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Monte Carlo computations have been performed in order to determine the phase transitions

of a system of particles interacting through a Lennard-Jones potential. The Quid-solid tran-

sition has been investigated using a method recently introduced by Hoover and Ree. For the

liquid-. gas transition a method has been devised which forces the system to remain always

homogeneous. A comparison is made with experiment in the case of argon. An indirect

determination of the phase transition of the hard-sphere gas is made which is essentially in

agreement with the results of the more direct calculations.

I. INTRODUCTION

The present paper is devoted to the study of the
gas-liquid and fluid-solid phase changes of a sys-
tem of particles interacting through the Lennard-
Jones potential

In the one-phase region the thermodynamic prop-
erties of that system are nowadays rather well
known: When the density is too high for using
either the virial expansion or results from integral
equations, they are obtained throughMonte Carlo'
or molecular dynamics'&' computations. These
results are reviewed and discussed in Ref. 6. It
has been shown furthermore' »' that the equilib-
rium properties of the system of Lennard- Jones

atoms are very similar to thoseof argonif cr and &

are given those values which fit the second virial
coefficient at not too low temperatures, ' i.e. ,
&x=3. 405 A, &/0=119. 8'K.

If one attempts "computer experiments" in the
neighborhood of a phase change, one meets serious
difficulties. The tendency for separation into two
phases entails large fluctuations, and there is a
very slow approach to "equilibrium" in the com-
putations. It also appears difficult to reach all
the relevant regions of configuration space. As
a result, few quantitative results have so far been
obtained.

In the liquid-gas coexistence region, Wood has
studied the isotherm 7'=1. 0579 (reduced units,
i.e. , o= e/0 =1, are used throughout) for a sys-
tem of 32 atoms. ' Owingtoits small size, the sys-
tem does not separate into two phases at that
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temperature, and the fluctuation of the pressure
should remain fairly small.

The pressure versus volume curve obtained by
Wood shows a van der Waals loop in the transition
region. The results are too few to allow a pre-
cise Maxwell equal area construction which would

yield the transition pressure.
In the melting region, Wood and his collaborators

have found in several cases that the pressure ver-
sus density curve is composed of two branches.
One of these corresponds to the homogeneous solid
state, the other to the pure fluid. For a 32-par-
ticle system, occasional jumps from one of these
states to the other are observed in the transition
region. These jumps are rare, however, so that
an adequate sampling of the configuration space
cannot be made. The transition pressures of the
32-particle system can therefore not be deter-
mined with any precision. For larger systems,
such as the 864-particle system that we consider
in the present paper, the only observed transitions
are those from the fluid to the solid, and the tran-
sition pressure cannot be determined directly.

In order to locate the phase transitions we shall
use methods which involve only homogeneous phases.
The two-phase region with its difficulties will be
completely avoided, at the price, however, of a
more indirect approach.

In the condensation region, the 864-particle sys-
tem exhibits large density fluctuations due to the
tendency of the system to separate into regions of
different densities. This problem was encountered
earlier by Rotenberg" in his study of the system of
256 hard spheres each embedded in an attractive
well. This author observed a van der Waals loop
in the transition region, accompanied by such
large fluctuations that no quantitative conclusions
could be drawn. In order to avoid these difficulties,
we shall devise a reversible isothermal path join-
ing continuously the two physical one-phase states
by constraining the system to remain homogeneous
in the transition region. This is the spirit under-
lying Van Kampen's" solution of the condensation
problem in the van der Waals limit. Practically,
the homogeneity condition is met by subdividing
the system into a certain number of boxes and, in
the computer "experiments, " setting upper and
lower bounds to the number of atoms in each box.
Large density fluctuations leading to a gradual
phase separation are thus prevented and a revers-
ible path joining the gas to the liquid phase can be
constructed. The limitation in the density fluctu-
ations is chosen so that the liquid and gas-phase
thermodynamic properties are not perturbed. The
pressure versus volume curve in the transition
region turns out to be a van der Waals-like loop
which runs smoothly into the gas and liquid iso-
therms. Integration of the pressure along this
continuous isotherm yields the liquid-phase free
energy and this in turn allows the determination of

the transition data.
In Sec. 2 of this paper, we give the results of

computation, using the method that we have out-
lined, for two subcritical isotherms of the Lennard-
Jones fluid. The calculated data are the transition
pressure, densities, and latent heat. The agree-
ment with the same quantities for argon is quite
good except in the critical region, where the ma-
chine computations are unrealistic in not allowing
large density fluctuations, and for the gas prop-
erties at very low temperature, where the Lennard-
Jones potential is known to be inadequate. '2

