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It is known that the entire geometry of many relativistic space-times can be summed up in two concepts,
a space-time measure u and a space-time causal or chronological order relation C, defining a causal measure
space. On grounds of finiteness, unity, and symmetry, we argue that macroscopic space-time may be the
classical-geometrical limit of a causal quantum space. A tentative conceptual framework is provided.
Mathematical individuals that naturally form causal spaces are symbol sets or words, taken in the order
of their generation. The natural extension of this purely logical concept to quantum symbols is formulated.
The problem is posed of giving finite quantum rules for the generation of quantum symbol sets such that the
order of generation becomes, in the classical limit, the causal order of space-time—as it were, to break the
space-time code. The causal quantum spaces of three simple codes are generated for comparison with
reality. The singulary code (repetitions of one digit) gives a linearly ordered external world of one time
dimension and a circular internal space. The binary code gives the future null cone of special relativity
and a circular internal space. The causal quantum space of word pairs in the binary code gives the solid
light cone ¢> (2243243212 of special relativity and an internal space U (2, C) suitable for the description
of charge and isospin. In the classical limit, there is full translational and proper Lorentz invariance except
at the boundary of the light cone, where the classical-geometrical limit fails. Plausible consequences of this
model for cosmology and elementary particles are discussed. There is a quantum of time 7S4/muc® and a
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I. INTRODUCTION

NTIL we find a satisfactory theory of space-time

structure, we shall be beset by the dilemma of
the discrete versus the continuous, the dilemma
already posed by Riemann,! in much the following
terms:

(a) A discrete manifold has finite properties, whereas
a continuous manifold does not. Natural quantities are
to be finite. The world must be discrete.

(b) A discrete manifold possesses natural internal
metrical structure, whereas a continuous manifold must
have its metrical structure imposed from without.
Natural law is to be unified. The world must be discrete.

(c) A continuous manifold has continuous sym-
metries, whereas a discrete manifold does not. Nature
possesses continuous symmetries. The world must be
continuous.

The third argument is especially serious for rotational
and Lorentz symmetry, which are much more difficult
to counterfeit than translational symmetry. Subgroups
can be found as dense as desired in the translation
group that are not everywhere dense, but I do not
think they exist for the rotation or Lorentz groups.

Since Riemann a new approach to this dilemma has
become available. The same question about matter,
asked for two millenia—Is it continuous or is it discrete?
—has at last been answered in this century: No.
Matter is made neither of discrete objects nor waves
but of quanta. In most familiar terms, a quantum is
an object whose coordinates form a noncommutative
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1B. Riemann, in Collected Works [1892], edited by H. Weber
(Dover Publications, Inc., New York, 1953), p. 285.
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algebra. Most fundamentally put, a quantum is an
object whose class calculus?? is neither a discrete nor
a continuous Boolean algebra, but an algebra which
is not even Boolean, being nondistributive. This non-
distributive class calculus is the lattice of subspaces of
a separable Hilbert space, and is naturally imbedded
in (and defines) the algebra of operators on that
Hilbert space. A quantum manifold is a third possi-
bility for space-time too. This possibility would pass
us cleanly between the horns of Riemann’s dilemma:

(a) A quantum manifold, like a discrete one, has
better convergence than a continuous manifold—
remember Planck and the black body.

(b) A quantum manifold, like a discrete one, is born
with internal structure and is even more unified, being
coherent.?

(c) A quantum manifold, like a continuous one,
possesses continuous symmetry groups.

The intrinsic structure Riemann meant for a discrete
manifold must have been like a chessboard or honey-
comb, a tesselation or graph in which the germs of a
topology and a metric are present in the concepts of
incidence and number. The world he faced was one
three-dimensional continuum, space, changing in

% For the algebra of quantum classes, see J. von Neumann, in
Mathematical Foundations of Quantum Mechanics (Dover Pub-
lications, Inc., New York, 1936), Chap. III, Sec. 5; J. M. Jauch,
Foundations of Quantum Mechanics (Addison-Wesley Publishing
Co., Inc., Reading, Mass., 1968). The first person I know of to
suggest that space-time is a quantum space is H. Snyder, Phys.
Rev. 71, 38 (1947). Commutation relations of Snyder’s form
[x#2*]=const XJ#* are valid for our x* but there must be a
difference in sign somewhere: We get a discrete time and a con-
tinuous space; he gets the reverse. A deep scepticism concerning
the continuum nature of space-time is again expressed by R. P.
Feynman, The Character of Physical Laws (M.L.T. Press, Cam-
bridge, Mass., 1968).

8 The language of quantum logic still varies from speaker to
speaker, so we summarize the local dialect in the Appendix.
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another one-dimensional continuum, time. Here, too,
we have a better point of departure than Riemann.
Since Einstein we have been confronted by just one
four-dimensional continuum. More important, the
structure of this continuum is not that of a changing
metric space but that of a space with an order relation
between its points, causal or chronological precedence
C. Alas, most of classical geometry ran off on the wrong
road after dimension 1, from the point of view of
relativity. The number line has been many things to
many people: a metric geometry, a number field, an
ordered space, and so forth. Any of these exist in higher
dimension. The development of higher-dimensional
metric geometry flourished in the recognition that the
world is a kind of higher-dimensional line and in the
mistaken belief that the essential surviving property
of the line is its metric structure. The important thing
about the line for us is its order. The world s like a
line, but in respect to the order structure, not the
metric structure. For example, the topology of space-
time must be based on order intervals aCxCb, not
metric balls d(x,a)<r. Points at 0 pseudometric sepa-
ration can be as far apart topologically as the stars.
Evidently the relation pCp’ (p is causally prior to p’)
is a simpler thing than an indefinite numerical distance
function d(p,p’). We are unlikely to find an indefinite
metric by counting squares on a space-time chessboard,
and we are much better off hunting for structures that
are born with order. The causal order C determines
the conformal structure of space-time, or nine of the
ten components of the metric. The measure on space-
time fixes the tenth component.

