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The zero-point fluctuations of the electromagnetic field give rise to an attractive force between two per-
fectly conducting parallel plates, the Casimir force. We discuss the structure of the electromagnetic stress-
energy tensor in the region between the plates for finite temperatures as well as for the zero-temperature
limit, and we describe the relationship of its components to the thermodynamic variables of the radiation
field. The stress-energy tensor is defined so that infinite quantities never appear, and it is explicitly com-
puted with the aid of an image-source construction of the Green’s function. The finite-temperature case
involves both an infinite set of spatial images and an infinite sum of temperature-dependent images.

1. INTRODUCTION

HE mutual electrical polarization of material
bodies brought about by quantum-mechanical
fluctuations results in an attractive force: At short
distances this is the van der Waals interaction; at large
distances the retarded propagation of the electromag-
netic field becomes important. In this case, the force
can be computed from the total energy of the system in
interaction with the quantized electromagnetic field.!
If the polarizability of the materials is extremely large,
they behave as perfect conductors, and the interaction
force can be calculated from the energy of the quantized
electromagnetic field alone, which now exists only out-
side the bodies. In this spirit, Casimir? obtained the
force between two parallel, perfectly conducting,
infinite plates at zero temperature. In order to secure a
finite result from the usual quadratically divergent
expression for the vacuum fluctuation energy, it was
necessary to introduce a strong convergence factor in
the cavity-mode sum, to discard the contribution to the
energy which is independent of the plate separation, and
then to let the convergence factor approach unity.
We shall compute the complete electromagnetic
stress-energy tensor of Casimir’s problem for finite
temperature® as well as for the zero-temperature limit.

* Research supported in part by the U. S. Atomic Energy
Commission, under Contract No. AT (45-1)-1388.
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We define the stress-energy tensor in terms of a suitable
limit of a bilinear field combination with finite spatial
separation. This definition automatically removes the
usual vacuum infinity, and we avoid the explicit
manipulation of infinite quantities. The calculation of
the stress-energy tensor is performed using an image-
source construction of the electromagnetic field two-
point Green’s function. At zero temperature, this
involves an infinite sequence of image sources dis-
placed in space in a manner akin to the familiar electro-
static image solution of a point charge placed between
two conducting plates. The Green’s function for a
finite-temperature ensemble can be represented by
adding for each spatial image an infinite sum of tem-
perature images displaced in imaginary time. In
addition to calculating the stress-energy tensor, we dis-
cuss its structure in detail—in particular, the relation-
ship of its components to the various thermodynamic
variables of the radiation field.

The organization of this paper is perhaps uncon-
ventional: We present our major results in Sec. 2,
deferring explicit calculations until Secs. 3 and 4.
In Sec. 2, after properly defining the stress-energy
tensor, we consider its structure at zero temperature.
In this case, the conditions that the stress tensor be
divergence-free and traceless, together with the simple
geometry of the problem and the use of dimensional
arguments, completely determine the whole tensor in
terms of a single pure number. Using this result, we
can directly verify the principle of virtual work—that
the pressure on a conducting plate, as computed by the
spatial stress tensor, agrees with the pressure implied
by the variation of the energy with plate separation.
We then generalize these considerations to the finite-
temperature case. We show that the components of the
stress tensor parallel to the surface of the plates are
identical with the Helmholtz free energy per unit volume
of the radiation field. By identifying the pressure on the
plates with the spatial variation of the free energy at
constant temperature, we obtain all the components of
the stress-energy tensor in terms of a single function of
a dimensionless variable: the temperature times the

accord with the later work of Mehra and with those presented
in this paper.
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distance between the plates. We quote the value of this
function, which is obtained in Sec. 4, and discuss the
limiting cases of low and high temperatures. Finally,
we discuss briefly the structure of the electromagnetic
stress-energy tensor outside a perfectly conducting
sphere at zero temperature.

In Sec. 3 we define the electromagnetic field two-
point Green’s function and then compute this function
in terms of an infinite sum of image sources. The Green’s
function is generalized in Sec. 4 to a finite-temperature
ensemble and is constructed in terms of a doubly infinite
sum of images in both space and imaginary time.

