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%e consider the anharmonic oscillator de6ned by the differential equation (—d'/dx~+4x'+4Xx')4(x)
=E(X)C (x) and the boundary condition lim +„4(x) =0. This model is interesting because the perturbation
series for the ground-state energy diverges. To investigate the reason for this divergence, we analytically
continue the energy levels of the Hamiltonian H into the complex X plane. Using WKB techniques, we 6nd
that the energy levels as a function of X, or more generally of X, have an in6nite number of branch points
with a limit point at X=0.Thus, the origin is not an isolated singularity. Level crossing occurs at each branch
point. If we choose 0.=-', , the resolvent (s—II) ' has no branch cut. However, for all s it has an in6nite
sequence of poles which have a limit point at the origin. The anharmonic oscillator is of particular interest
to 6eM theoreticians because it is a model of Xy 6eld theory in one-dimensional space-time. The unusual
and unexpected properties exhibited by this model may give some indication of the analytic structure of a
more realistic 6eld theory.

I. INTRODUCTION
' 'N this paper, we discuss the familiar anharmonic
~ - oscillator. ' Ke are concerned with the eigenvalue
problem dehned by the differential equation

(—d'jdx'+-,'x'+-,'l~x4)C (x)=E(li)C (x) (1.1)

and the associated boundary condition

(1.2)

Ke propose to answer the following questions within
the context of the anharmonic oscillator:

(i) Is the perturbation series for the ground-state
energy, which is a power series in the coupling constant
X, convergent for any X/0?

(ii) If not, does the ground-state energy, considered
as a function of complex X or more generally as a func-
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tion of some fractional power 0, of X, have an isolated
singularity at X=O?

(iii) Is the resolvent (s—H) ', considered as a func-
tion of X for 6xed s, analytic at X=O? If not, is the
point A, =O an isolated singularity?

The answer to all these questions is no. More pre-
cisely, the energy levels, which are originally defined
only for positive values of X, can be analytically con-
tinued into the complex X plane. This analytic continua-
tion has an infinite number of branch points, which have
a limit point at the origin X=0. Moreover, level crossing
occurs at each branch point. If n is chosen to be 3,
the resolvent has no branch cut. However, for all s,
(s—H) ' has an infinite number of poles which have a
limit point at the origin. These qualitative analytic
properties of the energy levels and of the resolvent
were totally unexpected and are, we feel, most unusual
and exciting.

This paper will adhere to the following outline: In
Sec. II (and Appendices A—E), we inspect in great
detail the properties of the perturbation series for the
ground-state energy in our model. However, this direct
inspection gives no clue as to the nature of the singulari-
ties in the X plane which cause this divergence. To
123i
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understand these singularities better, in Sec. III, we

analytically continue the energy levels into the X plane
and derive some exact properties of this continuation.
In particular, we derive an exact condition which gives
the locations of the singularities in the X plane.

To apply this condition we must know the wave
function in coordinate space. To calculate the wave
function approximately, in Sec. IV, we present a tech-
nique using zeroth-order WKB methods in the complex
plane. (In Appendix F, we make the calculation of the
wave function more precise by using Grst-order WKB
techniques. )

In Sec. V, we use the results of Sec. IV to determine
the singularities of the resolvent. In Sec. VI (and Appen-
dix G), we combine the results of Secs. III and IV to
find the approximate locations of the singularities in the
analytic continuation of the energy levels. Section VI
contains an exhaustive qualitative description of the
analytic continuation of the energy levels E(X). The
major result of this paper is that the energy levels of the
anharmonic oscillator for a given positive real X are
the positive real values of E(X) on each of the infinite
number of branches of a Riemann surface. Each energy
level corresponds to a sheet of this Riemann surface.

Although it is not necessary to understand any field
theory to read this paper (aside from Appendices A—C),
it is important to point out that the anharmonic
oscillator is a simple model field theory in one-dimen-
sional space-time. This field theory is defined by the
Hamiltonian

in field theory was first discussed by Dyson. ' Since then,
many papers have been written on this topic. A partic-
ularly interesting investigation was carried out by
Jaffe.' Jaffe proved that in two-dimensional space-time
the perturbation series for Green's functions in self-

interacting boson field theories diverge even though
these series exist term by term. However, as far as we

know, no techniques have been discovered to elucidate
the singularities in field theories with divergent pertur-
bation series. In this paper, we develop for the first
time methods to describe the actual singularity struc-
ture of a particular Geld theory.

Having achieved the results of this paper, we hope in
the future to apply the new analytical tools of Secs.
III—VI to other models of increasing complexity in

order to better understand how singularities depend
upon the form of interaction. Additional zero-dimen-
sional bose Geld theories which ought to be considered
are self-interactions such as @6, q'~, and cosy and cou-

plings such as pi2p22. Hopefully, these WEB techniques
will be advanced to the point where they may be used
to analyze higher-dimensional theories.

II. GROUND-STATE-ENERGY
PERTURBATION SERIES

The perturbation series for the ground-state energy
Es(X) in this model is a power series in the coupling
constant X. This power series takes the form

H = —,
' to'+-', ms to'+ X p4

and the commutation relations

(1.3)
(2.1)

Ly, jj=i (1.4)

LIn Appendix A, we prove rigorously that Eqs. (1.1)
and (1.2) are consequences of Eqs. (1.3) and (1.4).
In fact, Eqs. (1.1) and (1.2) are the coordinate repre-
sentation of H.j

Since this Geld-theory model involves no space
dimensions, there are no asymptotic states and there-
fore no particle scattering. Also, there is only one degree
of freedom. In fact, all this theory describes is a universe
which sits at one point and oscillates. Xevertheless,
this model has value to the field theoretician. It enables
one to conjecture with slight supporting evidence' that
many of the fascinating properties we have observed
are also present in a more realistic field theory. This
model may give us some idea of the vast underlying
complexity of such a theory.

The model was originally chosen for study because
it had a well-defined but divergent perturbation series.
We believe that the divergence of perturbation series

A. M. Jafte, in his thesis LPrinceton University, 1965 (unpub-
lished)$, was able to analytically continue the resolvent for A, ~'
held theories of any space dimension into the cut X plane. JaBe
did not predict the properties of the resolvent when

~
argX (

&180'
(off the hrst sheet) but, as far as he did predict, his work agrees
with ours.

Two methods for calculating the A„in this equation
are discussed below. Each method reveals some im-
portant properties of Eq. (2.1).

Method 1. In general, in a field theory the perturba-
tion series for the ground-state energy is the sum of all
connected I'eynman diagrams having no external legs.
Hence, Feynman diagrams can be used to calculate
the A„.(As an illustration of Feynman-diagram tech-
niques, we calculate At, As, and As in Appendix B.)

Moreover, an integral representation for these Feyn-
man diagrams provides upper and lower bounds on the
terms 2„in the perturbation series. We outline below
the procedure for estimating these upper and lower
bounds. (Detailed proofs for the following statements
are given in Appendix C.)

(i) From the form of the Feynman integral represent-
ation, it follows that in the perturbation series all dia-
grams with the same number of vertices add in phase.

(ii) The integral representation places uni form
bounds on the contribution of each diagram having n
vertices.

' F. J. Dyson, Phys. Rev. 85, 631 (1952).
4A. M. JaBe, Commun. Math. Phys. j., 127 (1965).This paper

contains a very complete list of references.
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(iii) The maximum and minimum number of diagrams
with m vertices is found to be (2g —1)!!8" and
(n —1)!3 ".

Combining the above three results implies that
A (—1)"+' are positive numbers bounded below and
above by

Ai'(e)B (A„(—1) +'(Ci'(—'n)D, (2.2)

where A, 8, C, and D are positive constants. ' Equation
(2.2) implies that, although the perturbation series

LEq. (2.1)] is finite in every order, the ground-state
energy is not an analytic function of X about X=O for
any 0..

Method 2. The A„can also be calculated from a
diGerence equation. To derive this diGerence equation
we use the differential equation LEq. (1.1)]which is

( d2/d—x~+4'x~+~~Xx4)4 (x) =E(X)C (x), (2.3)

Equation (2.8) was used on a computer to calculate
the 6rst 75 terms in the ground-state-energy perturba-
tion series LEq. (2.1)].' From these results we have
determined that their detailed asymptotic growth is

A —(—1)"+'(6/w')' "I'(n+-,')3". (2.10)

Dn Appendix D we discuss the details of this computer
calculation and list the erst 75 terms in the perturbation
series to 12-place accuracy. In Appendix E, we present
the calculation of Eq. (2.10).]

Numerical investigation of the difference equation
LEq. (2.8)]brings to light the following exact additional
properties of the A „which are not immediately evident
from the Feynman-diagram treatment of the perturba-
tion series:

(i) All A „arerational fractions.
(ii) If we define

and the boundary conditions LEq. (1.2)]

lim C(x)=0.

I —= (—1)"+'4"A

then the I„areall positive integers.
(iii) Every integer I is divisible by 3.

(2.11)

In Eq. (2.3), we substitute

C(x) = P X"e-*'~4B,.(x),
nm

where B0=1 and B„(x)are the polynomials in x to be
determined for n = 1, 2, 3

We then combine Eqs. (2.1), (2.3), and (2.5) to get

P X"LxB.'(x) —B."(x)+-,'x'B. g(x)]
nm

Finally, we let x=V2y and

Ag ——4,

A 2
———21/8,

A 3
——333/16,

A 4 ———30 885/128,

A;= 916 731/256,

A 6
———65 518 401/1024,

A7 ——2 723 294 673/2048,

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.12f)

(212g)

A8 ———1 030 495 099 053/32 768, (2.12h)

We list below the first nine terms in the perturbation
series in exact fraction form to illustrate the above
characteristics of the A„.

2i

B*b)=Z Y"B*. (—1)*. (2 7) A 9= 54 626 982 511 455/65 536. (2.12i)

The result is

2JB;,, =(J'+1)(22+1)B;,',+i+B; i, , 2

—P B; „,&B„,, (2.8)

Equation (2.8) is the desired difference equation be-
cause the numbers 8;,; are related to the A„by the
simple equation

A„=—B„g. (2.9)
' If the Hamiltonian were Wick-ordered, there would be fewer

diagrams of order n because a line could not have both ends
connected to the same vertex. Thus, the terms in the Wick-
ordered perturbation series would be slightly smaller than those
of our non-Wick-ordered series. However, the estimate LEq. {2.2)j
would hold for both perturbation series.

III. ANALYTIC CONTINUATION
OF ENERGY LEVELS

In Sec. II and associated appendices, we studied the
properties of the ground-state-energy perturbation
series LEq. (2.1)].However, this study did not reveal
the reason for the divergence of the series. In other
words, the singularity structure of Eo(X) in the complex
X plane is as yet unknown. In this section, we de6ne the
analytic continuation of the energy levels, which are
the eigenvalues of the differential equation t Eq. (1.1)],
into the X plane. Then we present some heuristic
derivations of some properties of this continuation.

'One author {CMB) wishes to acknowledge partial financial
support for this calculation from Dr. B. M. McCoy.
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and

(d/dx)4 (O,X)= 1 for an odd-parity
wave function. (3.5b)

(a) arg X =0 (b) arg X = 7r/2

Vary X by

Then,

and

X ~ X+bX.

E(X)~ E(X)+bE(X)

4 (x,}) -+ 4 (x,X)+bC (x,X).

(3.6)

(3.&)

(3.g)

(c) arg h. = m (d) arg X= Jm/2

FrG. i. Curves in the complex x plane where Re~ 'LI'1+gx2)»&
—].g =0 for various values of arg) .The circles denote the turning
points at x=&iX ".The symbol ~ indicates the sectors in
which the boundary condition PEq. (3.4)j applies.

Equations (3.1) and (3.2) yield the asymptotic
behavior of 4 (x) for large

~
x

~
along the real axis:

4 (x) exp( —-', X'"~x~'). (3.3)

Equation (3.3) implies that Kq. (3.2), the boundary
condition, holds not only on the real axis but also for
complex x in the sector

~
argx~ &-,'x.

Until now X has been positive. When X is complex,
4 (x) must satisfy the general boundary condition

lim 4(x)=0 when (arg(+x)+(e argX))&es", (3.4)
f ~ j-+ca

which follows from Eqs. (3.2} and (3.3).
We can now continue E(X) into the X plane. We

def}ne the analytic continuation E(X) by the differential
equation [Eq. (3.1)j in which 4(x) satis6es the bound-
ary condition in Eq. (3.4).

We shall use Kqs. (3.1) and (3.4) to find some exact
properties of the analytic continuation of E(X):

Property (i) We may .analytically continue E(X) to
all points X (except X=O) where Jo 4'(x,X)dxAO. The
integral is taken along an appropriate path C in the
complex x plane.

Proof. Normalize C&(x) by choosing

4 (O, X) = 1 for an even-parity wave function (3.5a)

We shall need only Eqs. (1.1) and (1.2) which are

(—d'/dx'+-', x'+-,'Xx')4 (x) =E(})4 (x) (3.1)
and

(3.2)

Hence, E(X) is analytic (its derivative with respect to
complex X exists) at all points except those for which

4'(x, X)dx =0. (3.11)

Equation (3.11) will be used in Sec. VI as a condition
for determining the location of the singularities of
EP).

Property (ii) At poin. ts where E(X) is analytic, there
is no degeneracy in the energy.

Proof Suppose 4 i(x,X). and 42(x,X) are two linearly-
independent wave-function solutions to Eq. (3.1) each
associated with energy E. We 6nd that the derivative
of the Wronskian W'[4 i(x),Cs(x)] vanishes. Hence the
Wronskian 8' is a constant. Because 4& and C» obey
the boundary condition [Eq. (3.4)], the constant
must be 0. A vanishing Wronskian implies that 4~ and
42 are not linearly-independent. Hence there is no
degeneracy.

Property (iii) If there is. a point Xo in the X plane
where Ei(X) ~ Egg) as X~ Xo, then Ei(X) is singular
at P =Xp.

Proof. If 4;(x,X) are the wave functions associated
with E;(X) for i = 1 and 2, then because of property (ii)

N has the property that

hC (O,X) =0 or hC'(O, X) =0

for even or odd parity, respectively. bC (x,X) obeys the
same boundary conditions at ~ as 4 (x,X) does, namely,
Kq. (3.4).