The simplest mathematical objects I can think of that
are born with order and measure are composite objects,
sets of one kind or another ordered by inclusion and
measured by counting. This leads to the idea that each
point of space-time is some kind of assembly of some
kind of thing, and a point that is later is a point that
is greater, regarded as such an assembly. The things
have to be quanta if they are to be finite in kind, yet
possess continuous symmetries, and we could just as
well call them chronons, since their creation is to be
the passage of time. However, they should not be
ascribed mass or other mechanical properties, which are
to emerge in a higher order of things, and it is safest
to call them “digits.” This reminds us of their abstract
quality, forestalls meaningless questions, and implies
that their disjoint kinds are finite, like the binary or
decimal digits. The basic object of the ordered quantum
space—a quantum set of quantum digits—is then
called a quantum “word.” We set the problem of
“breaking the space-time code”: finding finite quantum
rules for word generation such that the order of gen-
eration gives the causal order of space-time and thus
the entire geometrical structure of space-time, in the
classical limit. Since Euclid, classical geometry has
been a development in classical logic, and here we

DAVID FINKELSTEIN

184

attempt a quantum geometry which is a development
in quantum logic; as it were, geometrizing quanta rather
than quantizing geometry.

This approach, which attributes to space-time points
an intricate internal structure, seems upside down from
the point of view of general relativity, and general
relativity seems upside down from here, seems too
complicated a theory of too simple a thing to be funda-
mental rather than phenomenological. What is too
complicated about general relativity is the delicate
vertical structure of laws that would have had to be
legislated on the first day of creation: set theory
holding up topology, holding up differential manifolds,
holding up pseudometric geometry, with a precarious
topper of quantization. What is too simple about
general relativity is the space-time point. It looks as
if a point might be an enormously complicated thing.
Each point, as Feynman once put it, has to remember
with precision the values of indefinitely many fields
describing indefinitely many elementary particles;
has to have data inputs and outputs connected to
neighboring points; has to have a little arithmetic
element to satisfy the field equations; and all in all
might just as well be a complete computer. Maxwell
made his machine out of gears and idlers, Feynman is
inclined towards digital rather than analog components,
and we attempt the synthesis of quantum automata
out of quantum elements. But the laws of these com-
plex structures should be simple.

The code seems as if it might be simple. If it were
much simpler, there would be no space-time, just a
one-dimensional time continuum. We all knew that the
Lorentz group was as simple as could be—had Cartan’s
A rating, so to spead—and presumably we were puzzled
by the less compelling nature of the space-time signa-
ture +1—3, which is supposed to be theoretically
prior. Perhaps here is the real reason for the dimension
and signature of space-time. Working out the causal
order of three simple codes, the first (words in the singu-
lary code, repetitions of a single digit) gives the linear
space-time, the second (words in the binary code)
already gives the future null cone ¢=+ (x®4 42?12,
and the third (word pairs in the binary code, admittedly
chosen with the first two examples as a guide) gives the
solid light cone >+ (2*+3>432)2, with the Poincaré
group as symmetry group as long as we stay away from
the bounding cone where the classical limit breaks down
and normal conceptions of space-time fail.

II. ORDER OF SPACE-TIME

The classical space-times of special and much of
general relativity may each be described completely
by a measure space M and a partial ordering pCp’
(p “causes” p', i.e., causally precedes p’) of the points
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p, p’ of M4 The measure space gives the set theory
(class lattice) and measure theory of space-time and
finally determines v/(—g). The causal relation pCp’
means that p’ is in the closed future light cone ema-
nating from p and gives the topology, differential
manifold structure, and conformal geometry of space-
time, finally determining g,,. Following Penrose, we
call a space with a causal order a causal space.

Here we consider new space-times likewise endowed
with measure and order, but quantum?® rather than
classical. With a quantum object ¢ we shall associate
the * algebra A4 (¢) (algebra with an anti-automorphism
a— a* the adjoint) of operators on Hilbert space,
thought of as containing the algebra of coordinates of
an individual object, a quantum. We suppose that the
space-time coordinates of a point p in space-time form
the same kind of structure as the phase-space co-
ordinates (dynamical variables) of an elementary
quantum-mechanical system:

A space-time point is a quantum object.

We must indicate briefly how this hypothesis fixes
the class theory and measure of space-time. The
q(uantum) classes of a quantum object ¢ are the Her-
mitian idempotents ¢ of its * algebra:

o’=0*=0CA(q).

The inclusion cCo’ of quantum classes is expressed by
o'c=0. Two quantum classes o and o’ are compatible,
oc<> o', when the idempotents ¢ and ¢ commute:
oo’=c's. The complement of a quantum class ¢ is
1—o=~0c. Disjoint o1l means ¢C~a’. The con-
Junction cN ¢’ is the greatest q class included in both o
and ¢’ (in the sense of C). The adjunction ¢ o’ is the
smallest ¢ class including both ¢ and ¢’. The measure
of a ¢ is tre and is normalized so that the two lowest
values it assumes are 0 and 1. A quantum class ¢ is a
singlet when tro=1. Then tre counts the maximal
number of disjoint singlets s, s’, -+, in g,

sls', s,5Co.

A frame means a maximal set of disjoint singlets. The
minimal * algebra containing symbols g obeying re-
lations p is called the * algebra generated by g and p,
* alg(g; p). The things we call * algebras are required
to contain the number 1.