After the free energy of the liquid has been calcu-
lated by the above procedure, one is left with the
problem of computing the free energy of the solid
phase in order to determine the melting transition.
A method allowing the numerical computation of the
solid-phase free energy has recently been proposed
by Hoover and Ree"; their method consists in sta-
bilizing the solid phase over the whole density
range by confining each atom to its own cell of
volume V/N (where N is the number of atoms in
the total volume V}. This scheme prevents the
system from melting and provides a reversible
path joining the density domain of the true solid
to the low density region where the cell model
free energy can be evaluated analytically. A
simple integration of the pressure along an iso-
therm computed in this way yields the solid-state
free energy. Since the free energy of the liquid
is known, the transition data are easily determined.

In Sec. III, we give the results obtained using
this method for the Lennard- Jones system. The
thermodynamic properties of the artificial solid
are computed along three different isotherms by
the Monte Carl. o method. These "exact" calcula-
tions have revealed a curious property of the cell
model: In addition to the well-known "liquid-gas"
transition of the cell model, there seems to exist
a second-order phase transition at a density about
10% lower than the melting density. At very low
temperatures, large fluctuations of the pressure
occur and the method becomes inadequate. In
that case we have solved the cell model for the
Lennard- Jones potential deprived of its attractive
tail, the density ranging up to that of the actual
solid. The attractive part of the potential is then
progressively turned on. A reversible path which
makes it possible to determine the free energy of
the solid is again available.

The transition data we have obtained, ranging
from twice the critical temperature down to that
of the triple point, are in very good agreement
with those for argon. We show that along the
solidification line of the Lennard- Jones fluid, the
maximum of the structure factor takes the value
2. 85 which is the value of the same quantity for
a hard-sphere gas at solidification.

Barker and Henderson'~ have recently shown
how a system of particles interacting through a
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repulsive potential can be replaced by hard spheres.
This equivalence, checked by "exact" computations,
enables us to use the results of Sec. III to obtain
the transition data of the hard-sphere gas. These
data are very close to those obtained more directly
and precisely by Hoover and Ree" who have solved
the cell model for the hard-sphere system.

II. LIQUID&AS PHASE TRANSITION

We shall show in this section how an equation
of state can be obtained for the Lennard-Jones
fluid, not only for the pure one-phase states, but
also in the coexistence region. Once the equation
of state is known along an isotherm, the inter-
action part of the free energy is given by

p
PZ. /&= f (PP/p'-1)dp'/p'. (2)

p

To this quantity must be added the perfect gas
contribution lnp —1 in order to have the total con-
figurational part of the fluid's free energy F~
divided by NkT. From the free energy the transi-
tion densities will be obtained using the Maxwell
double-tangent construction.

The equation of state in the liquid region was
obtained for the reduced temperatures T = 1.15
and T =0. 75 by a standard Monte Carlo calcula-
tion. ' A system of 864 particles with periodic
boundary conditions was used. Between 3 and
10x10' configurations were generated at each
volume. In the course of the computation we cal-
culated the internal energy and the compressibility
factor PP/p by averaging the corresponding mi-
croscopic quantities. As the Lennard- Jones po-
tential is cut off at r =2. 5 o, a correction is made
as described in Ref. 8 to take into account the ef-
fect of the neglected tail on the thermodynamical
quantities. The error on Pp/p is of the order of
0. 02 at densities around critical and may reach
0. 05 at densities around that of the triple point.
The error on the internal energy is about twice
smaller.

In the gab region, the equation of state can
easily be obtained from the virial expansion; the
densities, on the isotherms we have considered,
remain sufficiently small so that using the five
known virial coefficients, "we obtained a precise
answer.

As we mentioned in the Introduction, the two-
phase region requires more care. If we consider
the 864-particle system with no constraint, it tends
to separate into two phases. Owing to the rather
large size of the system, this process takes a
rela. tively long time. For instance at T =1.15
and p = 0. 1, after 10' configurations had been gen-
erated, the pressure and internal energy had not
yet reached stable values, and the computation was
given up. The same result was reached for the
state T=0.75, p=0. 05.