Substituting Eqs. (3.6), (3.7), and (3.8) into Eq.
(3.1) gives

(d'/dx' —-', x'—-', Xx4)b4 (x,X}—~ibex%�(x,X)
= —E(X)bC (x,X)+bE(X)4 (x,X) . (3.9)

Multiply Kq. (3.9) by 4 (x,X). Then integrate by parts
along a path C in the complex x plane such that each
end of the path goes to ~ in a sector in which the bound-
ary condition [Eq. (3.4)j applies. [See Fig. 1 for the
location of the sectors in which Eq. (3.4) applies for
various choices of argX. ]The result of this manipulation
ls

0=-,'b}. ~(x,X)dx —bE(li) 4'(x,X)dx. (3.10)
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4'x(x, &) ~ 4'p(x, X) as lI ~ 4. Consider the equation

4'&(x,lb) (—d /dx'+ pxp+p'Xx')4 p(x,X)

=EpCg(x, ))Cp(x,X). (3.12)

Integrating Eq. (3.12) over the contour C in the
complex x plane and integrating by parts gives

An argument similar to the one given in the proof of

property (i) implies that Xp is a square-root-type
singularity point of E(lh ).Since a square-root singularity
has associated with it a double Riemann sheet, energy-
level crossing must take place at all points ho&0
satisfying Eq. (3.11).

(R—Ep) 4 g(x, lj)C p(x,k)dx =0. (3.13) IV. WEB SOLUTIOÃ

Thus, when XQXO,

4 g(x, X)4 p(x, X)dx =0. (3.14)

In this section, we shall approximate the wave
function 4(x) using zeroth-order WKB techniques. '
We only consider the case where

~
X

~
is small. We will

need Eqs. (1.1) and (1.2) which are

(—d'/dx'+-', xP+-,'lIx')4 (x) =E(X)4 (x) (4.1)

Letting X -+ Xp in Eq. (3.14) gives

4'p'(x X)dx =0, (3.15)
The zeroth-order WKB solution to Eq. (4.1) is'

(4 2)

which is just Eq. (3.11). As a result of property (i),
Ez(X) is singular at X=Ap. Thus, level crossing only
occurs at singularity points of E(X).

Property (ip) The. singularities of E(X) are of the
square-root type for X/0.

Proof Supp. ose E(X) has a singularity at X=Xp&0.
I.et

@=const)&p, '" exp ~ p x dx (4 3)

where

p (x) = L
—E(X)+-',x'+-,'Xx')'IP.

For large ~x~, Eq. (4.3), the zeroth-order WKB
solution, becomes

p= (x—x,)»p.
Then,

( dP/dx+-,'—x+P-,') px'+-,'p'x') 4 (x,p) =E (p)4 (x,p) . (3.17)

(3.16)
4 (x) constX (x'+Ax) "4

Xexp(( —6lj,) 'L(1+Xx')'"—1j) . (4.5)

Expand

E(p) =~+pP+ "~+ (3.19)

4 (x,p) = 4p(x)+ pC g(x)+p'4 p (x)+ . (3.18)

Given argX, we use Eq. (4.5) to locate in the complex
x plane the turning points and the sectors in which the
general boundary condition LEq. (3.4)j applies. The
turning points are at ~iX '". The boundaries of the
above sectors are curves given by

If we let O(x) = —d'/dx'+-'x'+-'Xpx, then

0 (x)4 p(x) =cxC p(x),

O(x)4, (x)=oC, (x)+PC, (x),

Re(X 'L(1+Xx')P"—1$)=0.

(3.20a) The sectors and turning points are plotted in Fig. 1 for
argX=O, —,'m, x, and —,'~.

We now begin the WKB analysis. Near the origin
x=O, the differential equation $Eq. (4.1)j becomes

0(x)Cp(x)+-,'x+p(x) =nCp(x)

+P@z(x)+yC p(x) . (3.20c)

Equation (3.20b) gives no useful information, but
multiplying Eq. (3.20c) by Cp(x) and integrating gives

(d'/dx'+E ,'x')4 (x) =0, —— (4 6)

which is the dehning equation for the parabolic cylinder
function D& l(x).' The correct physical solution to
Eq. (4.6) is

P = px+p'(x)dx 4, (x)4p(x)dx. (3.21) 4 (x) =C[Dx )(x)aDs g(—x)] (4.7)

4 g(x)4 p(x)dxWO. (3.22)

' To zeroth order in the %KB expansion discussed in Secs. IV
and VI, it can be shown that for those points which satisfy Eq.
(3.11), Eq. (3.22) is indeed true. If Eq. (3.22) were not true, we

P exists if the denominator in Eq. (3.21) does not
vanish'; that is,

would have to reexpand E(X) and 4 (x,X) in terms of (~—XO)'"= ~.
Physically, this would mean that three energy levels cross at Xo
instead of two as is the case. One would expect intuitively that
the chance of three levels crossing at the same point XO is small.

g For a review of zeroth-order %KB techniques, see A. Messiah,
Quantum Mechanics (John %'iley R Sons, Inc. , New York, 1961),
Vol. 1, pp. 232-233. For a discussion of WEB techniques in the
complex plane see T. T. Wu, Phys. Rev. 143, 1110 (1966).

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Bateman Manuscript Project (McGraw-Hill Book Co., ¹w York,
1953), Vol. 2, pp. 116-123. In the future we will refer to this
reference as BMP.
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for even- or odd-parity wave functions. C is a multi-
plicative constant.

When the phase of X is less than 270', we can asymp-
totically connect the parabolic cylinder function in

Eq. (4.7) to the WKB solution in Eq. (4.5). The
connection restricts the possible values of E to

and

D, (S) S"e &*'—
I
(24r)'"/I'(-v))e" 'S- 'e&"

for -44r(args((5/4)4r. (4.13b)

and
E=2n+-,' for even parity

E=2n+~ for odd parity,

Equation (4.13) yields the asymptotic behavior of

4~(r) in region A for large lrl; that is, for r near
region B. After much algebraic manipulation we have
the desired asymptotic expansion:

where n=0, j., 2,
However, Eq. (4.7) cannot be directly connected to

Eq. (4.5) when the phase of X is near 270' because a
turning point lies in the path of the connection Lsee
Fig. 1(d)). Instead, we use the following procedure:

We define new variables r=xe' ', p=Xe '/, and
e=—4iE. In terms of these variables, Eq. (4.1) becomes

1
C ~(r) eXpL4i(r' —e lnr+-', e ln2 —sir))

V «(4 —sic)

+ expl —4i(r' —elnr+-', eln2 ——',4r)), (4.14)
I'(4+sic)

Pd'/dr'+ 4 ( 6+r' pr—'))4 (r)—=0

We assume that
I
X

I
is so small that

I
pe I «1.

We define

(4.9) where
C2~fpsr&/&62 —se/8

Cg=
I'(-,*+-', '

)
(4.15)

all d
ra= (I 1—(—1 4pe)—I2)(2p) ) im~ei~ (4.10a)

ri= (LI+ (]—4py)&&q(2p) 4)4&2 p 4&2 (4 10b)

Region B. In regions B and C, we need the zeroth-
order WKB solutions to Eq. (4.9) which is

r& is approximately the position of the turning point.

I pel«1 implies that
Next, we identify four regions in the complex x plane:

region A in which r is near the origin, 0( lrl« lrol

«lril; «gion B in which lrl«lril but Irl»lr, l;
region C in which r is near the turning point, I

r
I
(

I
ri

I

but
I
r

I ))Ir~, and region D in which r is at the turn-
ing point, I

r
I ril .

In order to carry out the %KB procedure when argX
is near 270', approximate solutions to Eq. (4.9) must
be found in regions A, B, C, and D. Then these solu-
tions must be connected asymptotically at the bound-
aries of the regions.

Regiori A. In region A, Eq. (4.9) becomes approxi-
mately (that is, to zeroth order in X)

4 wxa(x) = (—e+r' —pr4)-'14

Ct exp -'i (—e+r2 —pr4)»2dr

+C3 exp —2i
rp

(—g+ r2 —pr )ilsdr ~ (4.16)

In Eq. (4.16), we choose to integrate from the reference
point ro. %'e are free to choose the reference point,
but this choice must be maintained for the %KB
solution in region C as well as in region B.

For r in region B, the choice of ro and ri in Eq. (4.10)
allows us to simplify Eq. (4.16). To zeroth order in p,

(d'/dr' ——,'e —-',r') C g (r) =0. (4.11) (—4+r' pr') ~r —E. —. (4.17)

Equation (4.11) is the transformed defining equation for
a parabolic cylinder function. ' The even-parity solution
to this equation is

C~(r) =CD ~;,~4(re "~)+D ~;,~4( re * ~)). (4.12)—
(In this section, we will treat even-parity wave func-
tions in detail; only the final results will be given for
odd-parity solutions. )

To compute the asymptotic expansion of 4» in
region A, we need the leading term in the asymptotic
expansion of D„(s),' which is

D„(s) s"e 4*' for —44r(args(44r (4.13a)

Using Eq. (4.17), we easily evaluate the integrals and
expand the expression in front of the curly brackets in
Eq. (4.16). The result is

4 s(x) (1/gr)(C2 expl:4'i(r' —e lnr 2e+e ln(-,'ge—)))-
+Cs expL —4i(r2 —e lnr —se+ e 1n(s+e)))). (4.18)

Region C. In region C, we need the zeroth-order WEB
solution I Eq. (4.16)) to Eq. (4.9). The WKB solution
in region C has the same constants C2 and C3 as the
solution in region B. However, the integrals for region
C are more di6icult to perform than those for region B
because of the approximations associated with region
C which are Irel« lrl( lr&l. We use the following
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decomposition to evaluate the integrals.

dr ( i+—r' p»4)—i/i

asymptotically

1 1/4 3/24 r)~2 '" "'R '" C exp 3i p

= —2ZP
1/2 [(ri—r i) (rii r')]—'/idr +—-',

' h—+41n2+1)
6p p~

+iipi/2 [(r'—ro') (ri' —r')]'"dr. (4.19)
+C, exp +-,'iV2p '/'R'"

To do the 6rst integral, we introduce a chan e ofg
variables

E=rl —r. (4.20)

Then, the integral becomes

i '
i/i(2» )t/i(r i r i)i/i2ZP E'/'dE

z3 121 /2 —1/4+3/2 (4.21)

In the second integral (the definite integral), we let

-'zp'/2 [(ri r i) (» i ri)]i/id»

= iir i[(1+» 'ri ')E(k) —2»i'ri 'It(k)]. (4.22)6 1

E(k) and X(k) are the standard elliptic integrals. '0

Expanding E(k) and E(k) for k near 1 gives"

and

Thus,

rp ( rp
E(k) 1+—

~

4 ln2 —1—2 ln-
4r,2& r1

E(k) ln (4ri/ro) .

(4.23a)

(4.23b)

-', zp' dr[(»2 r i) (r i ri)]i/i

1——ze ln—+4ln2+1
6p pe

(4.24)

We also note that

(—i+»i p»i) i/4
p i/4(ri—i »Oi) i/i(2»i) i/iR—

~2—i/4 1/8R-1/4 (4 25)

Equations (4.19)—(4.25) imply that near the turning
point the WEB solution [Eq. (4.16)] in region C is

"BMP, Vol, 2, pp. 317-318."To expand E(k) and K(k) near k =1, we use

E(k) =-'m- pP' (—$, $; 1; k') and K(k) =gg 2F1(),g, 1; k').

P Vol. 2, . 318, Eqs. (5) and (6).j Then we consult

may be simplihed by using BMP, Vol. 1, pp.

——+/iiie ln—+4 ln2+1
~

. (4.26)j
Ee ion D. In region D, we use q. 4.20 to change

variables from r to inR the differential equation [Eq.
(4.9)] and 6nd that to zeroth order in p

(d'/dR'+ ,'Rp '")4-n(R—) =0. 4.27

n 12Equation 4. is an( .27'
'

Airy differential equation.
The solution to Eq. (4.27) is

C'n(R) =D(nr)'/i&i/i(2y'/i), (4.28)

y= —(18') '"R. (4.29)

h
'

l one undetermined constan tainE.There is ony on
obe s the eneral(4.28) because only the Ei/3 function obeys e g

boundary conditions at q.E . 3.4)].
To determine the behavior of ICi/i(2y"') near t e

13turning point, we note that

(1) 2 3/2Xi/n(2e'~'" (—y)'")= ——',in.{e*'~"Hi/i "&(2(—y

+e "'&
/ "'(2r"')) (4 3o)

Then we use the asymptotic expansions" for H an
H&" and 6nd that in region D near the turning point

Cn CiR '/'[exp(-', iv2p "4R'/i ,'iii)——
+ex (—-'A/2p-i/4R'/'+-, 'iir)], (4.31)+exp —3z

where

(4.33a)

(4.33b)

I/23 —1/32—11/12 1/24 (4.32)4—

We have thus completed the determination of the
asymptotic behavior of 4 in regions A, 8, C, and D.
N t we must connect C across regex

~ ~ ~

nected toacross anC d D. (C in region B is already connect
is used4 in re ion C because the same WEB solution is u

in both regions. ) Connecting Eq. 4.1 ' g'4.14 in re ion A to
E . (4.18) in region B and Eq. (4.26) in region C to
Eq. (4.31) in region D gives two independendent determina-
tions of the ratio Cn/Cn. These are, respectively,

Ci I'(i+sic) i i i 8
exp ——+—ln ———

C I'(-' —xi&) 2 2 2 e 2
and

C x 1 e 162—=exp z ———+—ln—+-
C3 2 3p 4 pe 4

"BMP, Vol. 2, p. 22.
43 .~ BMP, Vol. 2, p. 5, Eq. {15)and p. 80, Eq. ( ).

'4 BMP, Vol. 2, p. 85, Eqs. (1) and {2}.
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Combining Eqs. (4.33a) and (4.33b) gives a single
transcendental equation which contains p and ~ only.

F (4 s—zE) 5'Ls 'r zf.p
=exp +—+—ln-

I'(-,'+-,'ie) 4 3p 4 2
(4.34)

For odd-parity wave functions the equivalent result is

F(a4, +-',E) i 57ri p
=exp —— —8 ln — . (4.35b)

F (~s —-',E) 3p 4 2

We may regard these results as approximate equations
to zeroth order in X relating the low-lying energy levels
to complex X near argX= 270'.

Appendix F contains a %KB calculation similar to
the calculation in this section but to first order in X.
The result of Appendix F is more precise than Eq.
(4.35), but it reduces to Eq. (4.35) when terms to
first order in X are neglected.

V. RESOLVENT

As a simple application of Eq. (4.35), we calculate
in this section the locations of the singularities of the
resolvent of the Hamiltonian H PEq. (1.3)j. The re-
solventof the Hamiltonian is conventionally defined as
(s—H) '. We will prove that (s—H) ' has poles when
argX is near 270'.