A singlet—or, equivalently, a vector in the Hilbert
space H(p) on which the * algebra 4 (p) acts—repre-
sents a maximally precise determination of location in
space-time.

trs=1,

4 Spaces getting their topology from an order relation are in
G. Birkhoff, Lattice Theory (American Mathematical Society,
Providence, R. I., 1948). The important unifying role of this
concept for relativity has been stressed by E. C. Zeeman and R.
Penrose. Cf. E. C. Zeeman, J. Math. Phys. 5, 490 (1964); E. H.
Kronheimer and R. Penrose, Proc. Cambridge Phil. Soc. 63, 481
(1967). Certain ideas of D. Bohm [Special Theory of Relativity
(W. A. Benjamin, Inc., New York, 1965)] are suggestive of our
approach.
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Quantum Relations

How is the causal relation between points to be
described if points are quantum objects?

Examples of quantum relations between two quantum
objects from elementary quantum mechanics are:

eRy¢’: Electrons e and ¢’ have the same L..

BR,B’: Baryons B and B’ are bound into a triplet-s
internal state.

pRsp’: Particle p has a greater kinetic energy than
particle p'.

Such relations are represented by subspaces of the
direct product of two Hilbert spaces. The projection
operators for these subspaces are Hermitian idem-
potents of the direct product of the two * algebras.

Classically, and we suppose quantally as well, a
relation R between two things p and p’ is a class of
pairs (p,p), and pRp’ means the same as {(p,p’)ER}.
When p is a quantum, the pair (p,p") is described by
the direct product A4 (p1) XA (p2) of the * algebra 4 (p)
with itself, the direct square, which is the * algebra
generated by two commuting replicas of 4 (p). If ¢ is
in A(p), we shall show which of the two points p(1)
and p(2) of X is intended by a symbolic argument,
like ¢ (1). Thus, if {s,s",- - -} is a frame for X, {s(1)s"(2)}
is a frame for 4 (1) X4 (2).

For a quantum space-time, any quantum relation
between two points p(1) and p(2) is a Hermitian
idempotent of the direct square, expressible as a linear
combination of products like ¢(1)5(2), where ¢ and b
are quantities in 4 (p). In particular, we suppose that
the causal relation C is such.

The quantum theory of relations is more complicated
than the classical theory because of the possibility of
coherent superposition and the impossibility of perfect
identity.

Quantum Identity

Classically, the causal order is a reflective relation.
We might wish to speak, therefore, of reflexive quantum
relations. Classically, that R is reflexive means

{p=1"}CpRY .

This could be transcribed to quantum theory if we
knew what p=p’ means. Classically, the relation p=p’
is described by the diagonal set in the Cartesian

product:
{1=2}=U.{x(1)2(2)}.

Since we have no underlying set of x’s to sum over, this
definition can only be suggestive for the quantum case.
For example, if s ranges over all singlets in 4 (p), then

Us(DNns(2)=3(1+X),

where 1 is the unit operator in 4(p) and X is the ex-
change operator. This is the least projection including
all states of the form s(1)Ns(2) (both quanta in the
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same state), yet does not imply the equality for the
two systems of any nontrivial quantity.

We shall have to settle for equality with respect to
some complete set of commuting quantities. By an
equality relation we shall mean one of the form

E=Us(1)s(2),

where {s} is a frame for Q.
By a reflexive quantum relation R, we mean one
that follows from some quantum equality E:

ECR.

This behaves well in the classical limit.

Classically, the causal relation is asymmetric. Sym-
metry of a relation S has obvious quantum meaning:
pSp'=p'Sp=pSTp’. Asymmetry of A will mean

pAY' NP ApCPEY,

where E is an equality relation. Antisymmetry will
mean pAp’ L p'Ap.

Precedence Relations

Classically, the causal relation is transitive. Tran-
sitivity is a concept of three-variable logic and the
direct cube M (1) XM (2)X M (3):

(DTN p(2)TpR)Tp(D)TH(3).

We can define a quantum partial ordering, at last, as
a reflexive, antisymmetric, transitive q relation. This
concept does not behave well under conjunction. We
wish the causal relation to agree with the conjunction
of all observers’ time orderings by time coordinates.
The conjunction of two reflexive relations which are
not compatible is not reflexive, but can even be null.
Therefore, we shall not assume that the causal order
relation is a partial ordering.

The classical concept whose quantum translation is
well behaved in this respect is that of precedence
(relation), a transitive antisymmetric relation. The
causal structure of classical space-time, moreover, is
as well described by the causal precedence relation

1C2={A9>0} A {Ax*Ax,> 0},

where Ax*=x#(2)—x#(1), as by a similar expression
with < instead of <, which would be a partial ordering.

Coherent Relations

Call a quantum relation R cokerent when it is in-
compatible with any separate identity relation for
either member:

PRP,HPEP”) PHEP’-

The true quantum relations are coherent. That two
quanta are bound into the ground state of the hydrogen
atom is a coherent relation between them. The causal
relation between space-time points proposed later is a
coherent relation.

DAVID FINKELSTEIN
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Internal Coordinates

While classically the causal relation C is a partial
ordering, we have seen that this concept does not
generalize well to quantum theory, and we have
softened the requirements on the quantum relation C.
As further rationalization, there is abundant indication
that the physical relation C is not asymmetric at all.
Call a unitary transformation U of M an internal sym-
metry if U leaves C unaffected in the sense that

U)(1C)U (1)*=U(2)(1C2)U (2)*=1C2.

This is not to be confused with the milder concept of a
symmetry transformation, which leaves C invariant in
the sense that

UQ)U(2)(1C)U 2)*U (1)*=1C2.

There are many transformations in elementary quantum
mechanics that are internal in this sense. For example,
isospin rotation and charge conjugation seem to have
no effect upon causal dependency, do not affect the
metrical relations between objects in space-time. This
is why they are called internal. Dropping the asym-
metry of C makes room for such transformations in the
geometrical foundations of physics. Such quantum
orderings correspond approximately to higher-dimen-
sional geometries in classical theories of space-time.
We posit, in brief, that:

C, the causal relation belween space-time poinls, is a
quantum precedence relation.