So as to obtain a faster convergence in the co-
existence region, we force the system into an
artificial single-phase state. In order to do so,
we divide the volume into v cubic cells of equal
size and we require the number of particles in
each cell to vary only between (n)- 5n and (n)
+&n H. ere (n)=864/v is the average number of
particles per cell and 5n is a fixed number. Prac-
tically this constraint is realized in the following
manner: At each Monte Carlo move, we ask if
the particle under consideration tries to move
outside of its cell. Should it do so, the move is
prevented if it violates the constraint. The con-
straint parameters v and 5n are at our disposal.
They must be chosen in such a way as to prevent
the phase separation as well as possible with-
out affecting the thermodynamical properties of the
system in the physical one-phase region

If there is no constraint and if we are in a one-
phase region, the standard deviation hn to the
average number of particles (n) in a cell is give:.
by the well-known relation

gp 1/2
an= 2n P-

Bp

where p sp/sp is the inverse compressibility for
the thermodynamical state under consideration.
We shall choose 5n substantially larger than Ln
as determined in the liquid region. The con-
straint should therefore have no influence for the
liquid. We shall check a posteriori that this is
indeed so, and that the properties of the gas phase
are not modified either.

At T = 1.15, we choose v = 27 and 5n = 12. For
the lowest liquid density, we obtain, by numeri-
cally differentiating the computed equation of state,
P SP/Sp =2. 4. ~n is thus found to be 5. l, a
value considerably smaller than 5n. We have ob-
served that during the computations which have
actually been made in the liquid region, the con-
straint never operates and has therefore no mea-
surable influence on the thermodynamics of the
liquid phase.

In the ga, s region the constraint eliminates some
possible configurations, but this has practically
no influence on the equation of state. For in-
stance for p = 0. 1, which is a density high enough
to be in the two-phase region, @&/p is equal to
0. 61 when computed by the Monte Carlo method
with the constraint, and to 0. 613 when calculated
through the virial series.

For T = 0. 75 the above-mentioned restriction
proves insufficient; i. e. , the computed thermal
average fluctuates too much to allo~ a precise deter-
mination of the equation of state. Consequently we
must take a stronger constraint. We choose v =64
and 5n = 2. 5. At the lowest liquid density p&p/sp
=12.3, which leads to M=1. 5. We see that M is
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TABLE I. Compressibility factor and free energy

per particle in the region of the liquid-gas transition
for the isotherms T=1.15 and X=0.75. 6-

T= 0.75

Pp/p F)

0.02
0.06
0.1
0.15
0.2
0.3
0.4
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.84

0.85
0.92

0.829
0.504
0.234

—0.292
—0.784
—1.201
—1.688

—2.052

—1.705

—0.531
0.371

-3.81
-3.26

-3,08

—3.07
-3.23

-3.45
-3.69

-4.15

-4.27
-4.28

0.918
0.760
0.612
0.470
0.345
0.124

—0.090
—0.130
—0.075

0.070
0.306

1.165

2.860
4 ~ 723

-5.75
-4.70
-4.24
-3.98
—3.84
—3.74
-3.74

-3.78
-3.76

-3.65

-3.38
—3.03

Q.2 0.6
, P.

4.0

still somewhat smaller than Dn. %e have checked
as above that the constraint, although it elimi-
nates some configurations both in the liquid and

the gas phase, has no practical effect on the thermo-
dynamical quantities.

It should be noted that the constraint does not

prevent some form of phase separation: at low

densities some of the boxes tend to fill up to the

maximum value, (n) + 5n, whereas the number of
particles in other boxes decreases down to (n)
—5n. This separation is however rapid: PP/p
reaches its equilibrium value after 10' configura-
tions. The internal energy does not stabilize so
rapidly, but this matters little as we have no use
for this quantity in the two-phase region.

Table I gives the results obtained for the com-
pressibility factor PP/p on the two isotherms
T=1.15 and T =0. 75. The error in the two-phase
region is the same as in the one-phase domain:
less than 0. 01 for densities less than critical,
around 0. 02 for densities around 0. 7, somewhat
more when the density is high and the temperature
is low. It may reach 0. 05 on the point p = 0. 85,
T=0. 75. The Pp/p data along an isotherm can
easily be fitted by a polynomial of order 5 or 6
in p. Using (2) the free energy can then be ob-
tained. The configurational part of the free en-
ergy is also given in Table I.

