—2z(L S+5')ps+2iL Src—2L Srs=cospc)
2zrs+2z(L S+L')ps —2zL Srs= cosps,

2ipq —2ip2+ 2p3+ 2iL Sv'3= co3p3 )

2as+2i(1 —L S—5')o.s—2i(S' —2) rc

+2(S' —2) rs ——co,as,
2os+2i(Ls+L S+1)as—2i(5 —2)rs

+ 2 (S —2) Ts= o)sas )

2ias+2zas—+4as 2i($' 2)—rs co,a-, ,
——

2zac —2o 4
—4rz —2z(S'+L S+2)rs ——cosrs )

2zos —2os —4rs+2z(L S+L' 2)rs=cosrs)—
2zo.3—2zv2+ 2z7 ~

—2r3 = co3'T3

and

with

2iL ' STq= (84pq )—2ae+2i(5s 2) re= cocae,—2ATq+ 4Tq
= G047 q )

q= 1, 2, 3. (43)

[Q4, U; ]=U; 4=Geo, (—2iL Srz)+H, (—2iL. Srz)

+K; (—2iL Srs)+)V; [ 2aq+2i(Ss —2)rc—]
+Q;"[ 2o 4+2i(5'—2)rs]+R;"—[ 2os- .

+2i(Ss—2)rs]+T, ( 2iac+47—))+V, (—2ios+4rs)

+W; ( 2ios+4rs), —
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TABLE II. Tabulation of the operators Ulo UIY.

P2

P3

T2

(U 0),-
z{a+25'}p3/J+

i(A+2L2) p3/J~
P3

0
0
0
0
0
0

(UI4)'"
j+0

(U )'-
j/0

z(a+252}p3/J
'(~+2L2}p3/J-
P3

0
0
0
0
0
0

(U.);-
—zar, /5,
—Zhrl/S+
0

z(4—S+)rl
2'z(4 —S+)r

0

(UI6);
s/0

(UI3)'"
—(~/5+) (5++252+~)T3/J+
(b, /5+) (5+2L2—S+)r, /J+
—z(~/S, ).3
—4(4—5+)(5++25'+~)T3/J+

——,'(4—5 )(S —a—2L2) /J
—2Iz(4 —S+)T3
—z(S++252+b.)T3/J+
z(~+2L2 —S,)r,/J

(UI7)'"
j/0, s/0

Pl

P2

P3

T3

—(&js+)(5++252+~)T,/J
(~/5+) (~+2L' —5+)T3/J-
—z{~js )T,
-!(4-5+)(5++25'+~}-3/J
——,'(4—s+) (s+—~—2L2) T3/J
—~z(4 —S )
—z(5++25'+b, }T3/J
z(b, +2L2—5+)r3/J

—zhrl/S
—zhrl/S

0
—pz(4 —S )TI
—pz(4 —S )rl
0

—(~/S )(S +252+~)r3/J+
(&/S )(~+2L2—S )T3/J+
-'(~/5 )T3
——,'(4 —S )(S +25'+A)r3/J+
—&{4—S )(S —S—2L2)r, /J,
—gz(4 —5 )T3
—z{5 +252+~)T3/J+
z(b+2L2 —5 )T3/J~

-(~/5 )(s +2s+~).,/J
(a/5 )(S+2I.2 —S )r /J
—'(~/S )73
—$(4—5 )(S +252+6)T3/J
—~2(4—5 ) (5 —a —2L2)T3/J
—~z(4—S )T3
—'{S +252+a}r,/J
z(412L2—5 )r3/J
T3

The solutions of Eqs. (43) are

(1) 464=0, 4r6= r6=0, and the p6 are arbitrary;

(2) ~4=1+(1+45')'"=54., p, = 2i(L —S/S+)r„
&6= 2i(5+ —4)r6, (44)

(3) 464=1 —(1+45')'"=5, p, = —2i(L S/S )r,
(5 WO), o,= ,'i(5 -4)r, —

Substituting into Eqs. (42) for the three cases, we
obtain

(1) 464= 0

(a) 466=0~ pi= p6, p6=0; this case is trivial,
since the corresponding operator commutes with all four
QI, .