We call a quantum object with a precedence relation,
a causal quantum space.

Quantum Coordinates

By a coordinate in a classical space-time we mean
a real function on the measure space. For a quantum
object ¢, we mean by a coordinate an arbitrary self-
adjoint g-number in the * algebra A(g). If fis such a
coordinate and o is a class, classical or quantum, f
takes on a definite value on ¢ if and only if

fo=\o,

and then X is the value. In general a coordinate f has
an expectation value on each o, given by

(fy=tro f/tro.

An external coordinate system means a set of coordi-
nates {x} that determine the causal relation in the
sense that p(1)Cp(2) can be expressed in terms of the
{x(1),x(2)}. [More precisely, everything that com-
mutes with the x(1), x(2) commutes with C.]

An internal coordinate y is one compatible with the
causal relation or, equivalently, one that generates an
internal symmetry.

These definitions should be taken with care. An
internal coordinate can be part of an external coordi-
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nate system. An external coordinate as such is not
defined.

Every coordinate x determines a binary relation
x(1)<x(2) (“less in x”) represented by the same
element of 4(1)XA4(2) as the function 6(x(2)—x(1)),
where 0 is the step function

0(x)=1,

x>0
x<0.

Evidently this is a precedence relation and is compatible
both with (1) and x(2).

Let us call a coordinate ¢ a time coordinate if it is
greater for points which are later—more exactly, if
1C2C{1(1)<1(2)}.

The time coordinates make up a convex subset of
the * algebra A4 (p). Call the extreme points of this
convex set pure times (following the old terminology
for density matrices, which likewise form a convex set
in their * algebra).

III. ORDER OF ALGORITHMS

The most general finite model for the causal relation
that I can think of is that of an algorithm. An algorithm
is a finite class or alphabet of digits d, finite sequences
of which are called words w; a finite class of operations o,
finite sequences of which are called programs; and a
basic ternary relation g(w.ow;) expressing the idea that
operation o transforms word w; into word w,. Further
restrictions are generally placed upon this relation. If
the alphabet has 7 digits, the algorithm is called #-ary.
The causal relation C defined by an algorithm is one
between words, w;Cw, meaning that there exists a pro-
gram transforming w, into w,. An algorithm is a special
case of the more general concept of automaton.

We now consider the extension of quantum logic
required to define a quantum algorithm.

Quantification As Second Quantization

There is more to logic than the (C,n,u,~) calculus
of classes. The theory of automata requires us to con-
sider further elements of logical structure expressing
the relation of the individual to the collective. Given
the class calculi of some systems (“individuals”), we
are led inevitably to new systems (ensembles of such
individuals). Pairs are the simplest example, but here
we are more concerned with ensembles of unspecified
numbers of individuals. Now, instead of being confined
to “yes or no” questions 4, B, ---, we can also ask
“how many” questions: “How many elements of the
ensemble are in the class 4?” When we move from
“yes or no” to “how many,” we “quantify” the calculus
of classes. The common quantifiers in classical logic
are the existential quantifiers |J. and the universal
quantifier (,. [The corresponding operators on
propositions are written (3x) and (vx).] If P is any
quality or class of individuals and x designates an
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individual, then P(x) designates the proposition about
the ensemble that the individual x belongs to the
class P, and also the class of ensembles for which this
proposition is true. Then |J.P(x) is the class of en-
sembles containing some P individual, and NP (x) is
the class of ensembles in which all individuals are P.
These are both qualities of the ensemble, which itself
is regarded as a new individual. In terms of M or Us,
it is possible to define the numerical quantifier N, so
that N.P(x) means the number of elements in the
ensemble with the quality P. Any one of these three
quantifiers (existential, universal, or numerical) serves
to define the others:

U.P (2)={N.P ()70},
NP (x)={N.~P(x)=0}.

What logicians accomplish by quantification, physi-
cists accomplish by ‘second-quantization,” in which
the number of individuals becomes a quantum variable
and no special number is imposed.®

Before developing the quantum theory of the
relation between the individual and the collective, we
must particularize the classical concept slightly. Con-
sider a classical object ¢ with universal class I. De-
pending on context, we are apt to mean at least three
different things by the expression “an ensemble of
nc’s”:

(a) The n sequence of ¢’s, an ordered n-uple of
objects isomorphic to ¢, is the object ¢c* whose universal
class is I, the nth power of I, with cardinality

| =1|.

The generic sequence of ¢’s is the object seq ¢, which is
an n sequence for some #, the disjoint union

seq c=Jnc".

The cardinality of seq 7 is infinite if |7|>0.

(b) The n series of ¢’s, an unordered n-tuple of
objects isomorphic to ¢, is the object ¢!#! with universal
class 711 obtained from I* by identifying with respect
to permutations of the z objects, or is the symmetrized
nth power, with cardinality

|1t = (i+-n— 1)1/ (i+1) 'n!

(i=]I|). The generic series of ¢’s is the object ser ¢,
which is an # series for some #:

ser c=Jncl™,

The cardinality of ser ¢ is infinite if |I|>1.

(c) The n set of c’s, a set of n ¢’s, is the object ¢{”)
with universal class 7{"} obtained from I* by identi-
fying with respect to permutations of the # objects

® This was noted independently by E. W. Beth, in Tke Concept
and the Role of the Model, edited by H. Freundenthal (D. Reidel
Publishing Co., Dordrecht, Holland, 1961), and by D. Finkelstein,
J. M. Jauch, and D. Speiser, CERN Report Nos. 59-7, 59-9, and
59-17, 1959 (unpublished).
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and deleting sequences with two or more identical
elements, or is the antisymmetrized nth power, with
cardinality

|1t =Y/l (i—n+1)1.