It is clear that (s—H) ' has a pole in the X plane
whenever the following equations are satisfied:

(1+1s)
~5m i/4&i/ep& —z In (p /2)

r(4 —ss)
(5.1a)

Because Cz goes exponentially to 0 at ~ as required by
Eq. (4.5), we have connected the origin to ~ via re-
gions A, 8, C, and D. We have found that Eq. (4.34)
is the one requirement which must be obeyed for this
connection to be valid. One should note that since
Eq. (4.9) is a second-order differential equation, there
are two undetermined constants in each region A, B,
C, and D. An equation such as Eq. (4.34) is posible only
because parity considerations restrict C ~ to one constant
C~ and the boundary conditions LEq. (3.4)j at
limit C~ to one constant C4.

If we rewrite Eq. (4.34) in terms of E instead of ~,

we get
r p+-,'E) i 5' p

=exp —+ E ln- . —(4.35a)
r(-, —sZ)

always possible to choose a sufEciently small ~p~ so
that the i/3p term dominates the s ln(2/p) term. Thus,
the resolvent has poles at

r (-'+-'s) ——1

X=e' '~' 3—i ln +6xX+Is-, (5.2a)
r(-; —-', s)

provided that s is not an even integer +~, and at

FP+-'s) ——1

3i—ln +6sF—-', s. , (5.2b)
r ( —-'s)

provided that s is not an odd integer + -', . In Eq. (5.2),
A" is any sufficiently large positive integer.

Equation (5.2) implies that for both parities (s—H) '
has an infinite sequence of poles approaching the
origin. These correspond to an infinite sequence of
choices for large positive X.

That the resolvent has poles was a surprise to us and,
as far as we know, this had not even been conjectured.
JaKe' has proved that for negative s the resolvent is
analytic in the cut X plane, the cut extending from the
origin to —~ along the negative real axis. This is
entirely consistent with our results which maintain
that no singularities appear in the resolvent until the
phase of the coupling constant reaches nearly +270'.
Since the analytic continuation of the resolvent
disappears through Jaffe's cut at argX=180', Jaffe
observed no singularities.

VI. QUALITATIVE DESCRIPTION OF EP,)

In this section, we use the results of Secs. III and
IV to discover the properties of the analytic continua-
tion of the energy levels E(X) as a function of complex
X. For purposes of clarity, this section is divided into
three parts. Part A gives a calculation of the locations
in the X plane of the branch points of E(X). Part 8
describes in detail the paths traced out by the energy
levels in the complex E plane as X moves about the
complex X plane. Part C contains a discussion of level
crossing.

A. Locations of Branch Points

We find the coordinates in the X plane of the branch
points of E(X) by solving a pair of simultaneous equa-
tions. The Grst of these is Eq. (4.35) which resulted
from matching the zeroth-order WEB solution across
the boundaries of regions A, B, C, and D, as was done
in Sec. IV. We repeat Eq. (4.35) here:

for even parity;

r(-;+-;s)
~
—Ski/4~i/ap~ —z ln(p/2)

r(-; ——;.)
(5.1b)

for odd parity.
We solve each of the above equations separately for

p by taking the logarithm of both sides. Given s, it is

F (—'+-'E) '
5

=exp —+ —E ln-
r( s~4 )

for even parity, (6.1a)

r p+-', E) i 5~i p—E ln—
F (~s ——',E) 3p 4 2

for odd parity. (6.1b)
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The second of the simultaneous equations is obtained tion formula' to get
by explicitly performing the integral in Eq. (3.11)
wh' h is lnl' (—22 —~2g) —lni'(n+-', g)+lnI'(2n+2l)+in (2+2r)

0= dx 4'(x,X). (6.2) 5Ãz p—(2n+g) ln2 =—+ E ln ——2—2rXi (6.7a)
3p 4 2

Equation (6.2) is an exact condition which is satisfied
by those X and only those X which are branch points
of E(X). Now that the approximate WEB wave func-
tion is known from Sec. IV, it is possible to evaluate
this integral and in turn to use the result to 6nd the
branch points. The evaluation is very lengthy and is
done in Appendix G. The result of this calculation is

m 1 E 4
0= p(E+ 22)+—COt —-———2r+ln—

2 4 2 p

for even parity (6.3a)
and

x 3 E 4
0= p(E+ ', )+ —cot ————2—r+1n—

2 4 2 p

for odd parity, (6.3b)

where P is the logarithmic derivative of the I' function.
Equation (6.3) now embodies the condition for X to
be a singularity of E(X). Because Eqs. (6.3) and (6.1)
are both correct to zeroth order in A. and since these
are the pair of simultaneous equations that will be
solved to find the singularities of E(X), the positions
of the singularities will be known to zeroth order in X.

Equations (6.1) and (6.3) must be put into a form
favorable for simultaneous solution. To do so we use
the following procedure:

(i) In this calculation, we consider I)() I
to be small

and argp to be near 0' (because argX is near 270').
%e may express this by

lni'(1+z) = —ps+ P (—1) $(tN)(s /tn). (6.8)
$74 22122

The result is
2n

ln(-', n)+ln(2n)!+-'In(2 )+n( —2+2
k~1 P

(—1)"q" 2n

+P, &(m) —&(222) —+
m i 2m ( 2)m, p 2 knln

p=—+——(n2ri) 22rNi —(2n+—2l+—', ) ln- (6.9a)
3p 4 4

and
2n+2 12)

ln(-'n)+ln(2n+1)!+-', !n(2 )+n( —2+ P —
~)-2 kJ

( 1)nn~nn

+p 1 1 -
2@+1 1

&(m) —&(m) +
(2)" (—2)" ~-2 k"

and

lnI'( —m —2g) —lni'(n+-', g)+1nl'(21+q)+in (2+2r)

—(2e+q) 1n2+in (-,'+I+-22l)

i Sxi p
E ln ———22rXi. (6.7b)

3p 4 2

E in this equation is an integer referring to the multiple-
valued logarithmic function.

(v) Expand the 1ni' functions using"

«(I/~) =O(&)

Im(1/p) =O(lnh. ), (6.4b)
(vi) Substitute Eq. (6.6) into Eq. (6.3) and expand

the function using"where A is very large.
(ii) We also consider only low-lying energy levels

(that is, levels near the ground state) because the
derivation of Eq. (6.1) in Sec. IV is valid only for
such levels. We may express this by

f(1+s)= —y+ P (—1)"$(m)s" '. (6.10)

The result is

I
&

I
=o(1).

(iii) Define q by

p
(6.4a) =—+——(n~i) —2~(X+1)i—(2~+&+-,') ln-. (6.9b)

3p 4 4

E=2n+2+p for even parity

E=2n+ 23+g for odd parity,

(6.6a)

(6.6b)

1 1—+ $(m) = —ln(gp) (6.11a,)
2222 ( 2) 222

where n=Q, 1, 2, ~ ~ .
(iv) Take the logarithm of both sides of Eq. (6.1),

substitute Eq. (6.6), and apply the Legendre duphca-

BMP, Vol. 1, p. 5, Fq. (15}.
"BMP, Vol. 1, p. 45, Eq. (2). ${m) is the Riemann zeta

function.
"BMP, Vol. 1, p. 45, Eq. {5).
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FIG. 2. A portion of the lip
plane on which are plotted the
even-parity branch points. The
branch points are labeled by
the integers e ranging from 0
through 4 and E ranging from
78 to 83. Next to each branch
point are its coordinates correct
to the nearest hundredth. The
region of the graph surrounded
by the dashed line is enlarged
in Fig. 4 and will be discussed
in connection with level cross-
ing.

RIld

1 2n+z 1 2n+1-+ —v+ Z —+E (—1)"n" ' —Z —+h(m)
k 1 k m 2 km

fr 1 1—
!
—+ !&(m) = —ln (-', p) . (6.iib)(2" (—2)"i

(6.12a)

(6.12b)

1/p=6zÃ

1/p=6vr(n+1).
R11d

Next we use Eqs. (6.12) and (6.11) to find 1/rl to
zeroth order in g:

Rnd

1 1
—=ln (24m.X)+y —Q—

I-=& k

1-=1nL24n (X+1)7+y —P —.
&-& k

(6.13a)

(6.13b)

Equations (6.9) and (6.11) are now in a form amen-
able to approximate simultaneous solution. The expan-
sions in Eqs. (6.9) and (6.11) are power series in g and
are most susceptible to techniques of approximation
if !g!«1. g is indeed small as will be seen. iV is a large
integer.

The simultaneous solution consists of using Kqs.
(6.9) and (6.11) alternatively to provide successively
more accurate approximations to 1/p and 1/rl. First,
we use Eq. (6.9). To zeroth order in g, the locations
of the singularities in the analytic continuation E(X)
are approximately

Remembering that iV is large, we see that Eq. (6.13)
verifies the earlier assumption that !g! is small. We
use Eqs. (6.13) and (6.9) and iterate once more to find
the locations of the singularities of E(X) to first order
in g.'

1/p =6z;V+3z n —3~/4 3i Dn(2n)!—+2 ln(z/2)
—ln lnlV —(2n+ ~) jn(247') —17 (6.14a)

Rnd

1/p =67r (iV+ 1)+3zn+ 37r/4 3i(ln (2n—+1)!
+ 2 In (s./2) —ln inÃ —(2n+ 32)

X lnL24rr (iV+ 1)7—1) . (6.14b)

Equation (6.14) is the equation we have sought. It
lists the coordinates of the branch points of E(X)
parametrized by two integers iV (large) and n (small).

Before discussing this equation, it is appropriate to
make some observations here on the structure of Eqs.
(6.9) and (6.11), the simultaneous equations that were
used to derive Eq. (6.14). We note that Eq. (6.11) is
the derivative of Eq. (6.9) with respect to g. This is true
because Eq. (6.3) is the logarithmic derivative of Eq.
(6.1) with respect to E. However, the significance of
this relationship is not obvious.

An explanation for this relationship comes from a
broader interpretation of Eqs. (4.35) than we have
chosen to use. We might have assumed that Eqs. (4.35)
were more than just equations relating E and X for
small X. We might have treated them as approximate
(to zeroth order in X) analytic continuations of E as a
function of P. Based on this assumption, the condition
for locating those points in the P plane where the energy
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COMPLEX E-Pl ANE

Fio. 3. A rough picture of a
tour of the X plane with the
associated image of E()) in the
E plane. ~X

~
is held fixed while

argX ranges from 0 to 6n-. The
X plane is drawn as three planes
to show the full rotation of
argX. The branch points and
arc-shaped branch lines are
indicated schematically. The
graph gives the paths of the
even-parity energy levels only.
The odd-parity levels behave
similarly.

-6'/

COMPLEX X —PLANES

BRANCH CUTS~::~ AT 810'

BRANCH CUTS

AT 270'

prgX:Q ~pm erg X: Pm ~yw arg X:47r ~6m

is twofold degenerate would be that the derivative of
Eq. (6.9) with respect to E (or p) must be a valid
equation. Because it gives the correct answer, this
argument would have constituted a "derivation" of
Kq. (6.11) and would have been a short cut past
Appendix G.

We did not use the above argument on grounds of
rigor. It is not clear what is meant by an "approximate
zeroth-order analytic continuation. " It is di6icult to
understand how one couM approximate an exact con-
cept like analyticity by zeroth-order techniques. The
laborious method of getting Eq. (6.11) by deriving and
evaluating JqC'(x)dx in Sec. III and Appendix G was
presented in this paper to avoid these mathematical
imprecisions.

Having made this point we return to analyze Eq.
(6.14). We note that as the integer 7 takes on a
sequence of values approaching ~, the associated
sequence of branch points in the X plane given by
Kq. (6.14) begins at a 6nite distance from the origin
and has a limit point at the origin. (Remember that
p=ke ' '".) That this sequence of branch points has a
limit point at the origin explains the divergence of the
perturbation series discussed earlier in Sec. II. Note
that the origin in the P plane is not an isolated singu-
larity of E(h).

It is useful to plot the results of Kq. (6.14) on a
graph. Figure 2 shows a portion of the 1/p plane on
which are plotted the even-parity branch points
labeled by the integer e ranging from 0 through 4 and
X ranging from 78 to 83. Next to each branch point
are its coordinates correct to two decimal places. The
region of the graph surrounded by the dashed line is
blown up in Fig. 4 and will be discussed in detail in
Part C of this section in connection with level crossing.

It is clear from Fig. 2 that the branch points lie in
a sequence of sequences. Each sequence of branch
points is labeled by ~ and each sequence approaches
the origin. A glance at Fig. 4 shows that the first
(n=O) sequence of points lies at an angle of about 4"
less than 270' in the X plane. The next (x= 1) sequence
lies approximately 2-,"less than 270'. Each successive
sequence is rotated by a small angle toward the real
axis in the X plane.

However, we suspect that as n increases, these
sequences bunch up before they reach 180' and that no
branch points have a complex argument of less than
180'. If there were such branch points then, by the
argument of Sec. V, the resolvent of the Hamiltonian
would have poles in the cut X plane. Jaffe' proved that
this is not so. Unfortunately, Kq. (6.14) only holds for
small n so this bunching phenomenon cannot be
illustrated graphically. '

B. Paths in E Plane

Having found the branch points of EP.), we can give
a qualitative picture of the complex function E(X).
We will do this by tracing the paths of the energy levels
in the complex E plane as X moves about the complex
X plane.

We begin our analysis by observing that both
differential equations LEqs. (4.1) and (4.9)g are real in

' In Sec. VI C, it wjl1 be shown that the %KB solution LEq.
(6.1)j is valid in two semidisk-shaped regions of the X plane
bounded by argX=270'~90' and argX=810'~90 . In the rest
of the X plane, the WEB solution is superseded by Eq. (4.8).
Since the existence of branch points is a phenomenon associated
only with Eq. (6.1), branch points must lie throughout the
region in which Eq. (6.1) holds. Therefore, we expect that the
bunching phenomenon occurs at the boundaries of the region;
that is, at argX= 180', 360', 720', and 900'.
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their respective variables. From this arise some sym-
metry properties of E(X) which are

E(X)=E*(X*)=—E*(e' 9,*)=—E(e' 9.). (6.15)

We also note that since the Hamiltonian PEq. (1.3))
is Hermitian and positive deinite, the energy levels lie

along the positive real axis in the energy plane when X

is positive real. Similarly, when argk=270', Eq. (4.9)
indicates that the energy levels are pure imaginary.
At. argX= 270, the energy levels lie on both the positive
and negative Unaginary axes.

