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momentum transfer, a detailed calculation incorpor-
ating a suitable momentum-transfer dependence of the
parameters e seems called for.

With regard to the cross-section defect, we are able
to make a much less dehnite statement because of the
uncertainty in the proper choice of o,~ and 0, . We
observe, however, that for the case in which the real
and imaginary parts of the two particle amplitudes
are both equal to &1, the cross-section defect arises
entirely from our correction term.

After submittal of this paper, a calculation was
reported by Pumplin" in which the eGect of the
principal-value part of the double-scattering term was
studied using relativistic kinematics in conjunction
with the usual nonrelativistic Lippmann-Schwinger
equations. Two points in this work are worth noticing.
First, as a consequence of the use of relativistic kine-
matics, the principal-value part of the double-scattering
term obtained by Pumplin difI'ers from ours by an
over-ail factor of P(hLi-mN')/h'j"~a factor which
goes to unity in the limit of large k. This justi6es to
some extent our use of nonrelativistic kinematics in

~~ J.Pumplin, Phys. Rev. 173, 1651 {1968).

this region of extreme high-energy scattering —the
error becoming less and less at higher and higher
energies. It also shows that the use of relativistic
kinematics is not likely to detract from the importance
of the correction arising from the principal-value part
of the double-scattering term. Second, Pumplin's
numerical estimates of O.„and o.„differ from ours
because in evaluating the principal-value integral he
has neglected terms proportional to q' in the integrand
while we have neglected terms proportional to 5'. The
dift'erential cross section for Pumplin s estimate of n„
and n„ lies lower than that obtained by Bennett et al.
for n„= —0.6 and e„=—1.2. In order to reproduce
the 6t of Bennett et al. to the experimental data,
particularly at the interference minimum, Pumplin
would require larger magnitudes of o.„and o.„. This
would tend to bring Pumplin's estimate of these param-
eters closer to ours.
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It is shown that a relativistic in6nite-component wave equation correctly describes the relativistic effects
in the 8 atom including the motion of the nucleus. An exact mass formula for the singlet l = rI,—1 levels of
positronium is derived.

'N 1939, Eddington' justly criticized the incorrect use
- - of the principle of Lorentz invariance in problems
such as the Dirac equation for the H atom, where the
relative coordinate of two particles is treated as a four-
vector when, in reality, it is not a four-vector. In reply
to this criticism, Dirac, Peierls, and Pryce' started from
a two-body equation and showed that the standard
Dirac equation is correct and relativistic to a good
approximation. Although the antogonists agreed on the
incorrectness of the usual "textbook presentation" of
the Dirac equation for H atom but on its approximate
correctness in practice, the defense by Dirac, Peierls,
and Pryce completely failed to satisfy Eddington' as a
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matter of principle. For the problem is not that the
eGect of the proton can be neglected in practice; the
problem is precisely how to take this efI'ect into account
in a relativistically invariant way. It is possible that
Eddington was looking for an equation that describes
relativistically the atom as a whole. We know now that
indeed the relativistic treatment of a two-body system,
such as positronium, is very complicated in terms of the
coordinates of the constituents. Even for the H atom
there are a number of correction terms beyond those
given by the Dirac equation which have to be taken into
account. ' At present this is done in the framework of
(noncovariant) perturbation theory.

It is therefore of interest to point out that a com-
pletely relativistic equation exists for the H atom (or
positronium) as a whole which quantitatively contains
the relativistic spectrum (including recoil corrections)
and which also describes the transitions of the atom

4 W. E. Lamb, Phys. Rev. 85, 259 (1952).
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under external interactions in a simple way. The
problem of relativistic invariance for composite systems
posed by Eddington is thus solved.

The underlying framework is the algebraic dynamical

group theory, which sought to formulate the relativistic
quantum theory in terms of the global quantum numbers
(both external and internal) of the system as a whole

and which took the H atom as a prototype right from
the beginning. ' There has been rapid development in
this area because of the applicability of the theory to
fundamental particles; the results have recently been
reviewed. ~' Concerning the H atom, most of the inter-
est has been in the algebraic description of the non-

relativistic H atom. ' We are interested here in the
quantitative aspects of the relativistic atom.