2. NATURE OF THE STRESS

The quantum electrodynamic stress-energy tensor is,
formally, the e— 0 limit of the bilinear field
combination®

T (x,e) =Fr(x+3e) F\(x —Fe€)
—igPM(x+3o)Fan(c—3¢). (1)

This limit, in fact, does not exist, because its vacuum
expectation value diverges as ()" Indeed, in an
infinitely extended vacuum, the entire expectation
value behaves as (€272, reflecting the masslessness of
the photon. We can achieve a finite and well-defined
stress-energy operator by recognizing the homogeneous
()2 character of this divergence, which we can there-
fore remove with the definition

]
T+ (x) =l‘i—r’r.} (1+%e’-‘§)—)T“'(x,e) . 2)

e

In our applications using the image-source construction
of the Green’s functions, this definition is tantamount
to simply discarding that part of the Green’s function
corresponding to the true source—the infinitely ex-
tended vacuum contribution. Once this is done, it
follows from the structure of the Green’s function that
there are no infinities in the stress tensor, even when it
is evaluated at the surface of a plate.

Except at boundaries, the electromagnetic field is
free, and thus the stress-energy tensor has a vanishing
divergence

3,T# (x)=0. 3

Since the photon is massless, the theory contains no
intrinsic unit of length and is invariant under scale
transformation of the electromagnetic field strength.
This invariance is reflected in the vanishing of the trace
of the stress-energy tensor®

T#,(x)=0. 4

4 Our metric has the signature (—1, 1, 1, 1). In Secs. 3 and 4 we
use natural units with Planck’s constant, the Boltzmann constant,
and the velocity of light unity, z=k=c=1.

5 The direct connection of zero mass and the vanishing of the
trace of the stress tensor is not a general result. For example, the
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We turn now to the nature of the stress between two
perfectly conducting, parallel, infinite plates separated
by a distance a. We orient the coordinate frame so
that one plate is at 2=0 while the other is at z=a.
We shall have occasion to use the unit four-vector
2#=(0,0,0,1). The time axis is specified by n*=(1,0,0,0).

We will first consider the situation at zero tempera-
ture. In this case, the Green’s function can be con-
structed with an infinite sequence of current-pulse
image sources displaced along the z axis, but which
exist at a common infinitesimal time duration. That
there is no retardation in time between the various
image sources is a result of the special symmetry of the
parallel-plate geometry, which has pairs of sources at
equal distances from a given plate so that no retarda-
tion is required for their radiation pulses to reach the
plate simultaneously. Accordingly, the Green’s func-
tion depends upon only the single four-vector 2, and
the ground-state expectation value of the stress-energy
tensor must be constructed from 2#2” and g** with no
additional reference to the time-axis normal »n#. The
traceless nature of the stress-energy tensor, together
with the symmetry of the problem, requires that

(T () )y = (38 —2+2") f(2). ®)

The function f(z) must, in fact, be constant to make the
stress-energy tensor free of divergence. Its dimension,
energy per unit volume, gives the final structure

(T¥) oy = (38" —22) (he/a")v, (6)

in which v is a pure number. The explicit construction
of the Green’s function in Sec. 3 gives, of course, pre-
cisely this result and supplies the numerical value

1 =
y=— 2 = (1/2*){ (4) =7°/180. M

21['2 =1

The energy density between the plates
(T") @0y =—1(ke/a*)yy=—(x*/720)(he/a*)  (8)
and pressure on one of the plates
(T®)y=—%(he/a*)y=—(7*/240) (hc/a*)  (9)

agree with the results obtained by Casimir.? In par-
ticular, the pressure on a plate is negative, correspond-
ing to an attractive force. It follows from the general
structure of the stress-energy tensor (6) that the calcu-
lation of this pressure from the spatial stress agrees