(3) 664 ——5 AO

(a) Ur6: ~6 ———5, ri=r6, r, =o;

2S2+2L S+S
(b) U16 ~ 463+J~ 5—) rl = 1

2L S+2L2—S

(c) U47: 666=J —5, (J g0)
2S2+2L. S+S

71

2L S+2L,2 —S

T3 7

(b) U46:

(c) U4&.

(2) ~4=5+

(a) U»:

(b) U46.'

Ql3 = —S+ 7 7 1 =T2,

71=

73=0;
2S +2L.S+S,

73 7

J+
2L S+2L,2 —S+

72=1 73 7

4d6 ——J+WO, p4 ———2i(L.S+5')/J+p6,
p, = 2i(L S+l.')/J4. p6,

466=j &0, p4
———2i(L S+56)/J p6,

p.=2i(L S+I.')/J p6.

T2 73 ~

V. SOLUTIONS OF EIGENVALUE EQUATIONS

The eight nontrivial solutions Ulo—U17 are listed with
their coefFicients in Table II, and their effect on eigen-
states is shown in Table III.

For ladder operators constructed from the members
of the whole algebra, the coeS.cients of the operators
S;, E, , and F„"have to be zero to satisfy Eqs. (26);
thus they are identical with Ulo—Ul;.

(c) Ui4 466= J-—5+,

72=1 73 ~

(J WO)

25'+2L. S+S+
Tl 7 3J

2L. S+I '—S+

The operators Q6 (0= 1, 2, 3, 4) defined in Sec. III are
the only ones entering into the eigenvalue equations,
but they do not comprise a complete set of mutually
commuting operators. As a result, the states satisfying
Eqs. (20)—(23) are degenerate. Let us consider, then,
additional operators that commute with the Q~ and
among each other, in order to narrow down the repre-
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TABLE III. Properties of the U operators.

(U )'"'
(U&) .r+

(U ).rk
{U ).r+
(U.)' "
(U6)'"+
(U ).r+
(Us)'"+
(U ).rk
{U o);~
(U»);-
(UI2};
(U ).m
(U,4);-
{Ulb)i
(U );-
(U 7) .m,

&1/d, '
&1/d, '
&1/d, '
a1/d, '
&1/d, '
&1jd, '
&1/d, '
a1/d, '
~1/d, 2

0
0
0
0
0
0
0
0

0
0
0

2(l+1)
2(l+1)
2(l+1)

—2l
—2l
—2l
0
0
0
0
0
0
0
0

t
GD3

0
2(j+1)

—2j
—2(l+1}

2(j—l)
—2(j+l+1)

2l

2(j+l+1)
—2(j—l)

2(j+1)
—2j

—2 (s+1}
2(j—s)

—2(j+s+1)
2$

2(j+s+1)
—2(j—s)

I
C04

0
0
0
0
0
0
0
0
0
0
0

2(s+1)
2(s+1)
2(s+1)

—2s
—2$
—2$

~Lj(j+1)j
0

2(j+1)
—2j

0
2(j+1)

—2j
0

2(j+1)
—2j

2(j+1}
—2j

0
2(j+1)

—2j
0

2(j+1)
—2j

~Brjd 2

&B'/d„m+2C'(j+ 1}
&B'/d, '—2C'j
+B'/d„' —2C'(l+1)
~B'/d, '+2C'(j —l)
+B'/d„' —2C'(j +l+1)
aB'/d„l+2C'l
~B'/d„'+2C'(j +l+1)
~B'/d, '—2C'(j—l)
2C'( j+1)
—2C'j—2C'{s+1}+2D'{s+1}
2C'(j —s}+2D'(s+1)
—2C'(j +s+1)+2D'(s+1)
2C's —2D's
2C'(j +s+1)—2D's
—2C'(j—s) —2D's

sentations and to examine the nature of the arising
degeneracy.