Equation (4.8) indicates that for fixed ~Xt the energy
levels lie near the real axis in the energy plane as argX

increases from 0 until nearly 270'. However, for argX

in the neighborhood of 270' the full energy spectrum
moves rapidly toward the imaginary axis.

Combining the symmetry properties fEq. (6.1))with

the results of the previous two paragraphs enables us
to predict the paths of the energy levels in the complex
E plane when ~X~ is held fixed and argX is varied.
(These paths are given in Fig. 3.) We predict that:

(i) When argX=O, the energy spectrum lies along the
positive real axis.

(ii) As argX increases toward ~(6n.), each energy level

traces out a path in the complex E plane which ap-
proaches the imaginary axis. The energy levels lie
along the imaginary axis at argX='(6~).

(iii) At argX= —', (6x), the energy levels lie on the
negative real axis at points equal to the negative of
their original values for argX=O.

(iv) As argX increases from —,'(6x) to 6m, each energy
level traces a path reQectionally symmetric about the
origin to the path described above. At argX=6x the
energy levels return to the values on the real axis that
they had for argX=O.

Thus, as A, goes in a circle three times about the
origin in the X plane, starting at the real axis, each
energy level in the E plane traces a closed path starting
and ending on the positive real axis. Moreover, it will

be shown in Part C of this section that the paths in the
complex E plane are concentric and that the directions
of successive concentric paths alternate between clock.-
wise and counterclockwise.

Because the energy levels return to their original
values when argX is increased by 6x, in addition to the
branch-point singularities discussed in Part A of this
section there is also a X'" singularity at the origin.
However, the divergence of perturbation theory dis-
cussed in Sec. II is in no way related to this singularitv.
If it were, we could then expand E(X) in powers of X"'
and get a convergent power series. But there is no con-
vergent power-series representation of E(X) about the
origin in any fractional power of X. Perturbation theory
diverges because of the sequences of branch points
discussed in Part A of this section.

How do these branch points affect the curves in the
B plane in Fig. 3P Surprisingly, the answer to this

question is "not ut all." To understand why this is we
argue as follows:

(i) As proved in Sec. III, each of these singularities
is a square-root type. (In the neighborhood of each
branch point, there is a double-sheeted Riem ann
surface. ) Level crossing (twofold degeneracy) must
occur at each branch point. A branch line is connected
to each singularity.

(ii) The synunetry properties listed in Eq. (6.15)
imply that there is another set of branch points sym-
metrically reQected about 270' in the A. plane. More-
over, all these singularities (those in Fig. 2 and those
reQected through 270') also must occur at —270'
(which is the same as 810' because of the cube-root
singularity at the origin).

(iii) The branch lines join the branch points on
either side of 270' and on either side of 810' pairwise;
that is, each point is joined to its reQected image. These
branch cuts are shaped like circular arcs and are very
short because the branch points lie a short distance
from either side of 270' or 810'. The cuts form two
sequences of concentric arcs with each sequence of arcs
approaching the origin. These cuts are schematically
displayed on Fig. 3.

(iv) In the circular tour of the X plane shown on
Fig. 3 it is clear that none of the branch cuts was
crossed because ~Xj was held Axed.

This reasoning explains why the branch points could
not aBect the curves in the E plane in Fig. 3. In addi-
tion, it shows that the presence of the branch points
can never be detected as long as ~Xt is held axed.

Therefore, to exhibit the delicate intricacy of this
theory caused by the array of cuts in Fig. 3, we must
make a new tour of the X plane in which we cross the
branch cuts. We still increase argX from 0 to 6x.
However, when argX is near 270' (or 810') we vary
~X~ so that the path in the X plane crosses a branch
line. If we follow an energy level as it traces a path in
the complex B plane, we And that it returns to the
positive real axis when argX=6x but as a diGerent
energy level from the original. This is what is meant
by level crossing.

A complete description of level crossing is given in
Part C of this section. Nevertheless, it should now be
clear that the energy levels are completely interrelated
by the structure of the branch cuts. That is, one can get
to any given energy level from any other energy level
by continuing around the appropriate branch points.

As a corollary of this, once one knows the ground-
state energy of the anharmonic oscillator, one knows
all the energy levels by analytic continuation. Or, in
other words, the physical energy levels of the anharmonic
oscillator for a given positive real X are the positive real
values of E(X) on each of the infinit nosher of branches
of a Riemann surface Each energy .level corresponds to
a sheet of this Riemann surface. This is the major
result of our paper.
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FIG. 4. An enlargement of a
small portion of the 1/p plane
of Fig. 2. The (%=78, n=l),
(X=79, n=O), (X=79, n=1),
and (E= 78, n = 1) branch
points are precisely located.
Four short circular arcs of un-
equal radii are drawn and the
angular rotation along each arc
is given in degrees. The arcs
are indicated by a solid line,
dashed line, dash-dotted line,
and dotted line. The radii of
these arcs to the nearest hun-
dredth are 1496.50, 1490.50,
1487.50, and 1484.50, respec-
tively. The images of these arcs
in the E plane are plotted on
Fig. 5 in connection with level
crossing.
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C. Level Crossing

%e have shown that level crossing takes place at
the branch points in the P plane and we know the
positions of these branch points. But the details of
level crossing are not yet fully explained. In particular,
in this part of Sec. VI we will answer these questions:
(a) Which levels cross at which branch points? (b)
What does level crossing look like graphically'

To give a precise answer to these questions, we
carry out an intensive program of numerical calcula-
tion which enables us to construct Figs. 4 and 5.
Figures 4 and 5 will give a beautiful pictorial answer to
the questions we have posed. The numerical calcula-
tion involves the following procedure:

(i) We take a sequence of circular paths of varying
radii in the 1/p plane. (This is equivalent to and easier
to handle numerically than a sequence of circles in the
X plane. ) The image of each of these circles in the E
plane is a set of energy-level curves like those crudely
drawn in Fig. 3. As in Fig. 3, we will consider the even-
parity case only. (The odd-parity case is qualitatively
similar. )

(ii) By symmetry Lsee Kq. (6.15) and the accompany-
ing discussionj we need only to vary argX from 0' to
270'. Moreover, until argX is very nearly 270', the
energy l.evels stay extremely close to the values given
in Eq. (4.ga). Therefore, we only need to consider the
portions of the energy-level curves for X near 270'
(that is, where 1/p is approximately real).

(iii) We choose the sequence of radii in the 1/p plane
so that a branch point is crossed. We then use Eq.
(6.1a) to plot points accurately in the E plane and
expect to observe the process of level crossing. We
choose four values for the radii of the curves in the 1/p
plane. To the nearest hundredth, these values of

~
1/p

~

are 1496.50, 1490.50, 1487.50, and 1484.50. These
curves are drawn on Fig. 4. (Figure 4 is an enlarged
version of a part of Fig. 2. That portion which is
enlarged is indicated on Fig. 2 by a dashed line. ) The
branch point that is crossed is the one labeled %= 79,
n= 0.

(iv) We then choose points along the curves in Fig. 4
and solve the transcendental equation LEq. (6.1)]
numerically for complex E to the nearest hundredth.
To solve Kq. (6.1a) numerically we take the logarithm
of both sides. This gives

lnF (-,'+-', E)—inF (~~ ——',E)

i 5' 2=—+ +E ln-+2m. iM . (6.16)
3p 4 p

M is an integer referring to the many-valued logarith-
mic function. 31occurs for the same reason that S did
in Eq. (6.'I).

(v) We choose the branch line for the logarithmic
function in Kq. (6.16) to lie along the negative real
axis. We then break up Eq. (6.16) into its real and
imaginary parts and, given 1/p, solve the resulting
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FrG. 5. The complex E pla~e,
showing to the nearest hun-
dredth the images of the cir-
cular arcs in the 1/p plane of
Fig. 4. These curves exhibit
level crossing. The precise point
where this level crossing occurs
is marked with an X. X is the
image of the branch point
(N = 79, e =0). The energy-
level curves shown correspond
with the four lowest energy
levels. The curves are labeled
by their M values fsee Eq.
(6.16)j and are represented by
dotted, dot-dashed, dashed,
and solid lines to correspond
with the vaiuesof (1/p~ on Fig.
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pair of simultaneous transcendental equations for K
The solution is a painstaking trial-and-error process
involving tables of 1nF(s) functions. Fortunately, this
mammoth task is tractable because arg(1/p) is small,
ranging from 0 to approximately 3' (see Fig. 4).
Several hundred values for F have been plotted on Fig.
S and the energy-level curves have been drawn and
labeled by their M values. We have plotted the energy-
level curves connected to the four lowest energy
levels.

This completes the description of the construction
of Figs. 4 and S. We list belo~ our observations and
conclusions with regard to these graphs.

As ~1/p~ gets smaller, we observe that the points
where the energy-level curves meet the imaginary axis
in the E plane move upward. (This fact can be proved
from the differential equation $Eq. (4.9)j independently
of the numerical calculations involved in the graphing
of Fig. 5.) Therefore, as ~1/p~ decreases, either we will
find that (a) level crossing occurs (that is, the curves
associated with a given M value become associated
with different energy values along the real E axis) or
else that (b) the curves all remain attached to the
same energy values on the real E axis and stretch
higher and higher up the imaginary axis. The enormous
distortion of the curves in the latter possibility (b)
makes the former (a) a good probability.

Level crossing is indeed found on inspection of Fig. 5.
(For each value of 3II the curves on Fig. 5 are repre-
sented in order of decreasing ~1/p~ by solid lines,
dashed lines, dash-dotted lines, and dotted lines. ) We
observe the following example of level crossing.

The solid M= —79 line is connected to 8=22 along
the real axis. There is just a hint of inQection as this
curve passes below E=-', . Its companion, the solid
M= —80 line, goes directly to E=-,' and the dash-
dotted line inQects strongly. Meanwhile, the compan-
ion M= —80 lines belly increasingly outward above
8=2 to meet the inflecting M= —79 lines. As the
curves in the 1/p plane pass through the X='/9, n=0
branch point, the energy levels Qip and the dotted
M = —79 line is suddenly and discontinuously connected
to E=~ and the companion M= —80 line to F=2~.
This is a precise pictorial description of tenet crossing

It is interesting to determine where the curves
connecting I'" =-', and 8=2-,' cross. To determine this
crossing point we have calculated the image of the
branch point S= 79, n=0 in the F plane. The crossing
point is labeled on Fig. 5 by an X.

In addition to the above level crossing we also
observe an incipient level crossing at 8=2-', . As we
look at the lines in the opposite order (dotted, dot-
dashed, dashed, and solid), we see on Fig. 4 that a level
crossing is about to take place at the %=79, a=i
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branch point. The sol.id lines M= —81 and M= —79
are ready to cross near E= 22.

As tX
~

increases and the circle in the li plane passes
through the appropriate branch points, each pair of
adjacent levels flips repeatedly. Only adjacent levels can
cross. For example, the zeroth and first energy levels

cross at n= 0 branch points, the n= 1 and n = 2 energy
levels cross at n=1 branch points, and so on. In
general, the nth sequence of branch points is common to

and lies only on the nth arid (n+1)st sheets of the Riemann
surface of E(/i). (Remember that the nth sheet is the
sheet which contains the nth energy level for real
positive X.) This is equivalent to saying that the nth

and (n+1)st energy levels can only cross at the nth

sequence of branch points
Figure 5 evokes an additional, unexpected, and most

welcome observation. Recall that near ) =270 the
WKB equation LEq. (6.1a)] describes the paths of the
energy levels in the E plane. Near arri=O, Eq. (4.8a)
describes these paths. Therefore, at some value of argX
between 270' and O', Eq. (6.1a) is no longer accurate
and is superseded by Eq. (4.8a). The angle at which
this changeover occurs defines the angular opening
about 270' (and 810') in which the WKB solution is
valid. The numerical investigations used to plot Fig. 5
give answers to two important questions: (a) At what
angle does the changeover occur? (b) How accurate is
the WKB results

To answer these questions, we notice that the curves
on Fig. 5 all approach the values predicted by Eq.
(4.8a) which are E=-,', 2-,', 4-,', However, at some
angle in the 1/p plane the WKB result LEq. (6.1a)]
no longer directs the energy-level curves toward these
values. At that angle the curves begin to veer away.
Therefore, the angle at which the curves are closest to
the points E=-,', 2—,', 42, ~ is the answer to question
(a). Furthermore, the distance of closest approach of the
%KB curves to these points is a useful measure of how
accurate the%KB solution is and will answer question
(b). The WKB result is accurate if the distance of
closest approach is small.

It is easy to calculate the changeover angle and the
distance of closest approach. We expand lnI'(4 —-', E)
in a Taylor series" about E= ~, 2-,', 4~, -, and insert
the series into Eq. (6.16). We determine from the
resulting equation that arg(1/p) =90' is the condition
for closest approach. That is, the %KB result applies
in an angular opening of 90' on either side of argX =270'
(and 810'). This answers question (a). This angular
opening is much wider than originally anticipated and
shows that the WKB solution is valid in a very large
region of the X plane.

Furthermore, the changeover angle at argX=180'
ties in beautifully with three earlier results of this
paper, First, Fig. 1(c) in Sec. IV shows that it is
exactly at argX=180 that the %KB turning point
enters the sector in which the general boundary con-

dition t Eq. (3.4)] applies. This is just the point at
which we would expect Eq. (6.1a), the WKB equation,
to become valid. Second, a changeover angle of 180'
indicates that the bunching phenomenon discussed in
Part A of Sec. VI takes place at 180'."Third, when
combined with the arguments of Sec. U, a changeover
angle of 180' implies that the poles of the resolvent
occur when argA, is larger than 180'. This is consistent
with Jaffe's findings. '

A short numerical calculation reveals that the dis-
tance of closest approach to E=& is the amazingly
small number 3X10 '". This distance is much smaller
than originally anticipated. It is gratifying to observe
that, in answer to question (b), the WKB solution is
extremely accurate.

lim C(x) =0. (A2)

A quick derivation follows from substituting

q = 2 '/'x and j= i2'/sd—/dx

into the Hamiltonian H LEq. (1.3)]which is

1 ~2+ 1~2~2+) ~4

(A3)

(A4)

We choose m=1 without loss of generality. Then the
wave function C(x) satisfies the differential equation
LEq. (A1)]. Equation (A2) results from the require-
ment that C&(x) be normalizable.