trace of a spin-zero, massless meson field stress tensor
Twr = 3up3"p — g**43 PO

does not vanish. The connection depends upon the special
coordinate transformation character of the electromagnetic field,
where the stress tensor can be identified by the response of the
Lagrange function to a general coordinate variation with the field
strength transforming as a contravariant, rank-2 tensor density.
In this special circumstance, a scale transformation is a particular
case of a general coordinate transformation, and thus the response
is the trace of the stress tensor.
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with the value obtained from the principal of virtual
work, where it is defined by the variation of the energy
per unit area induced by a change in the plate
separation:

a3 ad
——La(T®) @ ]=—L1(c/a*)y]=(T%)(. (10)
da da

The components of the stress along a plate, (7T'!), and
(T2) 0, are also in accord with the principle of virtual
work. The system is not altered significantly if a per-
fectly conducting wall is erected between the plates at
a great distance from the origin. If such a wall, whose
normal points along either the x or the y axis, is
moved a distance dd, the energy per unit area changes
by an amount 8d{T™),, which is precisely the negative
of the product of the stress and the spatial displacement,
since according to the general form (6),

(T 0y =—(T")=—AT2)w- (11)

We turn now to the situation at a finite temperature
T. In the limit of a very large separation between the
plates only blackbody radiation appears. The expecta-
tion value of the stress in the canonical ensemble must
become uniform and isotopic, and the stress-energy
tensor can depend upon only the time-axis normal z~.
The constraint of vanishing trace, together with the
dimensionality of this tensor, now gives the limiting
structure

(T ey = (gwr-+-4nn?) (BT /hc)% T, (12)

with ¢ a pure number. The image construction in
imaginary time of the temperature-dependent Green’s
function of Sec. 4 automatically gives this structure and
the explicit value

2 =
o=—7 I™=x%/45. (13)
1r2 1=1
Thus, we reproduce the well-known result® that the
energy density and pressure of a photon gas of infinite
volume are given by

(T%) ()= (a*/15) (kT / hc)*kT (14)

(T%) (1) ) =883 (T) (7). 13)

We may take account of the limits (6) and (12) and
write the stress-energy tensor at finite temperature and
plate separation as

(T# )y ={T* )y +{T* )y +(T*)(ry®, (16)

so that we need consider only the correction (T#") )@,
which vanishes at zero temperature and at large plate
separation. We can obtain the structure of this correc-
tion if we make use of the qualitative result of the
Green’s-function construction of Sec. 4 that the stress

and

6 M. Planck, Verhandl. Deut. Physikalischen Ges. 2, 237 (1900).
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is uniform between the plates. Then the now familiar
conditions of vanishing trace and proper dimensionality
give

(Tw)ry @ = (n#n+-248”) (kT/a®)s (£)
+ (48427 —gw) (he/at) f(8), (A7)

in which s and f are arbitrary functions of the dimen-

sionless variable
¢=kTa/hc. (18)

In general, a given component of the stress is given
by the appropriate spatial derivative of the Helmholtz
free energy at constant temperature. Now, in analogy
to our previous discussion of the principle of virtual
work at zero temperature, the components of the stress
parallel to the plates,

(T iy @=(T2) (1) =—(he/a*) f(§), (19)

must be identified with the negative of a Helmholtz
free-energy density. With this identification of
(he/a*) f(§) as the correction to Helmholtz free-energy
density for finite plate separation and temperature, we
can compute the pressure correction on one of the
plates by the partial derivative at constant temperature,

i}
(T%) @ = —E;E(fw/ @) f(§)], (20a)
as well as by the general form (17),
(T%) )@= (kT/a*)s(£)+3(he/a*) f(¢), (20b)
and hence we must have
d
s(E)=——/1(%). (21)
dt

The image solution of Sec. 4 is in accord with these
results and provides the explicit functional form
1 =

fO=—— 2 -
42 1t [P (26)2mE ]

It follows from the form (17) that the energy-
density correction is given by

(T) ey @ = (he/a*)u() ,

(22)

(23)
with
u(§)=f(§)+&s(8), (24)

which corresponds to the thermodynamic connection
between the internal energy U, the Helmholtz free
energy F, and the entropy S:

U=F+TS. (25)