The generic set of ¢’s is the object set ¢ which is an
n set for some #:
set c=\Jnct®.

The cardinality of set ¢ is 2%, and set ¢ is usually written
20,

For reasons which will be clear to quantum physi-
cists, I have chosen to carve the series and the set out
of the sequence. Logically it might have been more
natural to take the set concept as fundamental and
define a series and a sequence as mappings N — I and
I — N, respectively, where N is the set of natural
numbers.

Now each of these classical methods of aggregation,
sequence, series, and sel, can be performed for a quantum
object ¢ as well as for a classical object ¢, in such a way
as to yield a new quantum object, with its own algebra
of quantities and Hilbert space. Indeed, the substitution
¢— ¢ makes I become a Hilbert space and makes the
above descriptions of seq, ser, and set become valid
definitions of the ensembles of ‘“Maxwell-Boltzmann”
objects, ‘“Bose-Einstein” objects, and ‘“Fermi-Dirac”
objects, respectively. All products of sets are replaced
by direct products of Hilbert spaces in this process;
unions are replaced by direct sums. The discovery of
the Fermi-Dirac statistics of the electron is the dis-
covery that the physical object of many-electron theory
is not a sequence or a series of electrons (for instance)
but a set of electrons, in the quantum sense. The three
operators, seq, ser, and set can be read as standing for
the three familiar kinds of second-quantization processes
or, as we will henceforth call them, quantification
processes.

There is a uniform way to generate the algebra of
quantities for these three quantified theories from the
Hilbert space I=H(q) of one object ¢. Each vector y
of 1 is thought of as a ¢ creator, creating an additional
¢ in the class ¢, and is an element in the algebra being
constructed. The algebra is, in fact, that generated
from the ¢’s by the processes of linear combinations,
products, and adjoints with the following relations:

Vro=yxp; (seq)

Vo= *+ro,  Yo=g¢yp;  (ser)
and

Vo= —oy* tyro, Yo=—q¢p. (set)

Here ¢ and ¢ are generic elements of the Hilbert space
I, Yo is their inner product in this space, and [ , ]
and { , } designate commutators and anticommutators,
respectively. The numerical quantifier NP (g) for any
one-object quality p is uniformly defined by

.’\qu (q)EZ @umn‘Pn* ’
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where ¢, ranges over an orthonormal basis for 7, and
mn= Pm*P Pn.

It remains to give the Hilbert spaces of the objects
seq g, ser ¢, and set ¢ an explicit representation. This
is uniformly done by selecting a vector v, to be the
vector describing the null ensemble & in that Hilbert
space,

(p*1)0= 0 y

& =vov0*,
and letting the algebra already defined act on v:

A (seq g)vo=H(seq q),

A (ser q)vo=H(ser q),
and

A (set @)vo=H(set q).

Now the quantification process can be iterated as often
as the physics makes necessary. It is perfectly meaning-
ful to regard, for example, a set of ¢’s as one object
and consider a series of such objects, which is ser set gq.
In general, we can deal with arbitrary iterations

Q1Q2- - -Qng,

where the Q; are any of the three kinds of quantification
we have defined. (Others exist but seem unnecessary.)
Evidently, the logical adjunction of all these iterates—
call it 3_¢g—is a palette broad enough for the expression
of most of the concepts ever used in physical logic.
Since >_¢ is the adjunction of all the nth-quantified
theories, it may be called the No-quantified theory.
But it too is but the beginning of its own hierarchy.

Quantum Algorithms

We can now transpose the concept of a classical
algorithm into quantum logical terms. By a quantum
algorithm we mean: a finite quantum object d called
a digit, a finite assembly of which we call a quantum
word w; a finite quantum object o called an operation,
a finite assembly of which we call a quantum program;
and a basic ternary quantum relation g(wsow;) ex-
pressing the idea that quantum operation o transforms
quantum word w; into quantum word ws. Of course,
a finite quantum object is simply one described in a
finite-dimensional Hilbert space, and quantum words
(programs) are described in the manner familiar from
the many-quantum problem.? A4(d) and A4 (o) will
represent the * algebras of the corresponding Hilbert
spaces H(d) and H (o). We shall not define the causal
quantum relation of a quantum algorithm in the most
general case, because of the extreme simplicity of the
algorithms we employ in the present work.

Some Classical Algorithms

Let us designate by Z, the integers modulo #. The
classical algorithm defined by digits Z,, operations Z,,
and ternary relation c¢(wséw;)= (adjoining digit & to
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Fi16. 1. Quantized time axis. This graph defines
the causal order of a causal quantum space whose
classical limit is the real time axis. The quantum
space is isomorphic to the linear harmonic oscil-
lator and is the space of a character in the quan-
tum singulary code. A dot (e) is an element of a
frame in the Hilbert space. An upward line seg-
ment implies a causal order relation. In the
classical limit, this space becomes the positive
time axis with the usual causal order and mea-
sure and an internal space in the form of a circle
arising from the possibility of coherent super-
positions of adjoint elements.

word w; generates word ;) we shall call the n-ary code.
For example, the words of the singulary code (n=1)
in their causal order are &, 0, 00, 000, - - -, where J is
the null set of 0’s, and are represented graphically with
their causal order in Fig. 1. A classical algorithm in
which the order of digits in a word is ignored we shall
call symmetric. The words of the symmetric binary
code are F; 0; 1; 00, 01, 11; 000, - - -, and are repre-
sented graphically with their causal order in Fig. 2.
The words of the binary symmetric code correspond
also to the positions accessible to one man in the game
of checkers (draughts) on a semi-infinite chessboard,
with the obvious causal relation.