The relativistic equation in momentum space which

describes the whole atom in an arbitrary frame has the
following form:

[j"p„+ps+y]N(p) =0, (1)ju= aiI;+ad', +aZ,S+~..
Here u(p) is the wave function of the whole atom, P„ is
the total momentum of the atom with eigenvalues p„;
P and y are constants. A current jI' has been introduced
to indicate that the coupling of the atom to the external
field is of the form j&A„, and not a minimal coupling
obtained by replacing P„by P„—eA„. These two
procedures would be equivalent if j& itself did not con-
tain terms containing P„.The wave function u(p) has
two suppressed indices I „one a four-component Dirac
index (0), the other an infinite-component set of indices

(s), short for the quantum numbers nlm, both given by
the irreducible representations of the dynamical group
O(4,2). The spectrum provided by these irreducible
representations exactly coincides with the spectrum of
the relativistic atom with correct spin multiplicities.
Note that neither the relative coordinates nor the
Coulomb potential occurs in the equation. These have
been eliminated and replaced by the infinite-component
index s. The operators I'„= (L~B,L,~) and S=L4~ are
among the generators I.,g, a, b=1, 2, ~ 6, of the
group O(4,2) and act on the index s. Finally, the
quantity U„ is a spin-orbit interaction term which, for
simplicity, we shall neglect here.

Equation (1) was first used in connection with a
hadron model, ' and the analogy of the spectrum with
the H atom has been noted. The nonrelativistic limit of
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Breach Science Publishers, Inc. , New York, 1968},Vol XB.' H. Kleinert, in Ref. 7; and Fortschr. Physik 6, 1 (1968).
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the equation in a special case gives exactly the non-

relativistic H-atom spectrum. "Formally, the equation
also applies to electrons and muons. " We shall now

discuss the quantitative applicability of the relativistic
equation to the H atom and positronium.

To solve Eq. (1), we first go to the rest frame of the
atom by putting

u(P) =e'&'~Q(0), (2)

where M;=I.;; are the generators of pure Lorentz
transformations and the four-momentum of the atom
is specified by

Pl,= (PO,P—) =M(cosh), f sinh$),

P„'=Po' —P,&=M'.

We then obtain

[(,r,+,M+,MS)M+PS+ ~]u(0) =0. (4)

In order to diagonalize the equation we next put
("tilting" operation)

u(0) = e"L4,u(0) (5)

and obtain, using commutation relations of the Lie
algebra of O(4, 2),

([a~M cosh8 —(naP„'+P) sinh8]I'0
—[n~M sinh8 —(ngp„'+P) cosh8]S

+ (a2P„'+'r) }I(0)=0. (6)

If we choose 8 in such a way that tanh8= (n3P„'+P)/
n~M, the coefficient of S in (6) vanishes and we are left
with the eigenvalue equation

[ngp„2 (ngp„2+p)2]—'12LMN(0) = —(n2P„2+y)g(0).

Now we take N(0) to be the basis of the representation
of 0(4,2) in which L~6 is diagonal and has the discrete
eigenvalues n, n=1, 2, . . . ; we then obtain the mass
spectrum

n —(n P 2+~)/[a P 2 (n P 2+P)2]l/2 (7)

on the other hand, if we take 8 such that tanh8= n&M/
(n3pg'+p), then the coefiicient of L&8 vanishes in (6)
and in a basis N„(0) of the representation of O(4, 2) in
which the noncompact generator S=L46 is diagonal
with the continuous eigenvalues v, we obtain the
continuous spectrum corresponding to the scattering
states

~'= (a2P'+v)'/[nip' (a~p '+—p)'] (g)

which is obtained from (7) by the substitution n'-+ v'

or by n ~ &iv.
If we use the special values

ay=1, n2=0, n3 ——(2m~) '

p = (m, '—m,2)/2m„y = m~, —(9)

