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As the continuation of a preceding paper, an expansion for the quantum-mechanical free
energy F of a hard-sphere gas at high temperature is extended up to the second order in the

thermal wavelength X= (27(h /mkT), To reach this order, one must study the three-body

problem in a lowest-order approximation, in which adjacent sphere surfaces can be regarded
as parallel planes. Coefficients of the X series for F are given in terms of classical corre-
lation functions. Using known density expansions for these correlation functions, one can

obtain X expansions for the virial coefficients; the third virial coefficient is

B3——(57( a /18) [1+(3/~2 Q/a) + 1.707 660 (X/a) + ~ I,

where a is the hard-sphere diameter (only the last term is a new result).

I. INTRODUCTION

In a previous paper, ' the quantum-mechanical
free energy of a hard-sphere gas at high tempera-
ture was studied as a series in powers of the
thermal wavelength X = (2wl '/mk& T )"' (a is
Planck's constant divided by 2r, I is the mass
of a sphere, kB is Boltzmann's constant, T is
the absolute temperature). Only the first-order
term in X was, however, explicitly given in sole
terms of the classical thermodynamic quantities
and correlation functions. The purpose of the
present paper is to give an explicit expression
for the second-order term in &. At the same
time, the third virial coefficient will be obtained
as a series in X up to the second-order term. '

In I, an expression for the quantum-mechanical
free energy F, valid up to the second order in X,
was found to be

x U, (r„r,) dr,drpr, dr, ,

where gE is the l-body classical correlation func-
tion and U~ the quantum-mechanical l-body Ursell
function. ' U, is sufficiently well known. ' The
main task of the present paper will be to study U, .

In order to derive from (I) an explicit expan-
sion of F in powers of X, up to the second order,
we shall give sufficient simpler approximate ex-
pressions of c„c„andf, in Sec. II. The ex-
pression of c, involves an integral upon U„which
can in turn be expressed in terms of the spatial
distribution function 8', for a three-body system;
this function 8', will be obtained in Sec. III, in
the lowest approximation which is here sufficient.
The resulting Ursell function U, will be integrated
in Sec. IV, and the final result for the free ener-
gy will be obtained. The special case of the third
virial coefficient will be considered in Sec. V.

x U (r, ... , r )dr ~ ~ dr (2)

and

f =(8II) ' f [g,(r„r„r„r,)
-g, (r„r,)g,(r„r,)] U, (r„r,)

F (0)
p(2c' —c,) —pf, (1

B B
F'" is the classical value of the free energy.
is the total number of particles. p is the number
density N/0 (II is the total volume of the system).
The quantities cl and f are defined as

c =(Ql() 'Jg (r, . . . , r )

II. CALCULATION OF c» c3, AND f,
UP TO THE ORDER ) 2

In (1), c„c„andf must be expanded up to the
second order in X. Exchange effects are expo-
nentially small at high temperature, and do not
contribute to power series in X; they can be
neglected in the computation of the Ursell func-
tions U~.

Since g, (r„r,) and U, (r„r,) actually only de-
pend on the distance r = ) r, —r, ), one has

2c~ f g, (r) U, (r)r 'dr

[the lower bound of the integral has been taken
as the hard-sphere diameter a, since g, (x)
vanishes for smaller values of x]. Furthermore,
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+ 2wg,'(a) a' f U, (r)(r —a) dr . (5)

since U, (r) has a range of order & beyond a, c,
can be written, up to the second order in X, as

c, =2wg, (a) f U, (r)r'dr
c, =4w'a' f d(coen)g, (a, a, n)

x f dr» f dr»U, (r», r», n). (10)

The middle sphere can be chosen in three different
ways. Therefore within the order X',

The first term in (5} involves the quantum part of
the second virial coefficient, which has been pre-
viously studied4:

—2w f U (r) r'dr=(w/&2)a'X+ 3 ah + (6)
0

The second term in (5) is of order X', and can be
computed within this order from the lowest-order
approximation for U, (r):

U, (r) = —exp[- 2w(r —a)'/X'], r &a .

Equation (10) involves an integral upon U„which
wiU be computed in Sec. IV,

Finally, f is of order A', and can be written
within that order

f= (X'/64) J [g,(r„r„r„r,)
g,—(r„r,)g,(r„r,)]

x 6(r» —a)6(r~ —a) dr, dr, dr, ,

where we have used (7) for computing

Therefore one finds f U2(r) dr = —X/2v 2 + ~ ~ ~ . (i2)

c, =-g, (a)[(w/v 2)a'X+-', aX']

—2g,'(a)a&X2, " (6)

~„= lr, —r, l, ~» = lr, —r2I,

and the angle n between r» and r». One has

c, =3 w' fA(r», r„,n) U,(r„,r„,n)

x r„'dr„r„'dr„d (coen) ..

The leading contribution to c„which is of order
X', comes from cluster configurations such as
the one depicted in Fig. 1: One of the spheres
is almost at contact with both the other spheres.