A more rigorous derivation follows from the assump-
tion that in Fock space the energy eigenstates of H are
norm alizable.

In the interaction picture, the representation of the
field q in terms of creation and annihilation operators
on Fock space is

L1(/2)m1 2]/( aeimt+ateimt)

~—(&m) 1/2 ( sae im/+ tatei—mt)

L , ]a=a1.

(ASa)

(ASb)

(ASc)

In terms of the creation and annihilation operators, the
Hamiltonian is

H= m. (ata+-', )+ (g/4m') (a+at)4. (A6)
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APPENDIX A

In this appendix, we use field theory to derive the
coordinate representation given by Eqs. (1.1) and
(1.2) which are

(—(P/dx'+-, 'x'-+-,'Xx')4 (x) =E(l~)4 (x) (A1)
and
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(n~ m)=g„. (ASb)

Assuming that ( ~
n)} are a complete set of states,

~E)= Q a„~n)g(n!). (A9)

Equations (A6)—(A9) can be combined to give a
difference equation that the (a„}satisfy:

Ea„=m(n+-',)a +(g/4m')I a 4+4(n 2)a-

+6n(n 1)a—+4n(n+1) (n+2)ames

+ (n+1) (n+2) (n+3) (n+4)a~41. (A10)

Furthermore, since
~
E) is assumed normalisable,

Q f a„/'n! & ~ .
nm

(A11)

From Eq. (A11) it follows that as n~~
faster than 1/Q(n!). Thus, if we de6ne the generating
function f(s) by

(A12)f(s) = Q a.s",

then f(s) is entire.
The difference equation t Eq. (A10)] becomes a

differential equation satisfied by f(s):
4

Ef(s) = s+—f(s)+ms —f(s)+-',mf(s). (A13)
4m' ds ds

The differential equation LEq. (A13)j and the side
condition that f(z) is entire embody the assumption
that

~
E) is an eigenstate of H of 6nite norm and that

f ~
n) }are a complete set of states.
Now let

Then,
f(z) = e *'"h(z)— (A14)

Eh (s)= (g/4m') h""(s)
+mph'(z) z'h(z) j+—'mh(s) . -(A15)

Next we show that h(s) must go to 0 rapidly along
the imaginary axis. To do this, we apply the Cauchy
formula to Eq. (A12):

f() 1 -""g()
a„= ds = . (A16)

2m' s"+' 2~x gn+1

Suppose that g(s) did not go to 0 along the imaginary
axis. In fact, suppose for simplicity that g(s) were

I.et
~
E) be an eigenstate of H of energy E. Then

HiE)=Et E). (A7)

The Fock representation consists of the states

In)=(1/Q(n!)](a")" lp) n=.p, 1, 2, (ASa)

where

constant. Then, since the major contribution to this
integral would come from the region where the path of
integration crosses the imaginary axis, we calculate
(using the method of steepest descent) that a A/gn
for large n. This contradicts Eq. (A11) and the entirety
of f(s). Hence, h(s) must go to 0 along the imaginary
axis.

To see how fast h(s) ~ 0, we consider the differential
equation for h (s) (Eq. (A15)). By systematically
investigating pairs of terms, we find that the dominant
behavior at large s is given by

Thus,
(g/4m') h""(s)—ms'h (s) =0.

h(z) expLC —'(4m /g)'!4sa!sj

(A17)

(A18)

where C=i, —1, i, —i. Since there are four solutions
to the fourth-order differential equation LEq. (A17)),
we have them all. Combining Eq. (A18) with our
knowledge that h(s) goes to 0 along the imaginary axis,
we learn that h(s) goes to 0 along the imaginary axis
extremely rapidly. Hence, h(s) may be Fourier-trans-
formed along the imaginary axis. We thus de6ne (for
real x)

h(s) = H(x)e**dx (A19)

Fourier-transforming Eq. (A15) according to Eq. (A19)
gives

mH" (x)+mxH'(x)+ (E+-',m) H (x)
—(g/4m')x'H (x) =0. (A20)

Finally, we let

H(x) =e—"!'4(x). (A21)

—4 "(x)+-'x'4(x)+-'Xx@(x)=EC (x), (A23)

lim C(x)=0.
I&I~ (A24)

Equations (A23) and (A24) are precisely Eqs. (A1)
and (A2). We have thus rigorously derived the coor-
dinate representation and the boundary condition
satisfied by the wave function C.

This connection between field theory and the wave
function in coordinate space will be used in Sec. Il
and Appendices 8 and C.

This substitution LEq. (A21)$ simpli6es (A2p) to

mC "(x)+EC (x)—-'mx'4 (x)—(g/4m')x4C (x) =p. (A22)

Equation (A22) implies that the dominant behavior
of 4 for large x is e~ ~' or e ~*~'. The former is not possible
because the inverse transform would not exist and h(s)
would be undefined. Hence, C (x) ~ 0 as

~
x~ ~~.

We set m= 1 as we did earlier in this appendix and
Eq. (A22) becomes



A NHARMO NI C OSCI L LATOR

APPENDIX 8
In this appendix, we use Feynman rules to calculate

A~, A~, and A3. These are the 6rst three terms beyond
the constant zero-point energy term in the perturbation
series for the ground-state energy [Eq. (2.1)j. The
Feynman rules for the anharmonic oscillator considered
as a 6eld theory are

ORDER 1

(ta)

ORDER 2

(2a)

S.N. =—(

8

S.N. =—1

ts

(E'—m'+i&) ' for a propagator,

24K. for a vertex, (81b)

(2b)

ORDER 3

S.N. =—
48

i(27r)
—' dE for a loop integration. (8ic)

(2a) S.N. =—
48

(2b) S.N. =—1

(1a)= (24)-,' (X/m') m,

(2a) = (24)'(—1/16) (X/m')'m,

(2b) = (24)'(—1/32) (X/m')'m,

(3a) = (24)'(3/128) (X/m')'m,

(3b) = (24)'(5/512) (X/eP)'m,

(3c)= (24)'(3/512) (X/m8)'m,

(3d) = (24)'(1/64) (X/eP)'m.

(82)

The symmetry numbers are the same as in the (3+1)-
dimensional theory. "

The nth term in the perturbation series for the
ground-state energy is the sum of all connected n-vertex
Feynman diagrams with no external legs. (Each dia-
gram is of course multiplied by its appropriate sym-
metry number. ) Figure 6 shows all such diagrams of
order n= 1, 2, and 3 with their symmetry numbers. ~

Ke find the contribution of each of the diagrams
by applying the Feynman rules [Eq. (81)) and by
evaluating the resulting simple contour integrals. This
calculation yields

(2c) S.N. =—
48

(3d) S.N. =—t
32

FIG. 6. All connected Feynman diagrams of order m=1, 2, and
3 with no external legs. To the right of each diagram is its sym-
metry number (S.N.).

(24)'X3 (24)'X5 (24)'X3
As== + +

128X48 512X24 512X48

(24)' 333
+ = . (83c)

64X32 16

The results in Eqs. (83a)—(83c) agree with Eqs.
(2.12a)—(2.12c). This agreement illustrates the equiva-
lence of the Feynman-diagram and difference-equation
techniques for computing the numbers A„.

Next, we combine the symmetry numbers listed on
Fig. 6 with Eq. (82) and find that~'

A x = (24/4) Xxs = -', , (83a)

(24)' (24)' 21
Ap=—

16X16 32 X48 8
(83b)

~ T. T. Ku, Phys. Rev. 125, 1436 (1962).~ The interaction we are discussing is not Kick-ordered. If it
were Kick-ordered, only diagrams (2b) and (3c) would contribute
to the ground-state-energy perturbation series. All other diagrams
would be excluded because they have at least one line emerging
from and returning to the same vertex.

~ In the dednition of the ground-state-energy perturbation
series LEq. (2.1)j, which is

Eo(X) =~m, + P (X/m3) "mA. ,a 1

the factors of m and (X/m')" have been isolated from the A„.

Eo(X) =-',m+Q m(X/m') "A .
n 1

(Ci)

A„is the sum of all connected diagrams of order e
(diagrams with n vertices) with no external legs.

~We Gnd upper and lower bounds on (—1)"+'A„because
(—1)"+~A are positive quantities. This is evident from Eq. (C3).

APPENDIX C

Equation (2.2) gave without proof upper and lower
bounds on (—1)"+'A„P~the terms in the perturbation
series for the ground-state energy [Eq. (2.1)j. In this
appendix, we rigorously derive these bounds using a
Feynman-integral representation.

To develop the notation of the Feynman-integral
representation, we restate here the ground-state-
energy perturbation series [Eq. (2.1)):
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Rewriting the perturbation series LEq. (C1)j in
terms of individual diagrams gives

E2()1)=-2'2)2+ P m() /2)22) "QI,
@=1

(C2)

where the summation QI is over all connected diagrams
of order n with no external legs.

I is the numerical value of each diagram. In terms
of a Feynman-integral representation for non-Wick-
ordered connected diagrams with no external legs, I is
given by

I=(symmetry number)(2) (24) "(—1)"+'

X (1/4)r) / "+' ) "I'(2)2—-'2w —-', )

By a straightforward evaluation of the surface-area
integral, we get for the 6rst factor

KN = 2)r&N/I'(-2'1V) .

In order to find themaximumof LD(1/y 2)j '"~ 2„,2 1,
we note that 0&Y;2& 1 for each 1&i&E. We can over-
estimate a maximum by letting every y;= i. Then

LD(1/y") j'" z. =1 v'D(1)

( (CS)
g(number of skeletons)

Clearly, the smallest number of skeletons a graph
could have is 1. Hence,

sup =1.
Ã(1/y*') j'" 22;2=1

(C9)

In Eq. (C3), (i) 22= order of diagram=number of
vertices. In Eq. (C3), )2) 2. For n= 1, A 1 is calculated
in Appendix B. (ii) 21)=number of lines returning to
the same vertex from which they emerged (w would be
zero if the interaction were Wick ordered). (iii) 1V=
number of lines=2)2. (iv) x;=the Feynman param-
eters. (v) A skeleton of a diagram is a simply connected
subdiagram. D(1/x;)=the sum over all skeletons of a
diagram of

do.; 1
o 1/2

LD(«)3'" 2/1/, )=2
(C11)

Combining Eqs. (C6), (C7), and (C9) and using
E=2n yields I.(2)r"/I'(I) . (C10)

This is the desired estimate for Theorem 1, part (i).
Proof of part (ii)." We make the substitution

n, = 1/x, in Eq. (C4) and integrate over the i) function.
The result is that

The product is taken over all lines in the skeleton. "
We use Eq. (C3) to establish bounds on (—1)"+'A

„

by proving a sequence of theorems.
Theorem 1. Let

Hence,
3.V

So

3Ã

o 1/2

N s=2 ~.3/2
(C12)

LD(12 )j'" -"n/;)=1

N dg; N

(b(1 —Q x;)/LD(1/x;) j'/2}. (c4) ~) g * (;„f(~) ~

2N i 2 O'

Then, (i) I is uniformly bounded above and (ii) I is
uniformly bounded below. (A uniform bound on dia-
grams means that the bound depends only on the num-
ber of vertices and not on the individual diagrams. )

Proof of part (i). We substitute y=Qx; into the
definition of I. LEq. (C4)j and get

X inf . (C13)
P (12i)j Z(1/ai)=1, 2N&ai(2N

We treat each of the factors in (C13) separately.
We evaluate the erst factor exactly:

b(1—P y,')g 2dy,
LD(1/y ')3'" (CS)

3~ N dn; 2+3 —242 ~—'
)+(1—N)/2( 1 )N—1 (C14)

i =2 , a2/2 (6/V)1/2

Let E~ be the surface area of a unit sphere in X
dimensions. Then,

The smallest possible value for the second factor is
obtained when n;=3K. Then,

I.&E~ sup
LD(1/y") j'" ";2=1

(C6) 3 2 1/2

inf(gni) = )1.
2+1/X)

(C15)

We evaluate the factors in Eq. (C6) separately.

~ Precise de6nitions of "skeleton" and "D(1/x;)" are given in
JaGe's paper. See Ref. 4.

'4 The proof of Theorem 2, part (ii) closely follows the proof
given by Ja8e. See Ref. 4. However, Joe's other arguments do
not apply here because of counting and duplication problems
associated with diagrams having no external legs.
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The minimum value for the third term in Eq. (C13)
is found by computing the maximum value for
D((2i)

~
Za; 1, 2N&ai&3N

supD((2;) = (max number of skeletons)

X (max value for each skeleton) . (C16)

An overestimation of the maximum number of
skeletons a graph of n vertices has is 4" '. Also, the
maximum value for each skeleton is achieved when
all the o/;=3I(/ Put.ting this into Eq. (C16) yields

~ ~ ~ ~ ~ ~

Hence,
supD((2;)=4" '(3')" '. (C17)

inf —(]2') (1—n, ) /2

LD((2i)] Z(l/a~)=1, 2N&a~i&2N

(C18)

We combine Eqs. (C14), (C15), and (C18) with Eq.
(C13) to get

I) (P (1—N)/2)( 1 )N 1( 12')/—(1—n)/2

Substituting X=2n,

(C19)

S.N. = 1/(8X 6./2) . (C21)

Equation (C21) serves as a lower bound on all sym-
metry numbers. This completes Theorem 2.

Combining the results of Theorems 1 and 2 places
upper and lower bounds on (—1)"+'I. Those bounds
are

1 "+'
( ])n+lI ( (1)a(24) n

(42r)'"
2'"

Xr (2n —22o —-', ) (C22)'
r(n)

1 n+1—m

( ])n+(I) (1)a(24)n
8 gn/2 (42r)'"

Xr(2n ——',2o —,') (2n) " '"'"X10' '"(24n) ('—»/2. (C23)

I) (2n) (1—2n) /2 (10)1—2n (24n) (1—n) /2 (C20)

This is the desired estimate for Theorem 1, part (ii).
Note that the bounds given in Eq. (C10) and in Eq.
(C20) are uniform. That is, they depend on n but not
on the individual diagrams.

Theorem 2. The symmetry number for diagrams is
uniformly bounded (i) above and (ii) below.

Proof of part (i). Since all symmetry numbers are
less than 1, an upper bound on symmetry numbers for
all diagrams is 1.