On Figs. land 2 the pressure is represented as
a function of density. It is seen that the finite
system exhibits a van der %'aals loop. Thedouble-
tangent construction made on the free energy ver-

FIG. 1. Reduced pressure versus reduced density
for the Lennard-Jones "homogenized" fluid (upper
curve) and the corresponding cell-model (lower curve)
at the reduced temperature T= 1.15. Both isotherms
exhibit a van der %'aals loop and the ce11-model isotherm
exhibits an angular point around the reduced density

p = 0.83.

sus volume curve enables us to obtain the transi-
tion data. They are shown in Table II. A com-
parison is made with the experimental argon data. "
The experimental value of the latent heat of va-
porization was obtained through the Clapeyron
equation.

The data of Table II together with the known
critical constants for the Lennard- Jones fluid'
Tc=1 36' pc= 6 a e us d t draw the u ve
shown in Fig. 3. It is seen that the coexistence
curve for argon is flatter in the critical region
( T = l. 26 experimentally) than the one deduced
from machine computation. The long-range den-
sity variations, responsible for the peculiar singu-
larities characteristic of the critical point, cannot
be included in the Monte-Carlo calculation. If we
could remove these density fluctuations in real
argon, the critical temperature would probably
rise to about 1.34 as shown in Ref. 6. The co-
existence curve would then very much resemble
that determined for the Lennard- Jones fluid.

%e also notice in Table II that at very low tern-
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argon

Monte Carlo
Eq. of state
Experiment
Eq. of state

0.0597
0.0566
0.0664
0.0480

T = 1.15

gas
0.073
0.085
0.093
0.155

liquid

0.606
0.675
0.579
0.695

4.34
4.59
3.73
3.97

0.0025
0.0034
0.0031
0.0033

T= 0.75

~gas

0.0035
0.0037
0.0047
0.0035

~liquid

0.825
0.842
0.818
0.854

6.62
6.75
5.44
7.21
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tained using the approximate equation of state of
Ref. 6. We recall that these equations are sup-
posed to hold for dense liquids and are quite poor
for gases. The fit to the transition data is not
very good. It is somewhat better in the Lennard-
Jones case. This is probably due to the fact that
the approximate equation of state for the Lennard-
Jones fluid involves fewer adjustable parameters
and more data with which to obtain them than is the
case for argon.

III. MELTING TRANSlTION

the pressure as was obtained for the fluid. In the
computation, five shells of particles were consid-
ered around each cell. A lattice sum over the more
distant shells was made in order to take the ef-
fect of the tail of the potential into account. The
compressibility factor Pp/p and the configurational
internal energy Uz corresponding to the three tem-
peraturess

T = 2. 74, l. 35, and l. 15 are given in
Tables III, IV, and V, respectively. We also give
the configurational part of the free energy Fe(p)
obtained by integration of the equation of state over
the density:

In order to determine the melting transition, we
must calculate, in addition to the free energy of the
fluid which has been computed in the preceding sec-
tion, that of the solid phase. The method of Hoover
and Ree, "the basis of which was described in the
Introduction, has been used for this purpose. It
amounts to solving the cell model "exactly" for
densities ranging from very small values where
a suitably modified cluster expansion just ceases to
apply, up to those of the actual solid. The lattice
structure of the Lennard- Jones solid has been
chosen to be the same as that of real argon, i. e. ,
fcc. The corresponding cells are dodecahedra with
rhombic faces. "

The numerical solution of this cell model was
carried out for three isotherms: T =2. 74, 1.35,
and l. 15. As an example of the equation of state
yielded by the model, the isotherm for T =1.15
is given in Fig. 1.

Thelow-density behavior of the equation of state
has been obtained by making a cluster expansion.
If we consider a density sufficiently low so that
only binary collisions occur and so that the dimen-
sion of the faces of the cells is much larger than
the scale factor 0 of the potential, the following
expansion holds":

PF (p) /N=1 np+ f (@/p'-1)dp'/p'.P

Equation (6) differs from (2) because of the distin-
guishability of the particles in the cell model.

For the isotherm' T=1.15 we have calculated the
mean-square deviation of the i th atom from the
center of its ceQ

N
S2=—Q ((r.-5.)'&.