For the calculation of e„ it is convenient to take
as the relative variables, describing a configura-
tion of the spheres,

III. THE SPATIAL DISTRIBUTION FUNCTION
OF A THREE-SPHERE SYSTEM

A more explicit evaluation of c, from (10) re-
cluires some knowledge about U„ the definition of
which is

U,(r„r„r,) = W, (r„r„r,) —1 —U, (r„r,)

—U, (r„r,) —U.(r. , r &),

where &, i.s the quantum-mechanical spatial dis-
tribution function for a system of three spheres,
normalized in such a way that 8', =1 when these
spheres are all far away from one another. %e
shall therefore proceed to the study of 8', .

This distribution function is given by

where the summation runs on the complete set of
the relative eigenfunctions g~ of the three-sphere
system; Ez is the eigenvalue which is associat'ed
with p~, and C is a normalization constant.

The total kinetic-energy operator, when ex-
pressed in terms of the variables

R = (r, + r, + r,}/3, r„=r, —r, ,

j=(2r, —r, —r, )/V3

FIG. 1. A cluster configuration of three spheres.

is

(a'/6~) g —(g'/ni)(a + h-) . (16)R rg2 p
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Therefore the relative eigenfunctions tt)z and

eigenvalues E~ are given by the Schrodinger equa-
tion

The unit four-vectors normal to these hyperplanes
are

—(I'/m)(~- + ~-)y. =E.g
r&z p

(17)
(p, , v 3/2, p, /2, v, v 3/2, v, /2)

and (p, , v"3/2, —p, , /2, v, W3/2, —v, /2),

with the boundary conditions that g~ vanishes at

r» =a, and )pv 3/2+ r»/2[ =a.

( pv'3/2+ r„/2) ~ u, = a,

and ( j/3/2 —r„/2) ~ u, =a.
(19)

In (19), p and r» must be regarded as variables
up and u, as fixed parameters. These solutions
pf must then be used to compute W, through (14)
for that configuration (C) which had been chosen
for defining u, and u, .

The components of p and r» perpendicular to the
(u„u, ) plane are not involved in the boundary con-
ditions (19); the dependence of gf on these com-
ponents will only contribute a constant factor to

We will therefore only consider the motions
in the (u„u, ) plane. I et the Cartesian components
in this plane be ((, g) for p, (x,y) for r», (p, „v,)
for u„(p.„v,) for u, . From (17), we see that W,,
is the spatial distribution function for a free parti-
cle of mass m/2 in the four-dimensional space
spanned by ((, 'll, x, y), with the boundary conditions
that the wave functions must vanish on two three-
dimensional hyperplanes which are, from (19),

We are interested in cluster configurations like
the one in Fig. 1. The distance between the sur-
faces of the spheres 1 and 2 is large compared to
X, and therefore the boundary condition at x~ =a
can be disregarded[the special case, in which all the
three spheres are almostatcontactof one another,
would contribute to (9) only at the order X', and has
not to be taken into account here j. Furthermore,
in the high-temperature limit (X/a -0), the curva-
ture effects disappear, and the sphere surfaces
which are in front of one another can be regarded
as parallel planes. Let u, and u, be the unit vec-
tors parallel to r, —r, and r, —r„respectively,
for some definite configuration (C). When the
curvature effects are neglected, the problem is
now to find the solution g& of (17), defined for
general values of p and r», with the simplified
boundary conditions that It)~ vanishes on the flat
manifolds

and the angle P between these four-vectors is
defined by

cosP = g (pgp2+ viv~) = g cosa . (21)

The distances of the point ($, q, x,y) to the hyper-
planes are

= (2kv/HR)'~' J (kr) sin(nv p/8), (23)

where the quantum number n assumes integer
positive values. In (23) t)Ink has beennormalizedto

hp, ~3/2+xp, /2+riv, v 3/2+yv, /2 —a=r» ~ u, —a

and (22)

$ p, 13/2 —xp, /2 + g v, v 3/2 —y v, /2- a = r» ~ u, —a;

for the configuration (C), these distances are r»
-a and r»-a.

Since 8', depends only on these distances for a
given P, the computation of 8', can be made in
any two-dimensional plane orthogonal to the hyper-
planes (20). Therefore we finally have the follow-
ing very simple result: In the high-temperature
limit (X/a-0), W, (r», r», a) is proportional to
the probability distribution of one particle of mass
m/2, moving in a plane wedge (Fig. 2), the sum-
mit angle of which is 8 =m —P, where P is defined
by (21); r» —a and r» —a are the distances of the
particle to the edges, on which the wave functions
are constrained to vanish.