Some Quantum Algorithms

A quantum algorithm with alphabet of measure »,
|H(d)| =n, is n-ary. The quantum n-ary code is the
quantum #z-ary algorithm in which for each kind of
digit (ray in H") there is one operation, the adjoining
of a digit of that kind. The quantum word of this code
is

w=seq d,

a sequence of digits. The quantum #n-ary symmetric

00

F16. 2. Quantized null cone. This graph indicates the causal
order of a causal quantum space whose classical limit is the future
null cone of special relativity. The quantum space is isomorphic
to the two-dimensional harmonic oscillator and is the space of a
word in the binary symmetric quantum code. Dots (e) and
line segments mean the same as in Fig. 1. In the classical limit,
the space becomes the three-dimensional future null cone of
special relativity with its usual causal order and measure and an
internal space in the form of a circle. The apparent doubling of
dimensions arises from the possibility of coherent superpositions
of near elements. While no element in the graph is Lorentz-
invariant, the Lorentz group can act on the space through unitary
transformations that leave the causal order invariant—in fact, by
the Majorana representation of the proper Lorentz group. In this
model, the exact isotropy of space-time is a quantum effect due
to the existence of coherent superpositions of near elements in the
diagram, while incoherent superpositions then provide points off
the null cone and account for the homogeneity of space-time.
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code is similar, except that we apply Bose-Einstein
quantification:
w=ser d.

The vectors & of H(d), which already have the
repertory of operations that define a Hilbert space,
are given in addition the operations of multiplication
and adjoint of a * algebra, viz., 8; §; and &*. Then 4 (w)
is the * algebra generated by H (d) and the commutation
relations

51*52— 5251* =T (51*52)
and
0102—0820:=0,

using the inner product ( * ) of H(d). A vector & given
such algebraic structure is also called a creator of a
digit in the singlet & of d. The factor 7 is put in to help
define the classical limit +— 0. It appears later as a
quantum of time.

The null word & (more correctly, the property of
having zero digits) is the singlet of 4 (w) defined by
8% =0 for all 5. The explicit power-series solution of
this equation gives

& =[sin(2nt/7)]/(2wt/7),

where (=) 86*%, summed over an orthonormal basis
{6} of H(d).

We now define the order of generation of a quantum
code as a quantum relation. As for any quantum
object, the quantum classes of words, the Hermitian
idempotents of w, are ordered by inclusion:

oCod’

This has absolutely nothing to do with the relation C we
seek, which is not of word classes but of words. The indi-
vidual word happens itself to be an assembly of other
individuals, and this is therefore a problem in a higher-
order quantum logic than the simple class calculus of
C, U, N, ~. The classical limit of the relation C is
quite clear: The individual is still a kind of set, and the
partial ordering of such sets defines a partial ordering
C of such individuals. For example, there is no doubt
about when one set of classical coordinates and mo-
mentum values

(thl; Xa,pa; c 0 xm,Pm)

is part of another such set
(d,p1; %' pa’5 -+ 5 %’ pa) -

It is when the individual cannot be represented by a
point in a classical set that any problem arises. When
is one real (FD) electron ensemble part of another?

Each creator & creates a certain kind of digit con-
nected with that creator, and each 86*=rx; is a quan-
tum coordinate for w, with #; counting how many of
the & kind of digit appear in the word. A well-defined
precedence relation between w’s is #;(2)>ns(1), ex-
pressing the relation of having less of the & kind of

means o¢' =g.
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digit. We define the quantum ordering by digit count,
w(1)Cw(2), by
C=Na{ns(2)>ns(1)}. (1

Of course, the same expression defines the classical
order relation of the classical symmetric #-ary code.
The conjunction is taken over all 8. The null word &,
the “digit vacuum,” is part of every word in the sense
that

g(wl)CZU1C‘lU2 ,

and no other word is part of the null word:

wi1CwaN & (w2) C D (1)

Singulary Code

We first compute the causal order of quantum words
in one digit, recasting harmonic-oscillator theory.

The * algebra 4 (d) of the digit is now the complex
plane K, the idempotents of K being 0 (“d does not
exist”) and 1 (“d exists”). The * algebra of words 4 (w)
is generated by one creator &, and the relation

80*80—80d0* = 7.
The digit count (times 7) is the operator
1=208080*,
and the causal order C of this world is, by (1),
C=0(t(2)—1(1)).
Then the null word &, the element of A (w) which

obeys
Zr-o* =g

80*Q=0)

is uniquely defined by these conditions as the power
series

and

sin2wt/r

2wt/

This element of the # algebra indeed annihilates the
singlet t=7, 27, .-+, and preserves the singlet =0.
[It helps to recall that (sin27#)/2wn is the projector
on the ground state of the harmonic oscillator, where
n is the number operator.] A frame for w is {8°"f},
and the causal ordering of these singlets is shown in
Fig. 1.

This is evidently a trivial kind of partially ordered
space for our purposes, with too simple a structure.
It is not quite as simple as Fig. 1 would suggest. Figure
1 shows a line, and this space has to be called two-
dimensional, I think. I have not yet been able to
formulate the concept of dimension for causal quantum
spaces, but in the classical limit the algebra becomes
that of complex functions on K, and the underlying
set and measure theory is that of the complex plane.
The ordering C is by radius, and a neighborhood of a
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point is an annulus centered on the origin. Therefore,
points at the same distance from the origin cannot be
separated causally. The radius r=+/¢ is an external
coordinate system. It is a Newtonian sort of world,
since there is an absolute time, and since causal effects
can propagate with infinite speed in one of the co-
ordinates, the “internal coordinate,” which may be
taken to be a polar angle . The transformations
80— e*§, are internal symmetries, and they are
generated by the time ¢.

Binary Code

Let the digit now have two states. A creator 6 is a
two-component vector 8%, a=0, 1, where co, ¢1 are
complex numbers and &, &' are unit vectors. For any
such & there is an associated coordinate n;=86* and
precedence relation #5(2)>n;3(1). The ordering C of
the »’s is to be, by (1),

=(0(86*(2)—85* (1))
=(:0(A85%).