N . i il=l

This quantity, given in Table V, is plotted as a
function of the density in Fig. 4. We see that the
curve consists of two very distinct branches pre-
sumably with a transition for a value of the density
between 0. 8 and 0.85. As may be verified in the
course of the Monte Carlo computation, the low-
density branch corresponds to a regime where the

TABLE III. Thermodynamic properties of the cell
model for the isotherm T = 2.74.

Pp/p =1+a,' p"'+0(p"'), (4) PP/a

with a,'= ——',gy f r (e3 —PV(r) —1)dr,
0

where y is a numerical factor characteristic of the
cell geometry. In the case of the fcc structure,
we have y 3&2sg6

At higher densities, the single occupancy con-
straint is added to the Monte Carlo procedure
used for the fluid state: Starting from a con-
figuration where all the atoms are at the center
of their cells, the atoms are moved according to
the usual Metropolis procedure: The only dif-
ference is that whenever a move takes the center
of an atom outside its cell the corresponding con-
figuration is rejected. The initial configurations
for which thermodynamic equilibrium has not been
reached are rejected. About 3.10' configurations
are needed in order to obtain the same precision in

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0 ' 7

0.8
0.9
1.0
1.05
1.1
1.125
1.15
1.2
1.23

0.949
0.895
0.803
0.785
0.851
1.081
1.486
2.178

3.21
4.68
6.25
6.99
7.82
8.47
9.16

10.65
11~ 89

—0.196
—0.454
—1.048
—1.684
—2.341
—2.975
-3.560
-4.058

-4.417
-4.601
-4.77
—4.898
—4.991
—4.909
—4.816
-4.559
-4.21

—8.32
—6.57
—4.97
-4.09

3 44
—2.86
—2.24
—1.49

—0.51
0.75
2.32
3.20
4.14
4.68
5.18
6.33
7.12
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TABLE IV. Thermodynamic properties of the cell
model for the isotherm T=1.35.

0.025
0.05
0.1
0.15
0.2
0.25

0.3
0.35
0.4
0.45

0.55
0.6
0.7
0.8
0.85
0.9
0.95

1.05

0.937
0.851
0.671
0.477
0.311
0.140
0.027

—0.105
—0.186
—0.217

—0.131
0.07

0.68
1.79
2.72
3.34
3.74
4.74
6.21
8.32

14.26

U/N

—0.100
—0.227
—0.522
—0.831
—1.172
—1.508
—1.801
—2.222
—2.584
—2.943

-3.671
—4.023
-4.714
—5.343
—5.596
—5.923
—6.330
—6.611
—6.779
—6.78
—6.355

F /N

—5.03
-4.19
—3.47
—3.15
-3.00
—2.93
—2.91
—2.92
—2.95
—2.98

—3.03
—3.03
—2.97
—2.76
—2.57
—2.33
—2.07
—1.78
—1.43
—0.98

0.14

.2

.9

TABLE V. Thermodynamic properties of the cell
model and mean-square deviation from the center of
the cell for the isotherm T= 1.15.

Pp/n F,/N S'

localization of the particles in the cell is brought
about predominantly by the cell boundaries; for
the high-density branch, the localization, more

pronounced (as may be seen by considering the

FIG. 4. Mean-square deviation s (in reduced units)
of an atom from its lattice site in the ceH. model versus
reduced density for T= 1.15.

product S '"), is caused by the neighbors and no
longer by the cells.

It is most probable that this is the explanation of
what seems to be an angular point in the pressure
versus density curve for the temperature 1.15. If
such an angular point really exists, it means that
there is, in the cell model, a second-order transi-
tion. We believe that this is indeed the case, and
we give the transition densities as

0.05
0.1
0.2
0.3
0.4
0.5

0.7

0.75
0.8
0.85
0 ' 9
0 ' 95
1.0
1 ~ 05

0.820
0.593
0.156

—0.283
—0.572
—0.678
—0.550

0.100

0.560
1.300
1.710
2.180
3.00
4.070
6.050

—0.240
—0.538
—1.188
—1.897
—2.635
—3.369
-4.110
—4.818

-5 ~ 162
—5.476
—5.865
—6.258
—6.592
—6.896
—7.015

—3.60
—3.02
—2.72
—2.75
—2.89
-3.05
-3.19
—3.24

—3.21
—3.14
—3.03
—2.91
—2.74
—2.54
—2.26

0.48
0.38
0.31
0.25

0.21

0 ~ 185
0.165
0 ~ 100
0.065
0.046
0 ~ 028
0.019

for T =2. 74,

T = l. 35,

T =1.15,

p =1.10+0.01;

p = 0. 88 + 0.01;

p = 0. 83 + 0. 01.