Third component of total spin: Jp= J&p L&q. (72)j.
The degeneracy is an expected one, since the eigenvalue

j3 of this operator merely specifies the spatial direction
of the compound spin. Specifically, the operators (U) p'~

and (U) p (see Table III) leave jp unchanged, while the
combinations (U)q'+&i(U)p'~ and (U)0&i(U)P will
raise (lower) jp. We can also require, then, that

(45)

X—1 occupation number operators: E"=a '+a~'"' .
Since the operator Q~= I' is a linear combination of these
with unequal coefficients, no degeneracy arises. From
Eqs. (20) and (30) the eigenvalue is given in terms of
the occupation numbers as

E 3asymm—etric linear combination of the L' L'. The
arising degeneracy is analogous to the one due to the
S S"discussed above, since it arises from the addition
of more than two orbital angular momenta and cor-
responds to the E—3 degrees of freedom of orientation.
of these angular momenta consistent with Eq. (9).

In order to find the solutions we will look at two
distinct cases:

(1) X even. Taking Ifp& 'to be the ground state, we

require that

r I1t,& =-', 2(1/d ') l0o& =l(1/d') l0 o&

where (1/d') =Q(1/d, '),

I'I A& =~ IA) =s'I&p& =~p I&p& =o
"'+

v=2
d„'

(46)
and

E subparticle spins (S")'. The subparticles are fer-
mions; therefore, these operators have unique eigen-
values (—,') resulting in no degeneracy.

X—Z asymmetric linear combinations of the S S".
The corresponding degeneracy is related to the E—2
degrees of freedom of spin direction of the subpartides,
consistent with Eq. (10), and it always arises whenever
more than two angular momenta are added together.
The superscript m of the operators Ujo—U~7 in Table
III corresponds to this degeneracy.

E I orbital angular m—omenta: (l.")'.The eigenvalues
of these operators are not unique, although they can
take on only the values

That is, our ground state is of positive parity with
compound spin jp

——0 LEq. (24)j and Drom Eq. (25)]

f(M) = A'+ PpB'/d'. —

Ifp& is of the form

Igp) = n—'""(d&dp .dn)
—'"4 exp( —y."y "/2d ')

I up),

where @ is a normalized eigenstate of the operators A,
B, C, and D, yielding eigenvalues A', B', C', and D', and

I up) is a normalized asymmetric combination of 1V-fold

direct products of two-spinors, satisfying

~r=nr, nr —2, n.—4 1 or 0; (47) S'Iup)=splup)=0

thus, for given n„any interchange of two or more lr
consistent with Eq. (47) leads to a degenerate state. (S")'

I up) = -,'
I up).
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Kith the help of the ladder operators found in Sec.
D,', all other solutions can be generated from this ground
state.

Since the operators U~—U9 are of negative parity
and change the total occupation number by one unit,
while U~o—Uj7 are of positive parity and leave the oc-
cupation numbers unchanged, with the choice of posi-
tive parity for the ground state we have the condition

P= (—I)".
It should also be noted here that the operators U~o-

L' $7 annihilate the ground state, although U» is the
ladder operator that, in general, is responsible for the
allov ed transition As= 6j= +1, Al = Ay= 0. To achieve
such a transition using the ladder operators of Sec. IU,
one has to use the product of three of them, e.g. ,
(U7)o" (U»)o"(U4)o"+IA&.