Accordingly, we find that ks(§) is the correction to the
entropy per unit volume of the radiation field, and we
have related all the components of the stress-energy
tensor to thermodynamic variables. Since the photon
is massless, photon number is not conserved, the
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chemical potential of the radiation field vanishes, and
the thermodynamic energy balance is given by

dU—TdS+dW =0, (26)

in which dW is the external work contribution. We have,
by construction, satisfied this energy-balance equation
at constant temperature, and we need only require that
it hold at constant volume,

al as
—=T— (27a)
oT oT
or, in terms of the Helmholtz free energy,
S=—0F/oT. (27b)

This relation between the entropy and the free energy
is precisely the relation between the dimensionless
functions s(¢) and f(¢) exhibited in Eq. (21). This
correspondence is a direct consequence of the zero mass
of the photon, which requires on the one hand that the
stress-energy tensor be traceless and, on the other, that
the chemical potential vanish. The thermodynamic
relationships which we have exhibited for the correction
term (T#)ry® hold for the complete stress tensor,
since they are trivially satisfied by its other pieces.

The double-sum representation (22) of the free-
energy function f(£) shows that this function is singular
at all rational points along the imaginary axis in the
complex £ plane. This natural boundary corresponds to
the divergence of the partition function which occurs
when the temperature is analytically continued to a
pure imaginary value. The double-sum representation
also exhibits the inversion symmetry

f(1/48) = 2e)f(8).

Accordingly, the knowledge of one asymptotic form
determines the behavior of the function for both large
and small ¢£& We can obtain the large-£ behavior if we
use a sum formula which is easily obtained by the
familiar contour integration method:

(28)

i 1 2w &3 cosh (wl/2£)
mot [ (/28 4+m*  © sinh(ri/2£)

(rf w8
+ » sinh (EE) ——IT (29)
Thus, for £ — 0,
1@ ==(@/2m) ¥ F-@eye) ¥ -
~[(/m)+£Jecrio
= —(&/2m)§ (3)+ (£*7%/45)
—[(&/m)+8£Je=D+0(e ), (30)
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in which ¢(3) has the numerical value 1.202 ---. For
f— x,

f(&)=—(&/8m)¢(3)+ (x/720)
—[(&/4m)+8Je 40 ().

The limit §=kTa/#c— O corresponds physically to
small temperature or small plate separation. In this
case we find that, neglecting exponentially small terms,
for Ta— 0,

(T @ =[¢@)/x*(kT/a) (kT / hc)*
— («/15)T (kT /hc)?

(1)

(32)
and
(T%) )@ = — (x*/45) (kT / he)* (kT) . (33)

The corresponding behavior of the complete energy
density and the pressure on a plane is, for Ta — 0,

(T%) vy = —(x*/720) (he/a)

+LE@)/7*)(kT/a) (RT/he)*  (34)

and
(T®)(ry=—(%2/240) (hc/a?). (35)

Note that the terms which are independent of the plate
separation have all cancelled. The absence of such black-
body radiation terms happens because at low tempera-
tures or, equivalently, at small plate separation no
modes of the radiation field propagating normally to
the plates can be excited. The modes propagating along
the plates contribute to the energy density, as seen in
Eq. (34), but do not contribute to the pressure on a
plate, Eq. (35), since the total free energy in these
modes is independent of the plate separation. The cor-
rections to these limits? are exponentially small in the
parameter whc/kTa.

In the high-temperature or large-plate-separation

limit, we have, neglecting exponentially small terms,
for Ta— o,

(T%) 1y @ = (72/720) (hc/a)* (36)