We shall see (Table VII) that these transitions
occur at densities smaller than those of the melt-
ing point. Consequently this feature of the model
has no physical consequence. For densities above
those transitions, the isotherms are smooth con-
tinuations of those belonging to the solids with no
constraint. In Fig. 1 we see, at low density, a
van der Waals loop which is also present for T
=1.35. It is related to the well-known "liquid-
gas" transition of the cell model.

For the temperature T =0. 75, which is near the
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triple point, this method is no longer feasible. At
this low temperature the number of steps needed
before the pressure values stabilize becomes in-
creasingly large and this is believed to be essen-
tially due to the attractive part of the potential.
For that isotherm we used a more indirect method.
As in Refs. 14 and 6 we divided the potential into
two parts: The repulsive part u(r) of the Lennard-
Jones potential and its attractive part se(r) multi-
plied by a charging parameter X. The following
two-step process is considered: Up to some ref-
erence density p, =1.1, located in the physical
solid phase, only the repulsive part of the inter-
action is taken into account, in the "exact" solu-
tion of the cell model. Using (6) we obtain the
free energy p '(p) of the system of particles inter-S
acting through u(r) when the equation of state is
known on the isotherm.

The second part of the process consists of turn-
ing on the attractive potential, at the density p, .
We thus obtain the free energy of the solid at the
density p, through the easily derived relation

F (po)=F'(po)+ f ( W) dX, (6)

where ( W) is the total attractive interaction for
the interaction u(r)+Xur(r), averaged over the
ensemble. This quantity can be calculated by the
Monte Carlo method for several values of X and
the integral over X can be performed. The X depen-
dence of ( W)& is almost linear and it proves suf-
ficient to perform the integral over X with a step
of 0. 2.

Let ( W)~ be expanded in powers of X. The above
computation shows that the contribution to the inte-
gral in (6) of the X-independent term is equal to
—7. 10; the term linear in X yields: —0. 38. The
remainder of the series gives: 0. 06. The series
seems to converge almost as well as in the case
of the liquid near the triple point. '

When the free energy of the real solid is known
at p„ it can be calculated at neighboring values
of the density by using (6), once the equation of
state has been determined through the Monte Carlo
method. The results of the computations made on
the isotherm T = 0. 75 are given in Table VI. The
isotherm shows, as in the case of the full Lennard-
Jones potential, a branch point around p=0. 95.

The melting properties are given in Table VII.
We give there, for the four temperatures at which
the computation has been made, the melting pres-
sures, the density of the solid at melting and that
of the fluid at freezing, the volume change during
the transition and the latent heat of fusion. These
quantities are compared with similar quantities
measured in the case of argon when they are avail-
able. 20&" It is seen that the agreement is altogether
surprisingly good. This confirms the excellence
of the Lennard- Jones potential as an effective two-

TABLE VI. Thermodynamic results obtained for
various values of the changing parameter X on the
isotherm T= 0.75.

Ui/N PF /N

0.2
0 4
0.6
0.8
1.0
1.0
1.0
1.0

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.94
1.0
1 ~ 02
1.05
1.06
1.10
1.10
1.10
1.10
1.10
1.10
1.05
1.025
1.0

1.047
1.121
1.314
1.652
2.070
2.675
3.46
4.54
6.01
8.23
9.12
9.32
9.56

10.06
10.27
10.92
10.42
9.69
9.36
9.14
9.12
5.21
3.66
2.35

0.002
0.004
0.012
0.024
0.041
0.063
0.092
0.137
0.195
0.280
0.322
0.334
0.330
0.348
0.353
0.379

—1.122
—2.691
-4.280
—5.903
—7.540
-7.530
-7.467
-7.370

—2.96
—2.21
—1.35
-0.79
—0.25

0.25

0.81
1.43

2.94
3.34
3.90
4.09
4.39
4.56
4.85
2.85
0.87

-1.10
-3.08
-5.07
-5.31
—5.39
-5.48

1.05
0.64
0.47
0.38
0.31
0.265
0.222
0.190
0.150
0.3.31
0.055

0.034
0.023
0.020
0.017
0.015
0.012
0.009
0.013
0.017
0.029

body potential for argon at high density.
With the data of Table VII the phase diagram of

Fig. 3 for the Lennard- Jones system can be com-
pleted. It is seen again that the agreement with
argon data for the fluid-solid transition is quite
good. From Fig. 3, the triple point can be lo-
cated. It corresponds to a temperature T~ =0. 68
+ 0. 02 and a density p„=0. 85+ 0. 01. These values
are very near to those of argon: T~= 0. 70,
p„=0. 841.