There exist, however, special ladder operators that
are good only for single states. If we write Eq. (26) in a
modified form, namely,

[Q„., U]= Uu&o+8k with 8, l&'&=0, . (49)

i.e., with ef, an annihilation operator for a certain state,
then any solution of Eq. (49) will be s, ladder operator
if acting on that state. The operator (Uo); =n(S;
+iF, +H, ) (see Sec. IV) is such a solution for the
ground state, since

[Q,(U.),-)= o,
[Q,, (?.'o), '"]= 0,
[Q, (U ) m] Q( 2ZE m+2Q m 2S mL. S

+2iE,m 2ir m)

=~o(Uo)'"+8o,
where 8olgo&=0 and coo=0,

[Q (U„) m) &( 2iF m 2S m+2H m

—2S;"(S'—2)+4iF; )
(S,ta+iF m+ jy m) 2~ mSo

=2(Uo)' —2uS~ S'=a&4(Uo)* +84,
whe«84lpo&= —2oS S'lgo&=0 and cv4 ——2.

Example: iV = 2.

l4o&=(~d) '"0 exp( —y.y~/2d') luo),

with

(2) iV odd. Since the lowest possible spin now is o',

there are two types of ground states
l Po)+, satisfying

I'IA&+= l(I/d') l0o&+

I o ly, &,= alp, &,= 0,
S'lko&~= 4 I A&+,
~o

I A&+= ~k IA&+
(S")'

I A&+= -'
I A&+,

F IA&+= i@4.

The ground states are therefore of positive parity, with

compound spin ~, and with

f(M) = A'+ ,'B'/-d'+ ,'D'-,

having the form

lPo&~= n'v~.4—
(dgdo dw. &)

'to@

&&exp( —y;"y /2d„) luo&+,

where @ is again a normalized eigenstate of A, 8, C,
and D, and luo&~ are normalized spinors, satisfying

S'
l
uo)~ ———,

'
l uo&p,

So
I
uo)y= ~k Iuo&y,

(S")'
I
uo&y= 4 I uo)y

Example: X=3. %e can choose

" = '. (.')(.')(', )
-(.')(",)(.')-(',)(.')(.')

"-= '. (",)(",)(.')

-(',)(.')(',)-(.')(', )(;)
then,

lPo)+ ——vr " (d,do) '~'4& exp( y;"y;"—/2d„')
l
uo&+.

VI. APPLICATION TO ELEMENTARY PARTICLES

In this section we will investigate the mass formula,
Eq. (25), for groups of elementary particles and re-
sonances. Under a "group" we will understand the
collection of particles of the same internal quantum
numbers: isospin and hypercharge. Ke will examine
mass formulas for f(M)=M and f(M)=M'.

Since Eq. (25) has four undetermined constants A',
8', C', and D', the results of the theory have to be
partially empirical, for, in any group of elementary
particles and resonances under consideration, these con-
stants will have to be determined from experimental
values of particle masses. The eigenvalues y of the
operator I' also contain undetermined constants: the
fundamental lengths d„. On the assumption that the
mesons are made up of two, and the baryons of three
subparticles, i.e., if there are three degrees of freedom
of relative motion for mesons, corresponding to one
fundamental length d, while there are 2)&3 degrees of
freedom for baryons, corresponding to two fundamental
lengths d~ and d2, one arrives at a total of four undeter-
mined constants for mesons: A', B'/do, C', and D',
and 6ve for baryons: A', B'/d~', B'/do', C', and D'.|onsequently, one will have to use experimental mass
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TABLE IV. Quantum-number assignments and resulting masses for nuclear resonances.