" Since the force becomes exceedingly small at large plate
separation, only this 7¢ — 0 limit is measurable. In addition to
the pressure discussed in the text, which is due exclusively to the
radiation between the plates, in any experiment there is also a
pressure from the blackbody radiation external to the plates which
cancels the blackbody contribution to the interior pressure. If we
neglect exponentially small terms, the expression for the total
experimentally observed pressure is the sum of Egs. (35) and (15).
At room temperature this pressure in dyn/cm? is — »=0.013004"¢
+2X1075, where @ is measured in microns. An experimental
measurement of the vacuum stress between conducting plates has
been made by M. J. Sparnaay, Physica 24, 751 (1958). In addi-
tion, there have been a number of similar measurements with
dielectric plates [for experimental results and references, see
W. Block, J. G. V. de Jongh, J. Th.G. Overbeek, and M. J.
Sparnaay, Trans. Faraday Soc. 56, 1597 (1960)], for which the
theory must be modified somewhat (Lifshitz et al., Ref. 1). The
experimental results are consistent, in general, with the existence
of attractive forces, which vary inversely with the plate separation
but are of insufficient accuracy to clearly verify the exponent and
coefficient of the leading term for the pressure.
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and
(T%)y @ =—[¢(3)/4x (kT /a®)

+ (%2/240) (hc/a¥). (37)

The corresponding limits of the total energy density
and pressure are given for Ta— o by

(%)) = (x%/15) (kT / e}k T (38)

and
(T%) ()= (x*/45) (kT /he)*kT —[§ (3) /4xJ(kT/a®). (39)

Note that in this case all the terms independent of the
temperature have cancelled—no contributions occur
with the character of the zero-point vacuum fluctua-
tions. The energy density is that of blackbody radia-
tion, while the pressure on a plate contains a purely
classical term (the physical significance of which is
unclear) in addition to the blackbody radiation con-
tribution. The corrections to these limits are exponen-
tially small in the parameter 4wkT'a/hc.

The correction to the pressure on a plate may be
written as

(T%3) iy @ = (he/a*)p(§) , (40)

in which

p()=—E(d/dOLE3f(B)].

We can make use of the sum formula (29) and the
double-sum representation (22) to express this as

E d 2il_3 1+e—7rl/E 25] (42)
4 (E)_Z<d5—l> Pt [1— ~wE ]

(41)

On expanding the denominator in this formula and per-
forming the /-sum, we get

PO=—t 2 (1=~ (w/AS)E, (43

which is precisely the pressure correction obtained by
Mehra.?

It is interesting to compare our results on the stress-
energy tensor for conducting plates with the structure
of the zero-temperature stress-energy tensor in the
region outside a perfectly conducting sphere® of radius
a centered at the origin. The symmetry of this problem,
coupled with dimensional considerations and the con-
dition that the stress tensor be divergence-free, re-
quires that the spatial stress have the form

a
(T*) 0 = (¥ —#*#)3r—(he/ar’) f(r/ a)

or
+06% (hec/ar®) f(r/a).

The vanishing of the trace of the complete stress-energy

(44)

8 This problem has been considered by H. B. G. Casimir
[Physica 19, 846 (1953)] and more recently it has been discussed
at some length by T. H. Boyer, Phys. Rev. 174, 1764 (1968).
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tensor then determines the energy density

3
(T%) = (he/ arz)a—f (r/a). (45)
r

The total energy in the vacuum fluctuations is

o0

U=tr / Pr(T) 0y = —4r (he/a) f(1).  (46)

Accordingly, we find that the pressure on the sphere as
given by the principle of virtual work,

1

]
—U=(hc/a*) f(1),

4ma? da

P= (47a)

agrees precisely with that obtained from the normal
component of the stress tensor evaluated on the surface
of the sphere

P=t(T*) 71| r=a=(hc/a*) f(1). (47b)

The calculation of the function f(r/a) appears to be a
difficult one. An image construction cannot be employed
here because of the retarded propagation character of
a radiation pulse. It appears necessary to use a decom-
position into spherical wave modes, and it seems un-
likely that the partial-wave sum can be put into closed
form. An approximate evaluation has been made by
Boyer,® who found a negative pressure with

(1)~ —(0.09/8x).
3. ZERO-TEMPERATURE GREEN’S FUNCTION

The free electromagnetic field-strength tensor F#*(x)
is characterized by the field equations

9 Frv4-9rFro+ 9*For=0, (48)
9. Fr=0, (49)

and the nonvanishing equal-time commutator
i Fo%(r,t),Fim(r 1) ]= (8¥m9'— 6*'9™)5(r—72").  (50)