In Fig. 5 we give the curve of melting pressure
versus temperature obtained using the data of
Table VII. The experimental points are shown as
crosses. The triangles represent the melting re-
sults due to Barker and Henderson. " Those points
are obtained through the following approximations:
The liquid-state properties are given by an approxi-
mate version of the X expansion, "amply discussed
in Refs. 6 and 24. This theory is known" to re-
produce fairly well the thermodynamical proper-
ties of the Lennard- Jones fluid. Barker and
Henderson use the free-volume theory for the
solid: It yields values for the free energies that
are not too different from the "exact" values, as
shown in Table VIII where a comparison is made
for the isotherm T = 0. 75. The results obtained
by Barker and Henderson should lie on the curve
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TABLE VII. Fluid-solid transition data expressed in reduced units for the Lennard-Jones(LJ) fluid and for argon
at the temperatures T=2.74, 1.35, 1.15, and 0.75. AV is the volume change at the transition. 2 is the latent heat of

melting.

LJ
argon

argon

LJ
argon

LJ
argon

2.74
2.74

1.35
1.35

1.15
1.15

0.75
0.75

32.2
37.4

9.00
9.27

5.68
6.09

0.67
0.59

j'fluid

1 ~ 113

0 ~ 964
0.982

0.936
0.947

0.875
0.856

solid

1.179

1.053
1.056

1.024
1.028

0.973
0.967

0.050

0.087
0.072

0.091
0.082

0.135
0.133

2.69
2.34

1.88
1.63

1.46
1.44

1.31
1.23

of Fig. 5. They are not very far off, although
one should note that the pressure is plotted on a
logarithmic scale.

We shall now give a relation between the crys-
tallization of the Lennard- Jones fluid and that of a
hard-sphere gas. The crystallization of a hard-
sphere gas of diameter a and density p occurs, as
we shall see in the next section, whenever the
packing fraction q = v pa'/6 reaches the value of
0.49. Let us define the structure factor in the
usual way:

(exp[fk ~ (r. —r.)])
N

At solidification, the maximum value S (k, ) of the
exactly determined" structure factor takes the
value 2. 85. We recall the success of a slightly
modified version" of the hard-sphere model of
Ashcroft and Lekner" in explaining the structure
factor of the Lennard- Jones fluid: To each state
of the fluid is associated a hard-sphere gas of
diameter a(p, 7) which is the only parameter of
the theory. It is adjusted in such a way that S (k,)
for the hard-sphere gas of packing fraction wpa'/6
has the same value as that of the Lennard-Jones
fluid at the density p and temperature T. The
structure factor of the Lennard- Jones fluid is then
very well reproduced by that of the hard-sphere
gas. In view of that success it is tempting to go
one step further and to associate the crystalliza-
tion of the Lennard- Jones fluid with that of the
underlying hard-sphere model which embodies the
geometrical aspects of the problem. We then
obtain a simple "law" of crystallization by stating
that it should occur when S(k,) reaches the value
2. 85. In order to check this hypothesis, we need
to know the structure factor for various isotherms.
This can be done with the method of Ref. 26, using
the correlation functions obtained in that paper and
those obtained for the four isotherms studied in the

I

1'00
I

200
I

~00

FIG. 5. Melting pressure versus temperature. The
solid line gives our results for the Lennard-Jones sys-
tem. The triangles are the theoretical results for the
LJ system taken from Barker and Henderson; the
crosses give some experimental argon results taken
from Crawford and Daniels which are in close agree-21

ment with the results of van Witzenburg and Stryland.