Symbol

N'(147o)
N(1518)
N(1550)
N(168O)
N(1688)
N'(1710)
N(2190)
N(2650)
N(3030)
A(1236)
6{1640)
A(1920)
b (2420)
A(2850)
6(3230)

1+
2
1+
2

2
1—
2
5—
2
5+
2
1—
7—
2

PL-jc
L-»-ge

3+
1—

i+
Jl+

2

t 19/2+$'

0
0
1

1

1

2
1
2

6
0

3
5
8

10

s

1

1

3
2
1

3
2
3
2
1
2
3
2
3
2
1
2
3
2
3
2
1
2
3
2
1
2
3
2

0
0

—2
—2
—7
—1
—2

6
2

—7
0

—5

3
2

—9
—14

0
2
1
0
1

2

3

5

6
0
1

3
5
6
8

n2

0
0
0
1

0
0
0
1

2
3
0
0
1

1

2

2

0
2

1

1
1

2

3
5
7

9
0
1

4
6
8

10

M2(theoret)
{BeV2)

(o.88)
2.12

(2 33}
(2.40)
2.78

(2.86)
2.92
4.81
7.13
9.25

(1.53)
2.60
3.81
5.79
8.09

10.43

3f2(expt)'
(8eV')

O.88b

2.16
233b
2.40b

2.82
2.86b

2.92
4 84
7.02
9.18
1.53b

2.69
3.80
5.86
8.12

10,40

M' =
I 0.718+0.620n1+1.340n2 —0.0908+0.217s(s+1)g (BeV )

From A. H. Rosenfeld et at. , Rev. Mod. Phys. 40, 77 (1968).
b The mass formula was based on these values.
o Quantities in square brackets are suggested values; they have not been established experimentally.

values of four mesons and five baryons in any group
to arrive at the masses of the other members of the
group.

The determination of these constants is not unique,
since it depends on the assignment of the quantum
numbers n„, l, s, and 6 for the particles from which
these constants are determined.

These quantum numbers have to satisfy the following
conditions:

(a) Eq. (4g): p=( —l)".
(b) The total spin j of each particle satisfies

if —si &y&t+s

from the theory of addition of angular momenta.

(c) s=O, 1 for mesons,
s= ~, 2 for baryons,

since S is the vector sum of two or three 2 spins,
respectively.

(d) For a three-dimensional harmonic oscillator

l„=n„,n„—2, n„—4 1 or 0;

therefore, for rnesons

l=n~ n —2q n —4 ' ' ' 1 ol 0j

for baryons,

l1——n1, n2 —2, n1—4 1 or 0,
l2=n2, n2 —2, n2 —4, . ~ ~, 1 or 0,

with

The general procedure is, then, to select the necessary
number of particles for the determination of the con-
stants within a group, to find all possible combinations
of quantum-number assignments satisfying the above
conditions, to find the constants for each, and to check
the resulting mass formula for the other members of the
group.

In carrying out this procedure, we found no apparent
agreement with the choice of f(3f)=M. With f(M)
=M', the mass formula is still inapplicable to mesons,
but for groups of baryon resonances, there is more than

TABLE V. Quantum-number assignments and
resulting masses for Vo* resonances.

Symbol

x(1405)
x(1520)
A'(1670)
~'(1690)
S(1815)
X(1830)
X(2100)
w(2350)

1+ 0
1

1-
2

12

—,'+ 2
5— 32
7 32

t:-'j' 4

M'(theoret) M2(expt)'
nl n2 n (8eV') (BeV')

0 0 0 0
0

—2 1 0
—5 0 1 1
—2 0 1

2 1 1 2
—4 3 0 3

0 2 1 3
4 2 2 4

(1.24)
(1.97)
(2.31)
(2.79)
(2.86)
3.39
3.48
4.46
5.54

1.24b

1.97b

2.31b

2 79b

2.86b

3.30
3.34
4.41
5.52

M2 = L1.155+0.777n1+1.327n2+0.0235+0.113s(s+1}J (BeV2}

(e) The quantum number 5 is given by [from Eq.
(24))

p=j (j+1)—l(l+1) —s(s+1).

since I = L1+L2.
il, —l,

i
&l&li+l2, a From A. H. Rosenfeld et at. , Rev. Mod. Phys. 40, 77 (1968).

b The mass formula was based on these values.
e Quantities in square brackets are suggested values; they have not been

established experimentally.
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one possible assignment scheme, each giving satisfactory
results for the entire spectrum.