Proof of part (ii). A small symmetry number corre-
sponds to a diagram having much symmetry. The
class of connected diagrams having the greatest degree
of symmetry per number of vertices is shown in Fig. 7.
If n is the number of vertices, the symmetry numbers
for diagrams belonging to this infinite class is exactly

~ ~ ~ ~ ~ ~

FIG. 7. The in6nite class of diagrams having maximum sym-
metry per number of vertices. These diagrams have the smallest
symmetry numbers for diagrams with a comparable number of
vertices. All diagrams in this class start from a single vertex,
each of whose four lines branches repeatedly and symmetrically
into three new lines; after an arbitrary number of branchings,
the lines symmetrically recombine into a single vertex.

To find bounds on (—1)"+'A„,we must make the
estimates for (—1)"+'I independent of 2o. Clearly, for
a connected diagram of n vertices, m can range from
0 to n. Therefore, in Eq. (C22) we take 2o=0 and in
Eq. (C23) we take 2///=n. After simplification, the
estimates $Eqs. (C22) and (C23)j become

and

1 r(-;n —-', )
(—1)"+'I( (12+2r)"

r(n)
(C24)

5 3 1/2 1 n

( 1)n+lI ) r (n 1 )n (2—3n) /2 (C25)
2 x 200

We now return to the integral representation LEq.
(C3)j and observe that for a given order n the contri-
butions from all diagrams add in phase. Therefore,
upper and lower bounds on (—1)"+'A„,the terms in
the perturbation series, may be obtained once we
place bounds on the number of diagrams in each order.

Theorem 3. The number of diagrams of order n is
(i) bounded above by (4n —1)!!and (ii) bounded below
by n, !/3".

Proof of part (i). We establish an upper bound on
the number of diagrams by constructing them as
follows.

We begin with n vertices. None of the vertices are
connected, so each has four free lines emerging from it.
There are 4n free lines.

We pick any line and connect it to one of the other
4n —1 lines. There are now' 4n —2 lines. We pick and
connect another line in one of 4n —3 ways. We con-
tinue until there are no free lines. Therefore, there are
at most (4n —1)!!diagrams.
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Simplifying Eqs. (C26) and (C27) yields

AB"I'(-,'I)& (—1)"+'A &CD"'I'pe). (C28)

Equation (C28) is the final result. Note that it
agrees with the bounds in Eq. (2.2).

APPENMX D

In this appendix, we discuss the details of the com-
puter calculation of the 6rst 75 terms in the ground-
state-energy perturbation series LEq. (2.1)j which is

Z, (Z) =-',m+ P mA. (!/m3).
n 1

(D1)

In the calculation, the di!Ierence equation LEq. (2.8)j

Proof of par/ (ii) .In order to establish a lower
bound on the number of diagrams, we establish a
lower bound on the number of diagrams belonging to
a particular class. %e consider only those diagrams in
which all the vertices lie on a continuous closed line (a
circular path). We construct such a class of diagrams
as follows.

Draw a circle and place all the n vertices on it. The
circle uses up two of the four lines at each vertex.
This leaves two free (unconnected) lines extending
from every vertex. Now start with any vertex and
pick one of the two free lines emerging from it. Join
this line to a line coming from any of the rs vertices
(including itself). Connect the last free line coming
from this new vertex to one of the remaining e—1
vertices. Continue this process, going sequentially from
vertex to vertex until all pairs of free lines are used
up. Since we use both lines at each vertex one right
after the other, the number of available vertices keeps
decreasing by one. Of course, at any time the process
may close on itself if the free line is connected to the
last line available at the original vertex. If this happens,
we simply start over at any other free vertex, which will
have two available lines, and continue.

Clearly, there are eI ways to carry out the above
process, but there will be many duplications. To avoid
these duplications, we divide by three at each vertex.

We conclude that there are s,t least n!/3" diagrams.
This establishes Theorem 3.

Combining the results of Theorem 3 with Eqs.
(C24) and (C25) places upper and lower bounds on

( ])n+1A

(4ii —1)!!I'(-', e——,') (l2+n )"
(—1)"+'A „& (C26)

I'(n)
alld

e!F(e—-') 5 3 '"
(—1)"+'A & (600) "—— . (C27)

g(3n—2) /2 2 m

which is

2jB;,,= (j+1)(2j +1)B',&+1+B I j ' —2—

and Eq. (2.9) which is

—Z (B*-,i)(B . ) (D2)

(D3)

TABLE I. The absolute values of the first 75 terms 3„in the
perturbation series for the ground-state energy t Eq. (2.1)j. The
number following the comma is the power of 10 multiplying the
decimal. The signs of A„alternate beginning with plus, i.e.,A„=(—)" 'iA„).

I~-t
1 O. 750IOOIO, 0
2 0.262500000000, 1
3 0.208125000000, 2
4 0.241289062500, 3
5 0.358098046875, 4
6 0.639828134766, 5
7 0.232973372705,
8 0.314482146928, 8
9 0.833541603263, 9

10 0.244789407028, 11
21 0.789333316003, 12
12 0.277387769635, 24
13 0.105564665831, 16
14 0.432681068354, 27
15 0.190081719760, 19
16 0.891210275364, 20
17 0.444255088999, 22
18 0.234646430681, 24
19 0.130915026105, 26
20 0.769399985382, 27
21 0.475124077343, 29
22 0.307579295223, 32
23 0.208301009434, 33
24 0.147290492138, 35
25 0.208552296005, 37
26 0.832483627531, 38
27 0.663329371112, 40
28 0.548392431330, 42
29 0.469782420784, 44
30 0.416502699806, 46
31 0.381734895502, 48
32 0.361299554016, 50
33 0.352778001982, 52
34 0.355023393768, 54
35 0.367917476478, 56
36 0.392301600257, 58
37 0.430055097492, 60
38 0.484327278330, 62

n !A„!
39 0.559961162001, 64
40 0.664186377517, 66
42 0.807715625319, 68
42 0.100646863922, 71
43 0.128429408835, 73
44 0.167730490075, 75
45 0.224085871222, 77
46 0.306093131234, 79
47 0.427287814796, 81
48 0.609277658120, 83
49 0.887045954492, 85
50 0.131804184041, 88
51 0.199796510697, 90
52 0.308853507485, 92
S3 0.486698406263, 94
54 0.781543229859, 96
55 0.127844051221, 99
56 0.212959346691, 102
57 0.361127834038, 103
S8 0.623214611884, 105
59 0.109419743747, 208
60 0.195392812615, 110
61 0.354775753462, 112
62 0.6S4807077714, 114
63 0.122820914441, 117
64 0.234056056576, 119
65 0.453052532884, 121
66 0.890541554378, 123
67 0.177719768349, 126
68 0.3S9993943833, 128
69 0.740009711275, 130
70 0.154336989562, 133
71 0.326S15091790, 135
72 0.700567351807, 137
73 0.152414090414, 140
74 0.336160314738, 142
75 0.751507982642, 144

were used on an IBM 7094 in double-precision mode.
(The results of this computer calculation are listed in
Table I. The absolute value of A

„
is listed to the right

of the order e. The number following the comma is the
power of 10 multiplying the decimal. )

The computer program had three interesting features.

(i) To calculate A
„

it was necessary to know sll B, ,
for j=1, 2, 2n andi= 1 ~ n. Because 8;,; has
two indices, the limiting factor in this calculation was
not time but memory capacity. Seventy-five was the
maximum number of terms in the perturbation series
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which could be computed without using additional
memory space on disks or tapes.

(ii) The numbers 8;,; grow exponentially large or
small with i for j near 1 or near 2i. As a result, the
capacity of the 7094 to manipulate these large and
small exponents in floating point would be exceeded
before i=20. Therefore, it was necessary to scale the
8;,, One particularly useful scaling is

C;,,= (1/100' ')8;,, (D4)

Equation (D4) is adequate for n& 100.
(iii) The structure of the difference equation $Eq.

(D2)] indicated that a huge number of manipulations
would have to be performed in which numbers with
greatly di8ering exponents would be added together.
This would cause round-o6 errors which on a computer
are cumulative. Therefore, although the calculation
was done to 16 decimal places (double-precision mode),
one must take care to determine the number of decimal
places which are really significant.

If we assume that the round-oE errors are purely
random (not systematic), then the cumulative error
grows as the square root of the number of operations.
Because there are approximately 10' operations per-
formed in the calculation of A7&, we expect that the
error is about 10' in 10".That is, the last four decimal
places (of the sixteen) are random.

We can check that there are indeed 12 significant
figures in the table of A„asfollows: Divide out the
dominant asymptotic behavior of the A Lsee Eq.
(2.10)] and make a table of the resulting numbers Q„:

from the values of A listed in Table I. As n —+ 75, we
observe that to a good approximation R„-+3(n+xp).
This indicates that A grows as 3"F(n+-',).

Next we try to fit A „very accurately by

Gi 82 G3
A„3"I'(n+-',)(a,+ + + + ). (E2)

n n2 n3

LThe notation in Eq. (E2) is justified because the
term in square brackets is an asymptotic (noncon-
vergent) series. ) Note that it would not be possible to
fit A„by a series such as that in Eq. (E2) if A„did
not grow as 3"F(n+p); that is, if the rough growth of
A„were, say, (2.9)"I'(I+-',) or 3"F(n+0.6).

To evaluate the u; in Eq. (E2), we use Table I to
calculate

P =A„/3"I'(e+-',). (E3)

Then we terminate the series in Eq. (E2) at az and
solve for a;, i=0, 1, , k, in the resulting set of simul-
taneous equations:

Ci C2
I'„=ap+ + + +

n N2 nk
(E4)

k
Q ()p i)" —(—1)'=k!.
i=o

(E5)

where n= 75—k, 75—k+1, 75.
We solve for ap in Eq. (E4) by multiplying each

equation by n, taking successive differences, and using
the beautiful identity:

(+6)p='('I'())+-') 3"
(D5) ao may thus be given exactly in closed form by

Then compute a table of the successive differences:
k

ap= Q (—1)'P7p, (75 i)" —k!. (E6)

n = n n—1)

Q (P) —
Q

0) Q )(() (D6b)
and so on.

The Q„(') are regularly monotonic as i increases
until they become random. By inspection we find that
Q(') is random and, as expected, it is nonzero in the
last four decimal places (of the sixteen). This verifies
that the Q and hence the A„arecorrect to 12 places.

~~= A a+i/A ~ (E1)

APPENDIX E

There is no known mathematically rigorous proof
of the detailed asymptotic growth of the A„asgiven
in Eq. (2.10). However, in this appendix, we justify
this equation using numerical methods. The raw data
used in this appendix are contained in Table I.

We approach the problem by finding the rough
growth of A„.To do this, we construct a table of the
ratios

VVe also find that
ap ——(Q6)/m p('.

a&/up = 1.3194528,

ap/ap = 1.9366649,

ap/op = 7.1004516,

a4/ap = 27.445970,

ap/ap= 665.57303.

(E7)

(ESa)

(ESc)

(E8d)

(E8e)

Apparently, asi increases, the growth of the numbers
(r; is so rapid that when n 75, the term ap/I' is larger
than ap/e'. This suggests that the asymptotic series

Once ap is known, we can reduce Eq. (E4) to a new
set of equations in which P„is replaced by (I' ap))p
and k by k —1. We solve as before for the new uo which
is the old u~. Repeating this process k times gives all c;.

If we terminate the series at c&, we find that to four
parts in 109
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P -no+ + + + . , (E10)
(S+6) (B+6) (ri+ f)

where e is any number which is small compared to n.
Then a simple formula relates the a; to the n;.

o!p= ap, (E11a)

in Eq. (E4) is an optimal approximation of P„when
it is terminated at a5/e'. (More terms could be in-

cluded, giving a more accurate approximation to P„,
only if nwe, re larger. )

Since we keep six terms in the asymptotic series, we

expect that P„should be represented accurately and
uniformly to a few parts in 10'. This turns out to be
the case for n near 75 down to well below 50. Because
ao is (+6)vr " to four parts in a billion and since the
magnitude of this error is exactly what we would expect,
we assert that aors (+6)s. 'i'.

Combining this value for ao with Eq. (E2) gives
Eq. (2.10) which is the result we had set out to derive
in this appendix, namely,

3"I'(m+-', ) (+6)s. +' (E9)

One might note that although ap is known to four
parts in 10~, a;/ao in Eq. (E8) is known less and less
accurately as i increases. ai/ao is accurate to seven or
eight places; a2/ao is accurate to five or six places; and
a;/ao is accurate to one place at most.

To increase the accuracy of a;, A „would have to be
calculated for n much larger than 75. As is always the
case with asymptotic series, nothing is gained by
calculating A„more precisely for n near 75.

Aside from simplicity, there is no compelling reason
why P„should be expanded into an asymptotic series
of the form in Eq. (E2). One might prefer to use the
more general series

we neglect a; for i& 1. Then Eqs. (E2) and (2.1) give

Eo(X) p X"(—1)"(/6)ir 'I'I'(ri+2i)3". (E12)
nm

Then, ignoring the possibility that two unequal
functions can have the same asymptotic expansion, we
substitute the expression

I'(e+-,') = e
—

lion (E13)

into Eq. (E12). Interchanging summation and integra-
tion, summing the series, and letting s=gf gives a
convergent integral representation for Ep'.

2+6 " e-"
E,(X)= ds.

1+3Xs2~3/2
(E14)

Erfc(x) = e ' d$. (E16)

More importantly, the dispersion-type integral in
Eq. (E14) defines a nontrivial singularity structure in
the X plan- a cut along the negative real X axis. The
jump across the cut is easily calculated. Unfortunately.
this result does not come close to giving the true
singularity structure of Eo(X) as derived in Secs. III,
IV, and VI of this paper. Nevertheless, it is hoped that
future calculations of this sort will lead to positive
results.

For X real and positive, this integral can be evaluated
explicitly with the result that

Eo(X)=(2/el~)'" exp(1/3X) ErfcL(3X) '"j, (E15)

where

alp (E11b) APPENDIX F

+2= a2+ &ay,

n3= a3+2ea2+e aq,

n4 ——a4+3ea3+3e'a2+ ~'a~,

(E11c)

(E11d)

(E11e)

and, in general,

(E11f)

This completes our remarks on these numerical
calculations. However, before concluding this appendix,
we will discuss an example of how investigations of this
sort might lead to a better understanding of the singu-
larity structure of the ground-state energy Zp(l~) in the
complex plane.

Example. As a crude illustration of how one might
recover the analytic properties of Eo(X) from Eq. (E2),

In this appendix, we present the %KB calculation of
Eq. (4.35) to first order in X. A successful calculation
would be a significant result because:

(i) Our continued ability to match the asymptotic
expansions across the boundaries in regions A, B, C,
and D would give added assurance that the application
of %KB techniques to the problem of locating singular-
ities in E(li) is valid.

