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Erez and Rosen have given a method for calculating an exact static metric for a nonrotating, cylindrically
symmetric mass distribution possessing multipole moments of arbitrary order; however, the explicit ex-
pressions they give for the metric components arising from a combination of monopole and quadrupole
moments contain errors. In this paper, we sketch the Erez-Rosen method and then state the corrected
form of the metric for this experimentally significant case of a mass distribution with monopole and quad-
rupole moments.

I. INTRODUCTION

ECENTLY proposed experimental tests of general
relativity require a knowledge of the predicted

orbit of a particle in the gravitational held of a body pos-
sessing a quadrupole moment. "The orbital calculations
have been carried out either by treating the problem as
a Newtonian one except for the inclusion of a Schwarzs-
child precession, ' or by calculating an approximate non-
spherical metric from a set of linearized gravitational
equations. 3 It seems to have been largely overlooked
that Erez and Rosen' have previously given a method
for calculating an exact metric for a body possessing a
multipole moment of a given order, and, in particular,
have given expressions for an exact metric for a body
possessing only monopole and quadrupole moments. Un-
fortunately, the expressions given by Erez and Rosen
for the metric for this latter case contain errors, and
lead to incorrect asymptotic behaviors for certain metric
components. In this paper we hrst summarize the Erez-
Rosen technique for calculating the metric for a body
with a multipole moment, since their method seems to
be little known. %e then give the correct form of the
metric obtained by the Erez-Rosen technique for the
case of a body possessing both monopole and quadrupole
moments, for apparently the proper statement of this
metric does not now appear in the literature.

empty space can be obtained by writing the line element
in cylindrical coordinates as

ds =e t'e'dt e~ 't'(dp2—+ds2) pe—~dye (1)

where f and y satisfy the equations

0-+(1/p)4. +0**=o

V.=pQr' 4'*') V—*=284".
By changing to the prolate ellipsoidal coordinates

X=(r~+r )//2rrt, tj. =(r+—r )//2rrt,

where

r~'= p'+( asm)',

(2)

(3)

and m is for the moment simply a positive constant,
Erez and Rosen transform the equations for P and y to
the form

L(&' —1)A]~+((1—p')4, j.=o, (4)

v~ =L(1-p')/(~'-p") 3
xP (&' —1)4 &,

' —&(1—p')f ' —2pP "- —1)P~P,],
v. =L(l '-1)/( '-p') j (5)

Xt.p(~' —1)A' —p(1 —p')4~'+2~(1 —p')44"l.
Equation (4) is separable, and if one puts

II. METHOD OF EREZ AND ROSEN

Weyl and Levi-Civita' have shown that static, axially
symmetric solutions of the Einstein held equations for
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gg=const P~(p)Q~(X), l=0, 1, 2, (6)

where E& is the tth Legendre polynomial and Q& is the
lth Legendre function of the second kind. The general
solution to Eq. (4) describing a space-time which is flat
at inhnity can be constructed as a linear combination of
the solutions (6), and Kqs. (5) then yield the correspond-
ing p by direct but tedious integration. Finally, Erez
and Rosen make the second change of coordinates

r=m(X+1), H=cos 'p.

Q=AP. )M(p),

then one hnds that A and M must satisfy Legendre
equations in their respective variables. The product
solutions yielding a space-time that is Qat at inhnity
are then of the form
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In terms of the new variables one finds that

nz2 sin2&p
ds =e &c dI,2 —e'y 2& 1+

r2 —2mr]

+(r' 2m—r+m' sin'8)d8'

—e '&(r' —2mr) sin'8''. (8)

If f is now taken to be of the form (6) with l=0, say

'»L(~-—I)/(~+1)7 = —&o(4 )Qo(~)

then one easily calculates that

~,=-,'lnL(X' —1)/(X' —~o)7,

and the corresponding metric components determined
from (8) are just those of the Schwarzschild field with
2' being the Schwarzschild radius. More generally,
Erez and Rosen point out that if P is taken in the form

f=fo+qiA,
then from the asymptotic properties of the Q& one finds

that, for large r,
m Pi(cos8)

goo
——e'& =1+2 9J—t4—— +O(r-i-o) ~,

r I+I )

where Ki is related to qi and the Newtonian gravita-
tional constant G by

(2l+1)!!GKi

C2nS'+'

Thus, in the Newtonian limit, the gravitational field is
that of a mass possessing a multipole moment of order t.

III. METRIC FOR A MASS POSSESSING
A QUADRUPOLE MOMENT

If one chooses l =2 in Eq. (9),' then P can be written
(with q,—=q)

4 = —&o(4)Qo(!~)—q&o(4)Qo(~)

A. —1
= -', ln +q-,'(344' —1)

A, +1
X—1

X 44 (3X'—1) ln +o
oX . (10)

X+1

By substituting this form for/ into Eqs. (5), integrating,
and choosing the constant of integration so that y tends
to zero for large X, one finds

yo —] —
P. —1y

y=-', ln +q ln — + p,
2 —1 2A. ln +3

A,
2 —1 —9 A, —1 A, —1

+q~ i ln +(1—44o) —(X4—2Xo+1) lno ~+~is (3!io—5X) In +—(3X —4)
X2—p,

2 64 X+1) X+1
-9 l'X —1 9 /P, —1 9

+44'(44' —1) —(9X —10K +1) in'~ +—(9Xo—7!i) ln~ +—(9X'—4) . (11)
64 5!i+1 16 4+1 16

Expression (11) differs from the result of Erez and Rosen in several of the numerical coeKcients. The y given in
their paper is, because of its incorrect numerical coe%cients, not actually a solution of Eqs. (5). It has rather
drastically erroneous asymptotic behavior, and leads, for instance, to orbital equations in which the effect of the
quadrupole moment does not approach the Newtonian quadrupole moment effect even in the limit of weak 6elds
and small quadrupole moments. The corrected form of y given in Eq. (11) eliminates these difhculties.