Since the equal-time commutator of the field strengths
involves a derivative of the & function, their time-
ordered product is not covariant® under Lorentz trans-
formations. A covariant time-ordered product 7* can
be obtained by adjoining an appropriate contact or
“seagull” term to the ordinary time-ordered product 7'

iTHEw ()P (') = iT(Fe () F*(x"))

+ (g nn*— g nid- g ninc— g5 (x—a') . (51)

It follows from the field equations and commutation
relations that this covariant time-ordered product
satisfies

9% T*(Fr (x)F (")) +perms.=0 (52)

9 L. S. Brown, Phys. Rev. 150, 1338 (1966).
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and
8, aT*(Frr(x) Fr(x)) = (gr*d* —g™9%)8(x—x"). (53)

The expectation value of the covariant time-ordered
product in the infinite vacuum

D wrid(x—x")= GT*(F* (x) F*(%))) ) (54)

is defined by the field equations (52) and (53) and by
the usual positive-frequency boundary condition. The
first field equation (32) is satisfied if we write this free-
space Green’s function in terms of a curl:

D wid(x—g')=dwi D (x—2'), (55)
dwride= gud/rgre— 979" gueo a»a'xguk_ aua'xgvx . (56)
Since
D,y (x—a')=—9Dy(x—2'), (57)
the second field equation, (53), requires that
—#D, (x—x")=08(x—x"), (58)

which has the familiar solution satisfyving the positive-
frequency boundary conditions

1 (dk)
D (=) _1/ (27) 2| k|
i1

472 x2+ie

etk r—i|k[[¢]

(59)

We can now consider the case of a single, perfectly
conducting, infinite plate placed at z=0. The tangential
components of the electric field and the normal com-
ponent of the magnetic field must vanish on the
conductor:

FO'=F%2=F12=0 on the plate. (60)

The Green’s function W #**«(x,x’) for this problem is
easily obtained by adding an image function to the
free-space solution. This image function is the free-
space Green’s function for an image source placed at
the reflected coordinate

x'= (202" 12, —x"3) . (61)
To satisfy the boundary conditions (60), the image
current components parallel to the plate and the image
charge density sign must be inverted relative to the
corresponding source currents and charge densities.
Hence, we define

-1
prmgr-2w=| Tl (@)
-1
Accordingly, we write
W sride (g 5") = derideD, (x— ') — d#rMD, (x— &),
(63)
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where

‘va;)\x= aua')‘zv‘:_ 8?6’)\sz+ ava’xg;t)\__ aua’xgv)\ . (64)

Since the image function is expressed as a curl, the
first of the field equations, (52), is obeyed; since

D, (x—F)=—7"9,D, (x—%'), (65)

it is a simple matter to show that the second field
equation, (53), holds as well. Finally, it is straight-
forward to verify directly that the boundary conditions
(60) are satisfied, while the positive-frequency boundary
conditions in time obviously hold. The simplicity of
this solution results from the simplicity of the geometry.
In particular, an image technique analogous to that
of electrostatics is applicable to the radiation field
because the retardation times of the source radiation
pulse and the image pulse are identical.

The generalization of this Green’s function to the
situation where there are two infinite, perfectly con-
ducting plates, one at z=0 the other at z=ga, is im-
mediate. In this case we use an infinite sequence of image
sources of alternating types displaced along the z axis
to secure the solution®

Gy () = (IT*(E (2)F(x))) o

=dw* 3 D, (x—x'—2alf)
l=—c0

__Jpv;)\x Z D+(x—-’t’—2dlé) (66)
l=—x

Each term in the sum corresponds to a particular reflec-
tion of the original source pulse by one of the plates.
Since an infinite number of such reflections is possible,
our sums contain an infinite number of image terms.
The stress-energy tensor appears as

()= (= )G (5,2) — g (— )G one ()

=—0%9" 2/ (—i)Dp(v—a'—2al)| ;e , (67)
l=—0

where, according to the definition (2), it is implicit that
the vacuum contribution to the Green’s function is
omitted, so that the value /=0 is excluded from the
sum. Using the explicit functional form of the zero-
mass propagator (59), we easily derive the results
quoted in Sec. 2, Egs. (6) and (7).