"H. Kleinert, Phys. Rev. 168, 1827 (1968); C. Fronsdal, ibid.
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we obtain from (7)

M '= m '+m '~2m m L1—(a/n)'5'"

and from (8)

(10)

and gives for j0 C——(n~I'o+n2P~+n3POS),

~

$$' ~
~

2= ~CPO(n2/m~) (1—o2/gg2)'~2

For the continuous scattering states, we obtain

n' 5 n4

E = 0 ~ ~

4n' 64 n'
(14)

to be compared to the sum of five correction terms used
in perturbation theory'4 for the s=o, l= n —1 levels:

n' 10n+11 n'
~n me + + 0 ~ ~

4n' 64(2n, —1) n'

which for large n coincides with ours.
It is important to discuss the normalization of the

physical states ~Y„u (p). The normalization condition
1S

(u(p) Jou(p)) =1,
"H. A. Bethe and E. E. Salpeter, in 8'andbuch der Physik,

edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. XXXV.
'4A. I. Akhiezer and V. B. Berestetski, Quantum Electro-

dynamics (Wiley-Interscience, Inc. , New York, 1955), pp. 527 G.

M '= mv'+ mP &2mvm, g1+ (n/v)'5'" (10')

Now if we write M =m„+m.+B„,Eq. (10) gives

1+B„/u+B„'/2m„m, = aLI —(n/n)'J~', (11)

where p is the reduced mass. In the limit m„—+ ~,
hence p, ~ m„we have

m.+B = &m, L1—(u/8)'5'", (12)

which coincides exactly with the Dirac formula" for
energy levels for which ~k~ =u. As noted, we have
neglected the spin-orbit term U„ in (1) which will be
reported separately. Even. then it is remarkable that
one gets the Dirac spectrum and not the Klein-Gordon
spectrum. Thus, Eq. (10) or (11) is more accurate than
the Dirac equation in that it contains automatically the
corrections due to the motion of the nucleus. Indeed
this correction is seen, from (11),to be very close to the
accepted perturbation-theoretical value"

—g (m, /mv) (n/n)'.

Because our equation is relativistic and contains the
masses of the constituents explicitly, it is applicable to
the positronium as well. In this case we obtain

M '= 2m 'L1+ (1—n'/u')'"5 (13)

and think that this is an exact formula for the singlet
L=n —1 levels of positronium. Considering the great
difhculty of obtaining the positronium energy levels in
perturbation theory, " this simple formula should be of
interest. Equation (13) gives for the binding energy

V n2 1/2

~
X„~'= &2CPO 1+— e " sinhm. v

m~ v

due to the orthonormality condition of the continuous
states. "A choice of C= —m~/(mv+m, ) is convenient,
for then in the nonrelativistic limit we get

~
E„~' ~ n'

and
~
&V„~

' —+ v', in the so-called "energy-scale" normali-
zation of the scattering states. "

We see from the mass spectrum (10) or (11) that the
plus sign is the usual spectrum of the atom and they are
normalized to +1. The solutions with the minus sign
in (10) cannot be normalized to +1 but to —1. These
new solutions disappear in the nonrelativistic limit and
are a new manifestation of the relativistic theory. These
and the spacelike solutions of Eq. (1), both of negative
norm, have recently been given a physical interpretation
as corresponding to exchange effects or so-called cross-
channel contribution" which is a purely relativistic
phenomenon and has no nonrelativistic counterpart.

Finally, we discuss the case of the particles of equal
charge. In this case the sign of p in Eq. (1) changes, and
we see from (7) that there are no discrete solutions but
only continuous scattering solutions.

The second important feature of Eq. (1) besides the
relativistic mass formula is the simple exact, and rela-
tivistic calculation of the electromagnetic transitions. "
These are proportional to the matrix elements of j„
given in (1) between the various levels.
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