1.01
1.176

free volume

-3.89
—2.99

exact

—4.10
—3.07

TABLE VIII. Free energy per particle in the solid
phase: comparison between the prediction from free
volume theory and exact results.
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present work. 8(k, ) obtained in this way is shown

for various isotherms in Fig. 6. The transition
densities are obtained as intercepts of those curves
with the horizontal line S (k, ) = 2. 85. The results
are shown as triangles on Fig. 3. They are seen
to agree very well with the "exact" transition curve
shown on that figure. The statement that solidifi-
cation occurs when the maximum value of the
structure factor reaches the value 2. 85 is thus
confirmed.

A comparison with experiment can be made in
the case of argon near its triple point. The
structure factor yielded by x-ray experiments"
reaches a value compatible, within the experi-
mental errors, with the value 2. 85. It would be
interesting to have data relative to xenon and
krypton on the solidification line.

IV. HARD-SPHERE TRANSiTION

The calculations we have just reported for the
isotherm T=0. 75, where the cell model was solved
exactly for a system of particles interacting
through the repulsive potential u(r) can be used in

order to obtain information concerning the fluid-
solid transition of the hard-sphere system. The
link between the two systems is provided by the
work of Barker and Henderson. " These authors
have shown that the system of particles interact-

2.86 .

ing through u(x) at the temperature T is equiva-
lent, as far as the thermodynamics is concerned,
to a hard-sphere gas of diameter d at the same
density. The diameter d is given by

d = f dz(1 —exp[- u(z}/kT] j .
0

(10)

It turns out to be equal to 0. 978 at T = 0. 75. The
derivation holds both for the fluid and solid state.
It is apparent that the theory is better when the
density is low. It must obviously break down near
the close packing of the equivalent hard-sphere
system. Its range of validity can only be ascer-
tained by direct computations. We know that for
the highest densities considered in Table VI the
cell model is equivalent to the real solid. We can
thus compare the results with those obtained for
the solid state. "~" For instance, let us consider
the highest density p =1.10. It corresponds to a
hard-sphere gas of a volume relative to that of the
close packing of V/V, =1.373. For the hard-sphere
system we use the very recently published work
of Alder, Hoover and Young": By interpolating
their results we obtain the value 10.9 for the com-
pressibility factor. This should be compared with
the value 10.92 of Table VI. The agreement is
quite good for the other points (for p ~1) except
for the point at p =1.06 for which the pressure is
too high by about 1/q.

We now are in a position to fix the tie line of the
hard- sphere system: For the hard- sphere solid
the free energies of Table VI are used for the
density pd'. The equation of state of the hard-
sphere gas is well known. "y ' We have a con-
venient fit of the exact data by adding to the known
seven-term virial series" for p/pkT the correc-
tions

l. 6049 ( pd ')' + 0. 461 42 (pd ')"

2.

1.5
.7 y.'t

FIG. 6. S(ko) versus reduced density along the fol-
lowing isotherms «in reduced units): T = 0.75 (upper
curve), 0.833, l. , 1.15, 1.35, 2.74 (lower curve).
Our empirical "law" states that crystallization takes
place at the density where each of the curves intersects
the horizontal line S(ko) = 2.85.

We find by the double-tangent construction that the
melting transition occurs at V/Vo = 1.371 and the
freezing transition at V/V, =1.513, which corre-
sponds to the value 0.49 for the packing fraction.
Since this work was completed, Hoover and Ree
have given" the solution of the cell model which
was announced in their preceding paper. " They
find that the tie line lies between V/V, = 1.359 and
V/Vo= l. 500. These are very close to the figures
we give. The small discrepancy is probably due to
the various numerical manipulations involved in
both papers.

We have made a careful comparison of the data
in order to see if we can get a little more infor-
mation on the transition. We have made fits for
the combined data of Hoover and Ree and those of
Table VI excluding only our point at p =1.06 which
is somewhat out of range. We obtain in this new
revision of the data exactly the same transition
data as above. It is situated between the values
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1.371 and l. 513 for V/V, .
We then obtain the thermodynamic quantities

characterizing the transition similar to those
found by Hoover and Bee: The communal entropy
at transition is equal to 0. 12; the pressure of the
tie line is given by pV, /NkT = 8. 02.

V. CONCLUSIONS

We have shown that the phase transitions of the
I ennard- Jones fluid can be calculated, using
methods where only homogeneous phases are con-

sidered. We plan in the near future to study the
gas-solid transition at very high temperatures and
to extend the same kind of methods to more com-
plicated systems.
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