It appeared to be reasonable to select those a,ssign-
ment schemes that yielded, at least in the higher-lying
resonances, approximate equipartition between the two
independent harmonic oscillators. XVith this condition
imposed, we found that the %1~2* and ~V3~2* resonances
can be fitted with a single-mass formula. . This is not
surprising on the basis of quark theory, according to
which, both of these groups of particles are made up of
the same kind of subparticles. On this basis one would
expect a single mass formula to hold for the I'0* and
V1* resonances as well. %e found this not to be the case,
although the corresponding constants in the mass for-
mulas are not drastically diferent. In particular,

8 8———+——2.104 BeV' for the I'o~
d1'-

=2.033 BeV' for the I'1*,

as compared with 1.96 BeV' for the X* resonances. If
8 is of the order of unity, these values correspond to a
fundamental length of the order of 10 "meters.

The selected assignment schemes, the mass formulas,
and the resulting Inasses for nuclear resonances are
listed in Table IV, for I'0* resona, nces in Table V, and
for the I'1* in Table VI.

For the Zo*, ™1t2*,and Qo* groups, the number of
known resonances is not sufFicient for the determination
of mass formulas.

In the schemes of all the groups of particles considered
above there are holes, that is, possible states for which
there are no established resonances. These states for
nuclear resonances for n1= 1, n2=0, and for n1=n2= 1
are listed in Table VII. As indicated there, seven of these
fifteen states can be identified with resonances reported
by the CERN group (Donnachie et al.") and not in-
cluded in Table IV.

TABLE VI. Quantum-number assignments and
resulting masses for Y1* resonances.

M2(theoret) M'(expt)'
Symbol jp t s p e& n2 m (BeV') (BeV')

Z —,
'+ 0 —,

' 0 0 0 0 (1.42) 1.42b

Z(1385) y+ 0 2 0 0 0 0 (1.92) 1.92

Z(1660) 2 1 —,
' —2 1 0 1 (2.76) 2.76b

Z(1690} $-' j' 1 —' 3 1 0 1 2.84 2.89
Z(1770) 2 1 $3 0 1 1 (3.13) 3.13"

Z(1910) —',+ 2 2
—1 2 0 2 (3.65) 3.65

Z(2030} g+ 2 2 6 1 1 2 4.05 4.12

Z(2250) t
-,' 1' 3 ' 9 2 1 3 4.98 5.06

Z(2455} L-;+j' 4 2 1 2 2 4 6.00 6.03
&(2595) L2' j' 5 x —9 3 2 5 6.71 6.73

Z(1616} (2 J' 1 2 1 0 1 1 2.60 2.61

M'= t 1.295+0.873nl+1.160n2+0.0175+0.167s(s+1}g (Bev')

a From A. H. Rosenfeld et al. , Rev. Mod. Phys. 40, 77 (1968);with the
exception of Z (1616).

b The mass formula was based on these values.
& Quantities in square brackets are suggested values; they have not been

established experimentally
d Reported by D.J.Crennell et at. , Phys. Rev. Letters 21, 648 (1968).

model the application of the Pauli principle is not
straightforward. As was pointed out in Sec. III, in one
particular representation of the relative variables the
operators I';;" (and, therefore, the X") will be diagonal.
This representation is obtained from the coordinates
and momenta of the subparticles by a unique canonical
transformation that separates out center-of-mass
motion, i.e., a transformation that satisaes Eqs. (5)
and (6). Since all elements of this transformation matrix
are not given, it is not known in what way individual
subparticles enter into a given harmonic oscillator, i.e.,
what the association is between subparticles and har-
monic-oscillator quantum numbers n„and /„. It is our
intention to study this problem in the future.

TABLE VII. Some low-mass resonance states of the model
that do not correspond to established resonances.