(ii) It is most important to make sure that the first-
order result we obtain here differs from the zeroth-
order result only by terms of order X. This would imply
that the error in Eq. (4.35) is indeed small, as is
tacitly assumed in Secs. IV, V, and VI.

(iii) As a byproduct, this calculation would define
the boundaries of regions A, B, C, and D more precisely
than the zeroth-order calculation does. This added
precision would result from the greater number of
terms that would be matched across the boundaries.
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In this appendix, we will follow the same procedure as
in the zeroth-order calculation in Sec. IV. However, we
keep terms of order X as well as of order i. We neglect
terms of order X' or smaller. Ke again use the di6er-
ential equation LEq. (4.9)j which is

$d '/dr'-+ '( -e+—r' pr'—))4 (r) =0, (F1)

and recall the definitions p =Xe "", e =4iE, and
ggA'/4

We define the four regions A, 8, C, and D as in
Sec. IV. That is, in region A, 0( Irl« lr Io; in region

Irol« I"I&«il ' 'n ~legion C Irol&&lrl( lril; and
in region D, Ir Iril.

Also, for the first-order calculation ro and ri must
be given more exactly than for the zeroth-order calcula-
tion. From Eq. (4.10), we have

ro ——(LI—(1—4pe) &r)(2p) i} &r (Qe) (1+&~pe) (F2a)

and

ri (I 1+(1—4——pe)i~2)(2p) &}i~~

(1/Qp) (1——,'pc) . (F2b)

As in Sec. IV, we consider separately the regions A,
8, C, andD.

Region A. We solve Eq. (F1) to first order in X. To do
this for region A, we find a transformation which to
first order in X turns Eq. (Fl) into a parabolic cylinder
function differential equation. " The transformation
which works is

w= x+X(3x'+-'Fx) .

Then, the even-parity solution to (D1) is

4~ ——C(1——'Xx')LD (w)+D. (—w) j, (F4)

where
v=E—

2
—2~(E'+-'). (FS)

LIn this appendix, we do the WKB calculation for
even-parity wave functions only. The differences for
odd parity involve the algebraic manipulations in
region A.]

We compute the asymptotic expansion of 4» in
region 2 for r near region B.The first two terms in the
asymptotic expansion" for D„(w)are

v(1 —v)
D„(w) w"e

'"' 1+
2K'

for —437r(argw(43m (F6a)
and

v(1 —v) (2ir)'"
D„(w) w"e i ' 1+

2w r( —v)

(1+v) (2+ v)
)(gv1I"s~ P 1g4Ql~ 1+ 2'

for —,'vr(argw( (5/4) ir . (F6b)

Equations (F2)—(F6) are used to expand Cz into
its asymptotic form. We expand to first order in
powers of p and ro'/r'. We keep terms of the form p
and r02/r' and neglect terms of the form p', pro'/v', and
ro'/v'. These approximations are justified because they
give the correct asymptotic connection with Cg. As
we had expected, these approximations define the
extent of region A more clearly than the zeroth-order
calculation did.

After considerable simplification, 27 the asymptotic
expansion for 4~ is

3pr e pr 17pe pe 37
C g C2+2'"+'e '(se '"'4 1+ 1+ + + 1 ———+

16 4r' 16 64 32 8 32

r" ff2 ( 3p6 pF2 1x s 3p62 pcs 6~ 2
exp —

I
1 — ————exp — + + — 2 l" &

I'(2+sv) 4 ~ 8 4 8 4 16 8 Sr' 2r'

3pf pf'2 1m' t 3pe2 per2
+ exp 1— —— +—exp —— — -+ + — 2&~&

I'(——,
'

v) 4 8 4 8 4 16 8 Sr' 2r'

This is the desired result for region A.
Region 8. The first-order WKB solution" to the differential equation LEq. (Fi)) is

IJ 1 p
@&KB C2 exp i ———dr+ Cr exp —i ———dr+

(1—kn" +4n"~)'" p Sp 4 p Sp, 4

(F7)

(F8)

"BMP, Vol. 2, p. 116, Eq. (1}.
"BMP, Vol. 2, pp. 116-123.There is a serious misprint not on the errata sheet which must be corrected before one can do the

first-order %'KB calculation. Equation (2},p. 123, should read

D„lrl=r"r *'" p ' '"" ' "+O(z'( v ' —' ' r" 'r '8"" g ' + '"" ' "yo r' ~ ' for 7r'4(ar r(51r'4

Equation (3},p. 123, has a similar misprint but it is not needed in this paper. The equation is derived correctly in E. T. YVhittaker
and G. N. Watson, A Course of Modern Analysis |,'Cambridge University Press, Cambridge, 1952)."BMP, Vol. 1, pp. 1-5.

'8 See Ref. 8. For first-order %KB techniques, see A. Messiah, pp. 233—234.
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where

p =2(—2+»2 —pr') —'~2.

We would encounter a serious '..c yd'%cult with this
fi t-order calculation if we wer p

~ ~

ere to roceed as we irs -o
S . IV. If we fixed the constants C~ an 3 q.w dC inin ec. . w

int ~the reference(F8) b defining the lower endpoin (
l t ber we would find that thepoint) in the integra s to e»2, w

ls become divergent regardless of the upper en-integra s ecom
oint. The same would be true if we pic e

. I der to avoid this di6iculty, wereference point. n or er
carr out the following procedure.

—-' J d "&' as an indefinite integral andWe treat —
8 r p, p,

integrate y par s rg b t epeatedly. This isolates the iver-
ed After some tedious algebra, thgences at r=ro an rj.

result is

r I2 r
dr—— p»2 ( 2+»2 p p4) 2I2—

8 p 6 2

1
( 2+»' P—~) '"—

122(1—4pe)

XQ»'(1 —12p2) —» (1—8p2) ]
d + o t. (F10)

2 pA11/2122(1—4pe) „(—2+r —p

In Eq. (F10),
=r,'r, '/(r, yr, ),2 2 ,F11)
—(» 2+r 2)

—2 (F12)

(F10) is an exact equation. Equations,ns gF11Equation is
the definitionsand (F12) are also exact and follow from the

We determine the constant m q. ( )
by evaluating the integral —$ J"dr p"/p using a second
method. Using Eq. (F9), we have

1 p"———dr
8 p

dr( —2+»2 —pr') '"(pr' —2r)2. (F13)

Finall, we return to Eq. (F10) and approximateFin y, we re
re ion 8 with the resultthat equation to first order in region

that

1 p,———dr const+ —+—n-—ln—+ ——.(F15)
8 8r' 8 ro 1 ~

(F17)

1 p+
2r2

(F18)

'" to first orderSecond, we expand (1——,p +~pl2
and get simply

2 I2+ 2ppn) 1~2

Third, we expand Qp. To first order,

(F19)

v'g-(-) I1+—w')(1+ + + ). 220

Fourth, we must evaluate „, p
" 1 dr. Note that

diff' ult with endpoint divergences in t is
integral. Therefore, we treat it just as we did in ec.
IV t that we retain first-order terms. From Kq.excep
(F9), we have

"1 1
—dr =-

oP 2 ro
( 2+r' pr')'"dr.— —(F21)

Comparing qs.E (F14) and (F15) determines that the
constant in Eq. (F13) gives

const= 3p/8 —1/122. F16

h thus avoided the divergences which comee ave u
from the endpoints in the evaluation o
As a resu t, q.l K (F10) with the constant of integration

~F16, is a well-defined and consisten t
incr'

tezral evaluation valid in oth regions an
Hence, the constants C~ and C3 are fixe .

expansion of 4 gTKs C Eq. (F8)j in region B.
IFirst, we expand ~p, .

'P'= ( 2-+»' P—»') '"(—P»' 2»)—

"1
—dr

~o P

»2

dr(r' ro')"'r ~.
—(F22)

2r~)1 " 1 " 5 3 5
d. .-+-. —"--

8 p 4 2 Substituting r = »2 coshO~ into Kq. (F22) and integratmg
gives1 3p 2r—+—ln—. (F14)

8r' 8 ro "1 1 3 2r 1
dr —2 1+—p2 ln—+-r' 1——-p2

~

ro p 4 8 roAs in region, en A the first-order asymptotic expansion
in region mean8 means that we expand in powers o p an
and »22/»2 We keep terms of the form p and »2/r an
neglect terms of the form »22/r, p/»2, and p2.

r'p 1 ( 9———
2i 1+—pe + . (F23)

4 2 k 16 8r'

We expand the integral in Eq. (F21) and getExpanding the right-hand side q.
'

e of E . (F13) in region
3 to first order, we find that

P
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pdr 4&+ (1—12pe) r'

126(1—4pe) ( a+r' —pr')'"—
1+—pr' 1+ +—+

Then, after some heavy algebra,

I

in E . F29~ and dehne the definite integralWe combine Eqs. (F14), (F18)—(F20), and (F23). method as m Eq. (,an
These five results are needed to give us the asymptotic as Q:
expansion of C wKs (FS) in region B:

Q=

1
C2exp i — —e 1+8pe ln—+r' 1—~pe —~r'p

4 ro

9 e2 1 p 1 3p 2r——~ 1+—p~+- — ++ +

1 p" 3p 1 10R "'p'"Rgp———dr= —— +
8 p 8 12~ 2402

Wt

1+-~ —(V'~)R I+Q (F3»
24V2 4 4 )

UVe have now determined C ~, the asymptotic expan-+C3 ex~{ ig~-ig~—]} . (F24)~
~

sion of 4'~yKB in region C:

1+——e+—— (F26)

Second, as in region 3,

(] i /2+ 1~66i6) i(2~1—
Third,

R—3/2 1/4P
6+—p —)6+6) .

2442 2 2
(F28)

Fourth, we decompose the integral J„,"(1/p)dr as
follows:

(F29)

The first integral in Eq. (F29) will be expressed later
in terms of elliptic integrals )see Eq. (F47)7. For now
we label it I':

Region C. Ke calculate to first order the asymptotic
expansion of C'wzs LEq. (FS)j in region C. For this
purpose it is convenient to use a new variable R:

R=—rl —ro. (F25)

Expansions in region C are done in powers of p and
R/ri. For first order we keep terms of the form p and
R/ri and neglect terms of the form R'/rP, Rp/ri) and p'.

The components of the asymptotic expansion o
C)wxs LEq. (FS)] are computed in turn:

First,
21/4 1/8—

P

21/4 1/8 5 — 5
C c- 1+—pe 1+—(gp)R

R"4 8 8

R '/'p'/4 25 15
X 6' exp

' 6+ 6+ )6v'6)6.I'— —
4

+ +-'- — 'v2p '"R'—"—$1 ,'(-'p +-'p—'"—R)j+ +8P 3 P
126

+6 m( —( j)) (F66)

where P and Q are defined in Eqs. (F30) and (F32),
respectively.

F25R
* D. In region D, we substitute Eq.egzon . n

m the]
equation to

0=
d' 5 5R

+-' '"R 1—p —s+— C (R) . (F35)
QR2 2 2 pl/2

Then,
R pi(sLsy) (;+.,„+.ss )j (F36)

Equation (F35) must be solved to first order and Cg&

is its solution. We solve Eq. (F35) by finding a trans-
formation of variable which to first order changes q.
(F35) into an Airy equation. "The correct change of
variables is

(F30)
C'D= {exps~Ls—u(s~+ss') j}x (F37)

orec»d integral in Eq. (F29) may be approximated
{d'/ds'+-', ps}x=0., with the result that

The solution to the Airy equation LEq. (F38 isr1 1 5 3—6 —'VS "')6'" )—6 —(Qp))6). (F6))
( ) (,()6,),~ ),,4

XKi(3(2(—s)'"(18p ') '") (F39)

(F38)

Fifth, we use Eq. (F10) to approximate j'—s (p"/p)dr.
We decompose the integral in Eq. (F10) using the same 29 BMP, Vol. 2, Sec. 7.3.7, p. 22.

X in Eq. (F37) satisfies this Airy equation to first
der:The s

easily
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As in Sec. IV, to calculate the asymptotic behavior
of Cn we need to use Kq. (4.31) which isoo

Ei/o(e '/ x) = oi—7r(e' / Hi/o/ &(x)

+e ™/6H,/o/ & (x)]. (F40)

After some algebra both P and Q are found to be
linear combinations of K(k) and E(k). These are the
complete elliptic integrals of the first and second kind. ~

X(k) and E(k) are defined by

Also, we need the asymptotic expansions of H j./3f a (')an
Hi/3(" to first order"'.

5
Hi o&'&(x) e'i ' /n& 1+ (F41a)

Q(&rx) i 72x

and

E(k) —=

(] s2)1/2(1 kos2)1/o

' ds(1 —k's')'"
E(k) =—

(1 s2) 1/o

(F46a)

(F46b)

and
v2 5

H &'&(x)- e 'i* '~/"& 1— (F41b)
g(xx) 72ix

where in our case
k'=—1 ro'/ri—o (F46c)

We combine Eqs. (F36), (F37), (F39), (F40), and

(F41), and after some heavy algebra, we have the
asymptotic expansion of 4»:

Using Eq. (F46), P and Q may be written as

p ri' 2 —k' k2 —1
P = E(k)+2 R (k) (F47)

2 3 3

Cn(R)
2 "'" '"3 "'p'"'o 5p 5R+p)1+—+

24 88'/4

X(er~(i[-'v2P '/ R'/ot 1 —$(oPo+oR+P)7

—(5/24v2) p'/'R —»'L1+-,' (-,pe+-, Rgp)] }

and

Q= t 4clt(k)+(1 —12po)rioE(k)]. (F48)
12rie(1 —4po)

We expand K(k) and E(k) to first order for k near 1

by means of the following formulas":

+exp( iL' ' '3}) (F42)

This completes the calculation of the asymptotic
expansions for C~, C~, C~, and C~. It is necessary to
asymptotically connect C ~ with C ~ and C ~ with C~ as
was done in the zeroth-order calculation in Sec. IV.

First, we match'» in Eq. (F7) withe» in Eq. (F24)
and determine the ratio of C2 to C3'.

/1 2X v+I/2e —jx /4 je/4= Perp

E(k) =-', or oF&(-', )-', , 1;k-')

E(k) =-', m. oF&(—-'„-',; 1; k-). (F49b)

and

rp' 4rj
E. (k) ln—+ ln—-1

rp 4ri' rp i
(FSOa)

We then expand the hypergeometric functions ln L.q.
(F49) to 6rst order for k near 1o':

rp' 4rI
15 E(k) 1+ 2 ln —1

Xexp ip 1+—o', (F43) 4rl2 r(l
64

3 rp4 4rl 13
+——21n———. (FSOb)

32 ri4 rp 6
where v is given in Eq. (FS).