Because of the complexity of the expressions for f and p, it is useful to expand the q-dependent parts of these
quantities in inverse powers of r. One can easily verify that

2m) 2 m' 2 m' 32 m' 40m, '
4 =-', ln(1 —

~

41'.( tt) + +— + + ),r) 15r' 5 r' 35 r' 21r' (12)

r2 —2'
y=-' ln +qL—,'o (5 cos48 —6 cos'8+1)m'/r4

r2 —2mr+m2 sin28

+—,'(5 cos'8 —6 cos'8+1)mo/r'+(1/21)(7 cos'8+105 cos48 —135 coso8+23)mo/ro+ ~

+q'L(1/150)(25 cos'8 —39 cos'8+15 cos'8 —1)mo/ro+ 7. (13)

'The l=1 (dipole) contribution can be eliminated by an appropriate choice of the origin of the coordinate system
Eo&e added in proof. This corrected form of p has also been obtained recently by J. Winicour, A. Janis, and F.Ne~man Phys. Re&

I?6, 1S07 (1968). We thank Professor Janis for bringing this fact to our attention.
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Sy using Eqs. (12) and (13), one csn easily see that the metric components goo and g» may be written in the form

2m 4 m' 4m4 64m' 80m" 8 m"
goo= 1——1—qI'q cosH + + + + +q g2 cosH + +.~-

r 15 r' 5r4 35r' 21r' 22& r'

2m ' 4 m'
g1].= —1— 1+ (J Po cosH

r 15 r3

m' 4 m' 2 m'

+g —',(5 cos48 —1)—+—(35 cos'8 —18 cos'8 —1)—+—(7 cos"8+105 cos'8 —75 cos'8+3)—+.
35 21 r6

1 m'
+q2 —(75 cos"g —g9 cos48+33 cos'g —1)—+. +

223 r'
(15)

Equation (14) shows that the quadrupole moment
Q(=R2) of the mass distribution is related to q by the
equation q=~&GQ/c'm'. Expressions for g22 and g™y
easily be determined from those for go& and g», so they
will not be stated explicitly.

Because of their incorrect expression for y, the ex-
pansion for g11 in inverse powers of r given by Krez and
Rosen diBers markedly from Eq. (11).Their expansion
contains terms proportional to q and q' which fall o6
only as r ' for large r, and lead to much too large a de-

pendence of the metric on q at large distances. The ap-
proximate metric given by Krause, ' on the other hand, is
found by comparisonwith Eqs. (14)and(15) to be correct
within its range of validity (through terms in r ').'

Even though Krause's treatment of the effect of the quadru-
pole moment on the metric is only approximate, while that given
here is exact, it should be noted that Krause's calculation takes
into account the possibility that the mass whose held is being con-
sidered is rotating. The results given here are valid only for non-
rotating masses.
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The association between laboratory procedures and self-adjoint operators (observables), usually implicit
and allusive, is made explicit by the introduction of two collections of nonmathematical objects; the
observation procedures and the state-preparing procedures. By a process of idealization and extrapolation
from empirical facts, these two collections are turned into mathematical sets ("hardware spaces") with
the structure of a star algebra 8 and a convex linear set S, respectively. There is a many-one mapping
from Q into the space P of observables {the operators on Hilbert space), and physical laws or solutions of
equations of motion are embodied in the mapping 4:6 ~ g. Certain material motions of observation instru-
ments and state-preparing instruments induce automorphisms of the hardware spaces but in general, not
automorphisms of I.An extension of space-time invariance theory to accelerations LxW x++2 (nl)-1r„t~g,
to external symmetry-breaking Gelds, and to subsystems under the influence of other subsystems becomes
possible. The main results of this paper are a derivation of Newton s second law and of the gravitational
equivalence principle for nonrelativistic quantum mechanics from invariance and causality principles.

1. INTRODUCTION AND GENERAL
ASSUMPTIONS

HE purpose of this study is to extend the powerful
considerations of physical invariance to systems

that are not free, but instead are inQuenced by external
6.elds, and to subsystems inQuenced by fields created by
other subsystems.

*Work performed under the auspices of the U. S. Atomic En-
ergy Commission.

An example of the kind of question that such a theory
can answer is: Why do the observables of a single par-
ticle in an external Geld (or the observables of a single
distinguishable particle in a many-body system with or
without external 6eld) satisfy the canonical commuta-
tion relations? A preliminary answer to this question
was given in a previous paper. ' The present paper re-
formulates and extends the assumptions and attempts to

' &. Ekstein, Phys. Rev. 1/3, 1397 (f967).