4. FINITE-TEMPERATURE GREEN’S FUNCTION

At finite temperatures, we must use the canonical
ensemble average!!

(X)(ry= (Tre #H)1 Tre—8HX (68)

10 The sums which occur here can be done by the usual contour
integration method to put the solution in a closed form involving
hyperbolic cosines. There is, however, no necessity to do this for
our purposes.

1 Our treatment is a standard one. See, for example, L. P.
Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A.
Benjamin, Inc., New York, 1962).
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in which 8 is the inverse temperature 3=7"1, and H is
the Hamiltonian of the system, which also governs its
time development by

X (f)=eHtX (0)e 4L, (69)
The cyclic invariance of the trace
TrXYV=TrV'X (70)

and the Heisenberg equation of motion (69) imply that
time-dependent correlations of the form

(A@OBW))

depend only upon the time difference {—¢' and, in
addition, satisfy the symmetry

(AWBE)) = (B("NA(+18)) (r) - (71)

Accordingly, if we write the various orderings of the
correlations as Fourier integrals,

*° dw
(AOBE) = f g, (1)
BOAOm= [ g0, @)
CAD,BE) D= / & @eieen,  (120)
we have the connection
g& (w)= £c(w)(1—exfe)1, (73)

In particular, the time-ordered product is determined
by the value of the commutator.

The commutator of the free electromagnetic field
strengths is a numerical quantity. Hence, its value in
the canonical ensemble average is the same as its
ground-state expectation value. Furthermore, for >/,
the commutator is simply twice the real part of the
Green’s function, from which its value for {<¢ can be
obtained by analytic continuation. Accordingly, for
the case of infinitely extended space, we have

Dris(z—a') = ([P (@), (") Dy
— D (3—x)
(dk)
(2n)* 2| k|

(74)
with

D(x)=1 8'1"[e_i|k|‘—e+f|kl‘].

(75)

We can now readily obtain the finite-temperature
Green’s function for this case of an infinitely extended
space by using the connection (73) between the two
operator orderings and the commutator. The non-
covariant ‘‘seagull” contributions to the covariant
time-ordered product (51) are canceled by the é-func-
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tion terms which arise when the step functions 6({—1t’)
and 6(¢—t) that define the two time orderings are
commuted through the differential operator d#***, and
we obtain

Dypride(x—a’) = (iT*(Fw ()P (")) )

=d*MDp(x—2x"),
in which

k) 1 ilkle
Dr(x)=i / e"“"[G([)(
(2m)1 2| k| 1— Bl

(76)

etilklt )
1 —etBIkl
e—ilklt etilklt

—0(—t)(1_e+ﬂlkl 1_e~a|k|>]' ()

The various terms which occur here may be combined
in the form

Dy (x)=D,(x)+Dr'(x), (78)
where D, (x) is the vacuum zero-mass propagator (59)
and
(dk)
J (2m)3 2| k|

Dy (x) =i i rgBIkI (1 —gBIkI)~1

X (e=ilkltpgtilkley  (79)

The exponential damping factors in the integral (79)
ensure that the integral is well defined. We can therefore
expand the temperature-dependent denominator to put
this correction function in the form of an infinite sum
of temperature images in imaginary time. The images
are displaced in time by imB, where m is any positive
or negative integer excluding zero. The term with m=0
is simply the vacuum propagator D, (x), so that the
complete propagator Eq. (78) becomes

Dr(®)= 3 Dy (at—impn¥). (80)

Using this form, the temperature correction to the
stress-energy tensor in free space is easily computed,
obtaining the results quoted in Egs. (12) and (13).
Our definition of the stress-energy tensor [Eq. (2)]
excludes the m=0 vacuum propagator term.