VII. DISCUSSION

Although the motivation for this work has been some
observed regularities in the squared masses of hadron
resonances, we would like to stress that the application
of our model to hadrons was not the primary objective
of this paper. %'hether or not the model has anything to
do with hadrons, the problem of an arbitrary number
of independent harmonic oscillators with broken U(3)
symmetry remains an interesting one.

It should also be pointed out that the material con-
tained in Secs. I—IV is in no way dependent upon the
value of the spin of the subparticles; therefore, these
sections are applicable to bound states of bosons as
well.

The application of the model to fermions has to be
with the use of the Pauli exclusion principle. For our

3—

1—
5
2
3
2
3

7
2
1

3
2
5
2
3

5
2
3
2
1
2
3
2
1
2

M2a
L s 5 n1 n2 n (BeV')

1 —,
' 1 1 0 1 1.41

—2 1 0
2 y 2 1 1 2 2.66
1 2 1 1 1 2 2.75
0 2 0 1 1 2 2.84
2 g 6 1 1 2 2.95
1 —', —2 1 1 2 3.02
2 —,

' —3 1 1 2 3.11
1 2 3 1 1 2 3.32
0 2 0 1 1 2 3.49
2 2

—1 1 1 2 358
I 2

—2 1 1 2 367
1 -', —5 1 1 2 3.94
2 2

—6 1 1 2 4.03
2 —,

' —9 1 1 2 4.30

M2b
(BeV2}

2.85

3.07

3.47
3.66
3.74
3.93

4.23

' A. Donnachie, R. G. Kirsopp, and C. Lovelace, Phys. Letters
26B, 161 (1968).

a Computed from the mass formula of Table IV.
& Resonances reported by A. Donnachie, R. G. Kirsopp, and C. Lovelace,

Phys. Rev. Letters 26B, 161 (1968).
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In applying our model to baryon resonances, we
found good agreements with experimental values by
assigning known resonances to possible solutions of
the theory. As pointed out in Sec. VI, however, it
would also have been possible to obtain fairly good
agreements for diferent assignment schemes. %e selec-
ted the ones shown in Tables IV—VI on the basis of
simplicity and equipartition among the independent
harmonic oscillators. These conditions seem reasonable,
although there are a few exceptions to the latter even
in our assignment schemes, and, therefore, it cannot be
considered absolute. It would be necessary to know a
much larger number of resonances in each group to be
able to test a given assignment scheme or the model as
a whole.

The number of missing resonances in the model, al-
though not unreasonably large compared with the num-
ber of established ones, is of concern, because there are
some states corresponding to fairly low masses, and one
~ould think that such resonances, if they existed, could
not have easily escaped attention. However, if one could
apply the Pauli exclusion principle to the quarks within
the mode1, some of the states would be forbidden; thus,
a possible state in our model could either correspond to
a resonance yet unknown, or could be excluded by the
Pauli principle or other applicable conditions that have
been ignored. It is interesting to note in this respect that
in all of the F*resonances of Tables V and VI the quan-
tum number l is maximal. Such a condition, if it existed,
would eliminate a large number of states that do not
correspond to known resonances.

The results of Sec. VI were obtained by taking

f(M) =M' in Kq. (25). There is no a priori reasons for
selecting either M or M' in Eq. (19). If an eigenvalue
equation exists for M, one exists also for M'. Since we
are not familiar with the exact dynamics of the problem,
the one we select to be the eigenvalue of a reciprocity-
invariant operator has to be dictated by empirical
considerations.

Mesonic resonances apparently cannot be 6tted by
our model. Since baryonic resonances decay via the
emission of mesons, it has been suggested" that, per-
haps, the more fundamental members of the meson
family can be considered as the agents of the excitation
and deexcitation of baryonic resonances. If so, these
mesons would not be associated with bound-state
solutions, but with the ladder operators of Sec. IV,
which establish transitions between baryonic states.
However, the question of which mesons are more
"fundamental" than others remains to be answered.
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