Second, we match C& in Eq. (F34) with C» in Eq.
(F42) and, once again, determine the ratio of Co to
C3.' Equation (F2) allows us to write Eq. (FSO) in terms

of p and ~:

IC/k) (1 )(1+—)— (F51a)

and

C2
—

3p 1—=e""ex'& 2i P+Q—+ , (F44)——
C3 8 12&

where P and Q are given in Eqs. (F30) and (F32),
respectively.

It only remains to calculate the integrals P and Q.
Both integrals may be treated by substituting

p~ 77 1 19 4
E(k) 1 ————p'o'+p» —+—po ln —. (F51b)

4 64 2 16 Q(pe)

~2 r 2 r2 rl~ rp2 ~

BMP, Vol. 2, p. 5, Eq. (15) and p. 80, Eq. (43)."BMP, Vol. 2, p. 85, Eqs. (1) and (2).

(F45)
Finally, we combine Eqs. (F47), (F48), and (F51) to

"BMP, Vol. 2, p. 317, Eqs. (1) and (2).~ BMP, Vol. 2, p. 318, Eqs. (5) and {6).
84 For the expansion of E(k) and E(k) see Ref. 11.
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get the first-order evaluation of P and Q:

and

e 4 // 3pe) 1 e 17
P —— ln

~

1+ ~+———+ p22 (F52)
4 Q(pe) E 8 l 6p 8 128

1 35p 3pt/ 4
Q- — +-I»

I
~

48 8 k g(pe)i
(FS3)

C2 i 2 1 //17 17—= e'~ /2exp ' i ———+p~
———22

C2 l 4 3p (24 64

Combining Eqs. (F52) and (F53) with (F44), we have

J 2e—sm /4 dr 4 wxs2(re "4). - (G1)

APPENDIX 6
In Sec. VI, the result of performing the integral

J QC wxs (s)ds was stated in Eq. (6.3).In this appendix,
we demonstrate explicitly the evaluation of this integral
which we call J. Ke will calculate J only for even-
parity wave functions C. The odd-parity case is similar
and presents no new difhculties.

%e chose the contour C to be the straight line
a=re ' '4, where r runs from —~ to ~. Because the
%KB solutions have delnite parity about r=o, we
simplify J to

16 e 3p 3pe'
(F54) In Eq. (G1) we break the region of integration into

pe 4 8 32 four pieces:

Ke have thus calculated two independent expres-
sions for C2/C2. Setting these expressions in Eqs.
(F43) and (F54) equal gives an even-parity version
of Kq. (4.35) correct to first order instead of zeroth
order as previously computed in Sec. IV. Thus,

I'(-'+-' )

I'( —2v)

2 5m

=exp (v+-,') ln —+i —+-
p 4 3p

where

+ip — ~, (FSS)
4 i

2+ v2p(E +4) .

This is the result we have sought. It is reassuring
to observe that Kq. (FSS) reduces to the zeroth-order
calculation LEq. (4.35)] if we neglect sip(E'+~) com-
pared to (E—-,') in v and p(7/24+E'61/4) compared to
52//4

Considering the zeroth- and erst-order results, it is
tempting to conjecture that to all orders the %KB
result corresponding to Kq. (F55) takes the form

I'(-'+-' (p)) 2
=exp Lv(p)+2] ln—

I'(—— (p)) P

where

(I) 0&r&rp,

(II) rp&r&ri,

(III) ri&r&r2,

(IV) r2& r,

&o«o(«i«i«2 (G2)

J 2g
—im /4

r=o
dr C '(re—' ") (G4)

Inserting Eq. (4.12), the definition of C~, into Eq.
(G4) we get

ro

J 2e—ir/4C2 //D„(re ' /4)+D„( re ' '4)]'dr, (G5)—

The & sign in Eq. (G2) means that we disregard »2

compared to ro to zeroth order.
4wKs is approximated by Cz LEq. (4.12)] in region

I, by the oscillating WXB solution (Eq. (4.16)] in
region II, by C n LEq. (4.28)] in region III, and by the
exponentially decreasing WKB solution LEq. (4.5)] in
region IV. The integrals in each of these regions must
be treated separately using

J=A+Ar+Aiz+Av.
Region I. In region I, we evaluate

where v= —-', —~iie and e=4iE.+i —+—+in(p, (F56 We expand the integrand in Kq. (GS) using identities
of the parabolic cylinder functions" so that

where v(p) and n(p) are power series in p:
J —2e—ir/4C2 (1 e2vwi) D 2(re—6r/4)d»

v(p) =Q v p",
s o

with vt/ ——E—-', and vi 2i(E2+-,'——);—

(F57) =0

(22») '
+ e7ri (v+1)

I'( —v) =0
D 2 (rein /4) d»

n(p) = 2 n-p"
m~1

(F58) +2(1+e '") D„(re ' ")D„(—re ' ")dr . (G6)

with n, = 7/24 —61E'/4. 36 BMP, Vol. 2, p. 117, Eq. (7).
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F (611) aositive ~ iall po iwe intro uce
follows:

1258

he in g . (66) by introducinghe integrals in Eq.We evaluate t i g
a new uncf tion F into Eq.

J —2e—i~/4 2 e i~/—4) F(r)]dr C~' re
'

lim D„,re i~—/4)D ( re iw—/4)

rp

dr F(r) . (67) e' " dr. (G12)
I'(—v) (r+1)~'

approximation
'

n to)
'

o h-o r yas mptotic a
re / ) whlchwou n

Th' dfi 'ttails if integraated to r=~.
implies that a good approxima

'

r in Eq. (612) by pr/4, the
als become no

the limit as ~ —+

sim lification~ the final resu t oAfter considerable simp i ca i
evaluation is

J ~2e—ia/4

r=o
dr C~ re2 e iw/4) F(r)$

+ dr F(r) . (GS)

1
e vitri/24C2+(22r) COS(-2v2r e

Ji~
I'( —v)

-'2r cot(-,' —-'2E) 2r],&&[2 lnr2 —|t (E+-'2)+-22r C

'
ns in Eq. (GS) can be done easdy.All the integrations in Eq.

Explicitly these
'

ginte rais are e
' . ion II, we evaluate

—=d lnI'(x)//d2:.
Region II. In region

~2 eiw/4C 2(1 e«I%i) D 2(re '~/4)dr- —i7r/4Jrz
r=rp

' —r') '/'2C, C2. (614)dr( e+r2 —p—
g(24r) '

+ e'"
I'(—v) =0

D 12(e' "r)dr+2(1+e""

+ F(r)dr . (G9)

oo

"')D.(—re ' ")—F(r)jX dr[D„(re ' /' D„—re—
=0

ave substituted Eq. 4.16)
dh I s uaringG1) and square

ator ~ terms because
into Eq.

o the integral could on v eco
Th h f

t eir con
1 rQ ol rj.

ionf the integration region pas endpoints of t e in

g p

ose theinte ral in Eq.g
region o in er

'
f

'
tegration into t re

1 Q(22r)

r+1 I'( —v)

suits g

2TQ 27 g

rp
e ' '4)D. ( re ' '4) behave—s as

4CC

4 —1/2 615)dr( «+r' pr4)— —Xdr —e — 4—

'—r ' and k'=11
'

the regio ofb t ith

he first integra in

vior at r= ~ u

1 of h

beha

), @pc tg
integration. We t us

') ( ' ') C b

F(r)—=

(—«+r —p = '— rl-'—r' =p(r' rp rl——
ives

om lex plane byhe contours in the compAfter rotating the con

thirdcome known forms. '7 In or er o
integral in Eq.

D (re in/4)D ( re—kr/4)—
r~0

27r

( 1)—le&/4r e
I'(—v)

l. 2 p. 122-2—123 Eqs. (1) and (2).IPBMP, Vo, p'~ BMP, Vol. 2, p.

(G11)

+ E'(k) . (G16)
rlgp

1 see Eq. (4.23b) forE(k) for k near 1 [see q.We now expan

1. 2 . 122, Kq. (21).S BMP Vo1. 2 p-BMP, V.
317 E (1)~BMP, Vol 2, p.
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this expansion] and find that the contribution from
region II is

Jzz 4C&C&e '~/4Lln(2/regp) —p"M2(rz —rz)'/'] (G17)

Regions III /Jnd IV. Using Eqs. (4.20), (4.28), and
(4.29), we can write down the integral contribution
from region III: and by using"

x= 2 (18/p)-z/zs"' (G23)

Equation (622) is a good approximation to Eq. (G21)
because G(s) is chosen to behave asymptotically as
K~~3' for s near —~.

We reduce the first integral Eq. (G22) to a known
form by substituting

=2e—' 7'4

t2 D2
dr—

~~1
It z z2(x)xz/zdx —2—&/&3Pz(2) (G24)

~rrr+~zv=2e ' " co

dr-
~1

XEz/32(2 (18/p) '/'(r —rz)'/') (18') '/'(r —ri) . (G19)

We simplify Eq. (G19) by substituting s =r ri .. —

2e im/4D—2(18+ )
—1/3

Jzrr+ Jzv =
3

sds It z/ '(2 (18') ' 's' ') (G20)

Next, as we did in region I, we introduce a counter-
term G(s) in Eq. (G21) and extend the region of integra-
tion in Eq. (622). This procedure facilitates the evalua-
tion of the integrals.

J +J —te i~/iDz(18—/p)
—I/3

sds Itz/zz(2(18') "s")

ds(spaz/3z(2(18') '/ s / )—G(s)]

XItz/z L2(18') i/ (r —ri) / ](18') '/ (r—ri). (618)

%e notice that the contribution from region IV can
be included in Eq. (G18) by increasing the upper limit
of integration from r2 to ~. This is true because the
Kg~3 Bessel function for region III and the %KB
solution for region IV fEq. (4.5)]have similar exponen-
tially decreasing tails. Hence,

lim Jz/z(x) J / (zxz(1+ ))xe/

(cosxe)x '"
(1+e) z/-'zr

dx. (G26)

The first integral in Eq. (G26) is a Weber-Schafheitlin
integral. "The second may be evaluated by changing
the contour. This gives a F function. The results are

F(1 —' -' (1+e) ')
lizn 2'/'(1+e) '"

(l) (-')

p(-', ) e '" cos-', 1I.

(627)

We simplify the second integral in Eq. (622) by
substituting Eq. (G23) again and by observing that"

Ez///(xe& ') = ( zri—/vZ) P z///(x)+ J z/z(x)]. (G25)

Three Bessel function terms arise from plugging
the square of Eq. (G25) into the second term in Eq.
(G22). The techniques for integrating only one of these
three terms will be presented here because the other
two terms can be integrated similarly. Investigation
of Eq. (G25) shows that in terms of the variable x the
counterterm G is proportional to x '". As in region I,
a limiting procedure must be used to do the counter-
term integration as follows.

%e insert a positive ~ and the hrst of the three terms
becomes

Ke transform~ the hypergeometric function in Eq.
G(s)ds . (G21) (G27) as follows:

This may be approximated by

Jzzz+Jzv-ee ' "D (18') '"

s/& Kz/3 (2(18') z/2s'/ )
X &-

(1+e)'

——1//3

F(-'„0;-', I
—2e —e') . (G28)

dS)SEz/3 (2(18/p) / ez/ )—G(e)]

G(s)ds . (G22)

' BMP, Vol. 2, p. 93, Eq. (36).~ BMP, «l. 2, p. 5, Eq. (15), p. 80, Kq. (43), and p. 4, Eqs.
(5) and (6).

"BMP, Vol. 2, Sec. 7.7.4, pp. 51—52.~ BMP, Vol. 1, p. 109, Eq. (4).
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We simplify" Kq. (628) and insert it into Eq. (627). We may pick an arbitrary value for C32 because we

We can then take the limit as ~ —+ 0 because the terms are free to choose the over-all normalization of the
containing e '/' cancel. The result is that original %KB wave function. We let

lim

QO (cosxe)x "3
dx J1/3(x) J1/3(('3+1)x)x /'—

2rX(1+3)'/2

3y2 /&

C '=-', e' "r(-,'+-', E)r(-,' ——',E).

Substituting Eq. (633) into Eq. (G32) and simplify-

ing, "the results are

2D2 Qp 1/3 0

Jrrr+~jv 7r

3 3
x '"dx, (G30)

where x=2(18+p) '/-'s'". We evaluate Eq. (G30) and
fjlnd that

(629)
r'(3)

The second term (J1/3J 1/3) and the third term
(J—1/3J 1/3) each contribute 0 to the second term in

Eq. (G22).
Thus, the first two integrals in Eq. (G22) cancel.

After substituting for 6, we are left with the third
term in Kq. (G22) which is

r( —v)e 'e"(-'2r)'"e' "
C2

4x' cos2wv

Lgi3r /4
)

(G34a)

(G34b)

D' = (18')'"e"4/2r (G34c)

J1 2 lnr3 —
g (E+32)+22r cot(33 —33E)31, (635a)

J11~—2 lnr3+ln(4/p) —2p" V2(r1—r1)'/' (G35b)

Combining Kq. (G34) with Eqs. (G13), (617), and

(G31) shows that the contributions to J are

J +J ~21D2e iT/422/3pl/123 2 (/3r r )1/2 (631)
Jrrr+ Jzv 2V2p'"(r1 —r1)'/'. (G35c)

We have now evaluated all of the integrals in Eq.
(61). Finally, we must relate the constants C, C1, C2,
C3, Ci, and D in Eqs. (G13), (G17), and (631).To do
so we use Eqs. (4.14)—(41.6), (4.32), (4.33), and (4.35)
and show algebraically that

Referring to Eq. (G3), we add together the three
expressions in Eq. (G35) to find the total contribution
to J which is

J= —1//(E+'2)+'231 cot(-,' —-', E)2r+ln(4/p) . (G36)

r2 (3 3E)e sic /22 EC 2—. —

(23r)'

Cg'
C2Cg ——

r (-', --',E)r(-,'+-', E)
'

p /62 /332/3Cy2

r (-'+-'E)r (-' —-'E)

(632a)

(G32b)

Note that ro and r~ have dropped out of this Anal

expression. This completes the evaluation of J for even
parity.

For odd parity the result is

J= —p(32+E)+322rcot(33 —23E)3r+in(4/p). (G37)

The only differences between the even- and odd-parity
derivations occur in the algebraic manipulations in
region I.