The extension of this formulation to the finite-tem-
perature radiation field between two perfectly conduct-
ing infinite plates is direct: The presence of the plates
is accounted for by an infinite sum of spatial image
functions, and we have

GT"”"‘(x,x’)

=(@T*(F* ()P (+))) ey

= BriNe Z Z D+(x—x’—2alé—1mﬁn)

l=—00 m=—o0

—dwiM 3 Y Dy(x—F—2al8—imBn). (81)

l=—00 m=—00
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It is a simple matter to verify that the second double
sum involving d**i*¢ does not contribute to the stress-
energy tensor. The /=m=0 term of the first double sum
is excluded, of course, by definition (2). The part of the
first sum, with m=0, /520, gives the zero-temperature
contribution to the stress-energy tensor which we have
already considered; the part with /=0, m520 gives the
blackbody contribution which we have just discussed.
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It is straightforward to show that the sum remaining
with neither / nor m vanishing gives the finite-tempera-
ture, finite-plate separation correction quoted in

Egs. (17)-(22).
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Measurement of the Primary Cosmic-Ray Proton Spectrum
between 40 and 400 GeV*
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Equipment consisting of an ionization spectrometer and spark chambers has been exposed to primary
cosmic rays in a balloon flight which allowed a data collection time of 14.3 h at an altitude of 5.7 g/cm?.
The purpose of this experiment was to study the flux, composition, possible time variations, and nuclear
interaction properties of cosmic rays at energies between 40 and 400 GeV. The apparatus has also been
exposed to 10-, 20.5-, and 28-GeV/c protons at the Brookhaven AGS in order to study the spectrometer
response at three known energies and to be able to extrapolate this response to higher energies. The integral
energy spectrum of primary cosmic-ray protons between 40 and 400 GeV was found to be #(> Ey)

=(0.91_9.5M%) Eo~17%01 (E in GeV). The corresponding intensity is a factor of 2 lower than that obtained

from the Proton I and II satellite experiments.

EXPERIMENTAL PROCEDURE

HE apparatus, which has been described briefly

in a previous publication,! is shown schematically

in Fig. 1. This apparatus consists essentially of spark

chambers for defining the beam, a target volume, and

below these, an ionization spectrometer for determining

the incident particle’s energy. The spectrometer has
a depth of about 3 interaction lengths.

In the flight reported here, the target consisted of
Iliford G-5 nuclear emulsion.? In this flight, the trigger
condition was set as follows. Let T%(m)=1 indicate
that counter Tz was required to produce a signal m
times minimum ionization, and let A=1 indicate that
no signal has been received from counter 4. If “4”
is the logical “or” connection, and “0” is the logical
“and” connection, the trigger requirement can be

* Research supported jointly by the National Science Founda-
tion under Grant No. GP/7169, and by Deutsche Forschungs-
gemeinschaft under Grant No. Pi 34/5.

1K. Pinkau, U. Pollvogt, W. Schmidt, and R. W. Huggett,
in Proceedings of the International Conference on Cosmic Rays,
London, 1965, p. 821 (unpublished).

2 We have been successful in tracing many singly-charged and
all multiply-charged particles from the spark chambers into the
emulsion. Results on this will be published later.

written as

Ao T7(1)0 T6(2) 0 {T1(13) 0 T2(13) +T3(13)
0 T4(13)+T5(13) 0 T6(13)} =1.

No pulse was required to occur from counter T8, since
it was decided to have the possibility for the apparatus
to be triggered by electromagnetic cascades from
y-rays.34

If the trigger requirement was met, the spark cham-
bers were photographed. Alternate electrodes in this
chamber were covered by 2-mm-thick glass. This made
it possible to register very many simultaneous particles.
The cameras did not only record sparks, but also the
pulse heights of the three photomultipliers M1, MII,
and MIII, each in 128 logarithmic channels. These
multipliers combined the light output of each pair of
adjacent scintillators, as indicated in Fig. 1. Further-
more, by photographing various discriminators and
indicator lamps, the following additional data were
recorded: T8(4), T8(9), T8(16), T7(1), T7(2), T1(2),

3 K. Pinkau, Phil. Mag. 2, 1389 (1957).

*R. Holynski, W. V. Jones, and K. Pinkau, Phys. Rev. 176,
1661 (1968).



