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Simple Model for Corrections to the Isobaric Multiplet Mass Equation*
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A simple nonperturbative model is used to estimate corrections to the 6rst-order perturbation-theory
formula for the isobaric multiplet masses. The leading-order correction to the equation, which is proportional
to T,~, is found to be much smaller than expected from second-order perturbation arguments and from limits

set by experiments.

~ IHK completion of measurements of the masses of..higher-isospin multiplets, especially all four members
of several quartets, ' allows one to test the isobaric
multiplet mass equation (IMME)

M(A, T, T,) =a(A, T)+b(A, T) T,+c(A, T) T,'. (1)

This relation is obtained from the first-order per-
turbation theory on the assumption that the charge-
dependent perturbation arises from pair interactions
only. The measurements' show the possibility of devia-
tions from the quadratic form given by Eq. (1), and
indicate the presence of a term d(A, T) T.' of order
Zac (a is the fine structure constant). This is the order
of magnitude anticipated from second-order perturba-
tion theory. '

In this commentary, we give the results of calcula-
tions, based on a simple model, in which the Schrodinger
equation is solved directly, with the charge-dependent
potential included in the model Hamiltonian. The
model consists of a closed, inert core plus three bound
"valence" nucleons. Although this applies primarily to
closed-shell-plus-three-nucleon systems, we apply it to
other cases to study the Z dependence. It is assumed
that each valence nucleon interacts with an average
central potential produced by the core plus the other two
valence nucleons. This potential includes a nuclear
potential of Woods-Saxon shape, the Lane symmetry

TABLE I. Description of the single-particle potential.

vw ———volt+ expL —{r—8}/D]l
Va= (100/A) {1+expL —(r—R) /D/I ' MeV

Vo.. Adjusted as described in text.

R=r~~ls

rp=1.4 fm

D=0.5 fm
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potential (proportional to t T&, where t is the isospin of
the "last" valence nucleon and T~ is the total isospin of
the "first two" valence nucleons), and a Coulomb

potential produced by a uniformly charged sphere of the
same radius as that of the Woods-Saxon potential. The
parameters for the nuclear and symmetry potentials are
given in Table I.

In our Inodel, only the principal parent from the
parentage spectrum of the "quasicore" consisting of the
inert core plus the "first two" valence nucleons is con-
sidered. W'e assume that this principal parent is coupled
to TO=1 and J0=0. This implies that for each state of
total isospin T, only one level of total angular momen-
tum J=j need be included. ' We assume that Coulomb
corrections from other states are negligible, since the
states of the same angular momentum and parity tend to
be far removed in energy.

Because the primary interest is to study the param-
eter d and its dependence on A, the depth of the nuclear
potential was adjusted for each quartet so that the
protons in the T,=——', member were bound by 0.2
MeV in the appropriate shell-model state. For the
"quasicore", the Coulomb-energy differences were
assumed to be derivable from Eq. (1) and were esti-
mated from the semiempirical mass formula given by
Myers and Swiatecki. 4

For the members with T,=&-'„ the nucleus is in a
pure isospin state T=-,' and the "last" nucleon satisfies
a simple Schrodinger equation. For the members with
T.=&-'„ the nuclear state function is a mixture of
T=—', and T=~~ states. One obtains inthesecasessetsof
coupled equations for the neutron and proton wave
functions similar to the well-known Lane-Robson
equations~ for isobaric analog resonances.

The results of solving the coupled equations are
shown ia"~Table II, where we give the values of the
coefBcients b, c, and d for several values of A. For com-
parison, we also give the results of first-order perturba-
tion theory and the experimental values. ' Since the
coefBcient a involves the mass defect of the inert core,
it is excluded.

The results of these calculations exhibit several

' The importance of the parentage spectrum has been pointed
out especially by D. H. W'ilkinson, Isobaric Spin in Nuclear
Physics (Academic Press Inc., New York, 1966), p. 30.'%'. D. Myers and %.J. Swiatecki, Nucl. Phys. 81, 1 (1966).' D. Robson, Phys. Rev. 137, 535 (1965).
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TAaLr. II. Parameters of the IMME. The subscript p indicates the Grst-order perturbation, the subscript m stands for the model, and

expt for the experimental results (see Ref. 1).Errors are given in keV in parentheses.

bn
{MeV)

b

(MeV)
bexpt

(MeV) (keV) (keV)
&expt

(keV) (l.eV)
&expt

(l eV) (l eV)

—0.69605 —0.68224 —0.588(50) 234.967 230.040

—1 .14252 —1.12451 —1.332 (7)
—1.96550 —).94171 —2. 180(5)13

17 —2. 70278 —2.68704 —2.882 {7)

21 —3.39127 —3.37293 —3.660 (9)
—4.04039 —4.01996

29 —4.81896 —4. 77305

33 —5 24891 —5.22553

230.800 226. 164

22).059 217.234

210.342 208. 100

201.682 199.170

194.364 191.121

198.814 195.128

182.574 176.515

255 (45)

277(ii)

255 (4)

243(io)

244{8)

—5.81765 —5.79338 —6.189(30) 177.711 169.604 182(30)

0.65546

0.06465

—0.43990

—0.20362

—0.18168

—0.04242

—0.86168

0.54547

1.01287

—11(30)

7.6(5)
—1 {12)

8(42)

52(21)

5(17)
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noteworthy features. First, the comparison with
experiment seems remarkably good, considering the
simplicity of the model. This indicates that Lane's
symmetry potential and long-range Coulomb effects
account very well for the principal features of the
IMME and corrections due to refinements of the model,
such as those discussed below, should be small. Of
particular importance is the fact that the ratio b/c,
plotted as a function of A in Fig. 1, lies close to the
experimental values. This gives us con6dence that the
calculated ratio d/c has meaning. The ratio b/c is
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FIG. 1. Plot of the ratio —bjc as a function of A.

proportional to A, as predicted by perturbation theory.
Second, we see that the effect of the higher-order

correction to the IMME is absorbed mostly in the
coefficients b and c (in agreement with second-order
perturbation-theory calculations2), since the change in
these coeKcients is large compared to d. Second-order
perturbation theory predicts tha, t d is only of order A '
of the change of c.

Third, the calculated values of d are much smaller
than Znc. Experimentally, the values of d are not well
established (Table II), but appear to be of the order of
or smaller than Zac.

The result of our work suggests that the coeS.cient d
is generally much smaller than anticipated from higher-
order perturbation theory; exceptions may occur for
certain nuclei, when structure e6ects not considered in
our model are taken into account.

In order to put these conclusions on Grmer grounds,
we are improving the model in several ways. This
includes (a) the use of more realistic two-particle
potentials for the residual interaction between the
valence nucleons, (b) antisymmetrization of the wave
functions, and therefore inclusion of more (or all)
members of the "quasicore" parentage spectrum, and
(c) the inclusion of other small charge-dependent
effects. As was pointed out earlier, we expect, on the
basis of the present calculations, that corrections from
these refinements should be small.
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