Here and in the following, Af= f(2)— f(1). Let ¢ be
a generic complex two vector (ca):

C=N0(caAd%""cs*).

Thus is the order of two words w(1) and w(2) deter-
mined by the differences of the respective quantities

8985 = To8*= (T).

T%* counts 0’s, T%* counts 1’s, and T%* tells about
coherent superpositions of 0 and 1. The relation
w(1)Cw(2) means that for all ¢0, cATc¢*>0. In the
classical limit, where the four quantities 7%* commute,
the conclusion is swift. The condition on AT is in-
variant under AT — AATA¥*, where A is any matrix
of GL(2,C); for A simply shuffles the ¢’s. The condition
is therefore a function of the invariants of AT under
GL(2,C), which reduce to the signs of the eigenvalues
of AT. The eigenvalues must be non-negative. That is,
C means

trAT>0, detAT>O0.

Since the quantities AT%%* are not Hermitian, we intro-
duce, for convenience only, coordinates fxyz through

t+z
T=<
x—1y

The relation C becomes

At>0, AfP—Ax*—Ay*—Az22>0.

x-i—iy)

t—z2

The first nontrivial code we try, the binary symmetric
or chessboard code, yields the order of the future null
cone of special relativity. (We have #2—a2—32—322=0
as an identity in the classical limit.) The (¢,x,y,z) are
an external coordinate system. The fourth coordinate
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[loosely speaking, the one missing from the (,x,y,2)]
is totally irrelevant to the causal ordering C, and is
readily shown to be an angle invariant under A.

The transformation T — ATA*, which leaves the
ordering C invariant in the classical limit, leads us to
suspect that the quantum C might be Lorentz-invariant.
Is there a unitary transformation U(A) of H(w) that
leaves C invariant and sends 7' — ATA*?

For unitary A (spatial rotations), U(A) exists, but
not for Hermitian A (boosts). (Proof: The operator
A=diag(\,1/\) changes the commutator [£,x] unless
7=0.)

Majorana Model

We readily modify the binary symmetric code to
form a Lorentz-covariant causal quantum space with
the same algebra and classical limit. Define operators

Y= (80—148")/V2
and

Y= (3+id") V2

and their adjoints. The §= were like creators of spin-}
bosons. The y%’s obey the Majorana commutation

relations
[‘l’o)'//l:l =—1 ) [‘pﬂ"#a‘] =0.

These relations are invariant under the SL(2,C)
transformation ¥ — Ay. Since the y’s generate the
= algebra, there exists a unitary transformation U (A)
accomplishing this transformation:

UyU*=Ay.
We define the new causal precedence
1C2=Ny[W* (1) <¥w*(2)]. 2

Covariant external coordinates are now
xob* = ¢a¢ﬁ" = xuo-"aﬂ" .
Because of the Majorana relations, we have
XHE,=—12,

which approaches x*x,=0 when 7 — 0.

The point is that this Lorentz invariance of 4 (w)
and C guarantees that of the measure in the classical
limit, which must therefore approach the relativistic
measure on the light cone,

du=dx dy dz/t.

The space might have been conformally flat and still
have metrical curvature. It is flat.

IV. ORDER OF WORD PAIRS

The calculations of the causal measure space fol-
lowing from the symmetric binary code and the
Majorana model immediately suggest candidates for
the causal measure space of special relativity. For
example, by the causal quantum space W of word pairs
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in the symmetric binary code we mean the object
W=w(1)Xw(2), where w(1) and w(2) are words in
the symmetric binary code, with the order relation C
based on the sums of the digit counts for w(1) and w(2).
W is defined by a ternary algorithm, the third digit
serving as punctuation. Since each w separately gives a
future null vector in the classical limit, w(1)Xw(2)
gives the sum of two future null vectors for an external
coordinate system, and such a sum ranges over the
solid cone

124/ (a*+y*+2%).

The causal order being Minkowskian, we simply have
to calculate the measure to see if the space is metrically
as well as conformally flat. By Lorentz covariance, the
trace in the classical limit

trf= f (@) 7G5)

must have the form

/= [ @1,

Here (dd) is the product of four elements of area, one
from each of the complex §;* planes, and therefore is of
degree 8 in the §, while (dx) is the Minkowski measure,
of degree 4 in the x*, which are of degree 2 in the .
Therefore, p is of degree 0. Since there are no constant
lengths left in the theory when r— 0, we must have
p(x?)=const. The measure is Minkowskian; the space
is flat.

The internal space can be represented as the col-
lection of complex numbers 8, that all map into one
x#*. Without loss of generality, the point x#=(1,0,0,0)
can be taken, and a simple calculation shows the internal
space has the structure of U(2,C). The word in the
beginning, of course, is .

Space-Time Complementarity Relation

The space-time coordinates of this model obey a
complementarity relation. The canonical volume ele-
ment (dd), the product of four complex differentials
dé;* and their complex conjugates, directly gives the
number dn of disjoint unit quantum sets in a region of
classical space:

dn=(dd)/ (2wt)t.

The relation between § and the coordinates x and y
is most simply expressed by regarding é as a 2X2
complex matrix in the classical limit. Then

x=80H,

where 8H is the transposed matrix of complex-conjugate
elements: H=CT. Let the unique polar factorization
of & be

i=ty,
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with £ positive definite and y unitary. Then y makes a
suitable internal coordinate and the full coordinate
transformation is

x=0H, y=5(3eH)112,

and conversely
d=all2y.

Thus integrals can be transformed according to

[~ [@n [ @,

where ~ conceals a pure numeric and (dy) is an element
of volume in U(2,C). For functions f(x) of the external

coordinates alone,
[ @i~ [ @y

Thus the number of disjoint singlets in a cell AtAxAyAz
is
An~ AtAxAyAz/T4.

The minimum space-time volume per singlet is thus
AtAxAyAz~T.

V. ORDER OF SPACE-TIME

The path from fundamental principles to reasonable
models has been short, and the conceptual economy
great; the principles deserve further study. We must
propose that the structures we ordinarily identify as
single points of space-time are, or are reached by,
approximately incoherent assemblies of binary elements
to which ordinary quantum principles apply and that
a point we regard as later is a greater assembly. Some
immediate consequences, we have seen, are the four-
dimensionality of space-time, the signature 4+1—3 of
its pseudometric structure, the existence of an origin
and a bounding null surface for the universe at which
the classical approximation breaks down, the Poincaré
invariance of special relativity away from the boundary
region, and the existence of a certain internal space.
At the present epoch T, the number of binary elements
in the sets must be on the order of 7'/, where 7 is the
quantum of time we have introduced. Although the
whole realm of dynamics remains to be opened to this
kind of exploration, we suspend the development of
our principles at this point to estimate the size of 7,
quite unrigorously.

There are already three possible traces of the chronon
size about us.

Mass Spectrum

Whatever matter is, when it moves in the pinball
machine of Fig. 2, it moves in a periodic system. Even
near the classical limit, this period shows up as a
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periodicity of ¢ of size 7 and the four periodicities of
the internal space U(2,C). In the space of propagation
vectors of matter, there will therefore be bands of
transmission and bands of rapid attenuation by Bragg
scattering. Since the system is Lorentz-invariant, the
band structure must be Lorentz-invariant, and therefore
will be made up of mass shells. These presumably are
shown in the mass spectrum of the elementary particles.
The size of the first gaps will be ~7~1. Taking the
muon as typical, we have

r~1/m,.
In any case, 7S 1/m..

Size of Nucleus

There seems no experimental obstacle to ascertaining
that an event—say, a photoproduction—took place
in a nuclear volume ~7, in the transit time 7o of a
photon. It follows that

1’04>T4, 70>T.
If N events could be localized in that region, it would
lower the bound on = to

r<rNA,

High-Energy Cross Sections

Look at two billiard balls in their center-of-mass
frame, approaching each other with Einstein factors
¥>>1. If their transverse cross section is o~a?, their
longitudinal radius shrinks to a¢/v, and the maximum
time of contact is likewise {~a/v. The maximum four-
volume of intersection, thought of as defining the event
of head-one collision, is then o¢?/4% For sufficiently
large v, this must eventually become less than 74, and
the conjunction or intersection of the two world tubes
vanishes, AN B=0, though they are not disjoint,
A 1 B. The event occurs with reduced amplitude, then,
when

y>o/72.
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APPENDIX

We summarize in this Appendix the concepts of
quantum logic occurring throughout the paper, which
should be consulted for details.

We label objects with symbols a, b, -+, 2,a1, -+, Za,
which are merely object names and have no algebraic
meaning. What are variously called properties, quali-
ties, or attributes of an object we call its classes. A class
then, like a set in phase space, is a virtual ensemble,
and may be large even though there is but one object.
We reserve the word set for a certain kind of real en-
semble discussed later. What really defines an object x
is its calculus of classes L(x), which is at least a comple-
mented (~), compatible (PCQ=P<>Q) lattice. 4 (x),
the #algebra of the object x, is defined by L(x). For
quantum objects we take 4 (x) to be the algebra of all
bounded operators on some separable, usually finite-
dimensional Hilbert space H (x), a Hilbert space of the
object x. H(x) is also the unit operator in that space,
since we use the same symbol frequently for a linear
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subspace and the projector thereon; and H (x), as pro-
jector, also represents the universal class in L(#).

It is customary to distinguish between propositions
and classes, but when the object of discourse is clearly
stated, this would be an unnecessary duplication of
symbolism, and instead we frequently identify the
class C and the proposition x&C. For example, if the
object p is a point and x* are its coordinates, x’=0
designates, depending on context, a proposition about
p and a p class (the spacelike surface with this equa-
tion). Sometimes for greater clarity we indicate when
an equation should be read as a class by braces: {x°=0}.
In particular, the causal relation pCp’ will designate
strictly the class of point pairs (pp’) for which p is
causally relevant to p, and loosely the proposition
(pp")EC.

However, if P and Q are quantum classes, then
PCQ is best regarded as a classical proposition and
not a quantum class at all.

Table I outlines the structure we presently call
quantum logic.

TasLE I. Some concepts of quantum logic.

Concept Notation Representation
I. The Individual
Object, system a,b,---,A,B, -
Class P,Q, - Subspace, projector
Inclusion C Inclusion
Universal class 1,H(a), I, Unit operator, Hilbert space
Null class 0 Zero operator
Or, adjunction V] Span
And, conjunction n Intersection
Not, complement ~ Orthocomplement
Disjoint 1 Orthogonal
Measure of P |P]| Dimension, trace
Quantity, coordinate, variable g Normal operator
Function of a quantity f(P), P, Cf. functional calculus
Point 4 Singlet, pure state
II. The Collective

Sum, disjunction of objects a+b, 3 aa Direct sum
Product, pair ab, llam Direct product

Theory of binary relations
Relation R, aRb Subspace of I,X Iy
Transpose RT, aRTb=0bRa Exchange subspace
Antisymmetry R1RT
Transitivity aRbnbRcCaRc
Precedence Transitive antisymmetric relation

Assemblies
Set of a’s set @, 2¢ (FD) Antisymmetric tensors on /4
Series of a’s ser a (BE) Symmetric tensors on [,
Sequence of a’s seq a (MB) Tensors on I4

Quantifiers
Numerical NP, NoP(a) 2 (P
Universal NP, NaP(a), VP (a) N(~P)=0
Existential

UP, UsP(a), 3aP(a)

NP#0