In terms of polar coordinates (r, q) chosen as
in Fig. 2, the wave functions in the wedge are

and

5 p, &3/2+xp, /2+q v, &3/2+y v, /2 =a

(p2 43/2 —xp2/2+& v2 v 3/2 —yv2/2 =a.
(20)

FIG. 2. One particle in a plane wedge.
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- [2/(8 &r) '~'] cos(kr —nm'/2 8 —m/4)
nk

x sin(nmp/8) . (24)

1 in a circular sector of large radius R, as can
be seen by using for the Bessel function J its
asymptotic form' for large ~ values, since then

A = lim [A~+A, +2A, ] .
c-0

(2

It is convenient to introduce exp(- e'r') as a con
vergence factor; it is then possible to compute
separately the contributions of S;, 1 and each 6
to (2S):

The possible values of the wave number k are
such that kR varies by integer multiples of r,
and we obtain from (14) using a tabulated integral, '

1e =d Z —f dkeep( „)1d„1'
n=1

00
—A'k'=d- Z f dkkeek( )n=1

For A„one has

e 4m —(e'+ m/~') ~=sine f drr f dkIk —Z e
0 n=1

x I (mr &X') sin'(nmklk/8) .
nm/8

x [J 8(&r)]'sin'(nmp/8)
The integrals in (30) can be explicitly evaluated
One obtains a geometric series, the sum of whi
can be expanded for small c values, with the re
suit

x & (mr'/X') sin'(nm1fk/8 ), (25)

A, = sine[8/2e' —Ik(-,
' m)"'/2e

—X'8/12m+ ~'m/12e+ 0(e)] .

where
ment.
C, we
8'3 =1
dinate

I is a Bessel function of imaginary argu-
In order to find the normalization constant

note that, far from the edges, the result
must be obtained from a Cartesian-coor
evaluation:

—5'(k '+k ')
1=k~, fdkdk

cede�)=c/kk

2m)' x y mk T

(26)

Therefore

The evaluation of A, and A, is straightforward:

A, = —f dr„ f dr»e

8 oo Q2y 2

= —sine f dy f drre
0 0

= —sin8{8//2c ),

1e, = —Z exp(, )' n=1

x I
8

(mr'/X') sin'(nmp/8 ) .
nm 8 (27)

8
=sing f dp f drr

0 0

x exp[- (e'+2m sin'cp/X') r']
= sine [X(2 m}"'/4e —(X'/4m) cot8+ O(e)]. (3

IV. INTEGRATION UPON THE THREE-BODY
URSELL FUNCTION. FINAL RESULT FOR

THE FREE ENERGY

When all contributions to (28) are put together,
gets

In lowest approximation, U3 can be obtained
from (13) with the use of (7) and (27}, and with
the neglect of U, (r„r,) for those configurations
we are interested in. We have to compute, for
its further use in (10)

w 8 ].A =X'
128 12m

sin8 ——cos8
21T

When

8 = m —cos (g cosn)

(31

A(n) = f dr» f dr„U, (r„,r„,n)

= f dr» f dr» [W, —I —U, (r») —U, (r»)] .

(23)

is used as the angular integration variable in (I
one finds

c, =m'e X f g (&, &, n)
cos '(-1/4)

3
m 3
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2m' 28 4
sin8 ——cos 8 sin8 d 8 .38 3m'

(35)

At this point, we have completed the evaluation
of the quantum-mechanical free energy F in terms
of classical quantities. Up to the second order in
X, the result is expressed by (1), where c, is given
by (8), f by (11), and c, by (35). The free energy
depends upon the density not only through the ex-
plicit p factors in (1), but also because the corre-
lation functions, in c„f, and c„are density-de-
pendent. The pressure can be computed in prin-
ciple by differentiating I" with respect to p.

V. THE THIRD VIRIAL COEFFICIENT

4——cos8 sin8d8 + ~ ~ ~

r

= 0. 721 8'l8 2w'a y'+ ~ ~ ~ = rp'a~1'+ ~ ~ ~ . (38)

Finally, f does not contribute to F up to the order
p'. One finds for the free energy (1) a p expansion
from which the p expansion of the pressure is
readily obtained

&
--p — = 1+B,p+B, p'+ ~ ~ ~ . (39)

pk T Bp Nk' T

In the classical limit, B, and B, are well known. '
Adding our quantum corrections, we find for the
second virial coefficient

The virial coefficients can be obtained through
an expansion of (1) with respect to p. The p ex-
pansion of c, is obtained by using in (8) the p ex-
pansion of the two-body correlation function'

g, (r) = 1+p-', wa' [2 —3r/2a+r'/8a'j + ~ ~ ~,

3 X 1
B2 371 a' 1 + —+ — — + ~ ~ ~ (40)a m' a

a result which was already known, 4 and for the
third virial coefficient

a&r& 2a, (36) 3 18
g ~2 s

with the result

ma'X 2aX' —5m'a'X 7ma ) '
3 12~2 72

(37)

1+ —+ 1.707 660 — + ... (41)a a

(the first-order term in X was already known'&').
For obtaining the free energy up to its second-or-
der term in p, it is enough to use in (1) the p-in-
dependent part of c„which will be obtained in turn
by taking in (35) the leading term of the three-body
correlation function, g, (a, a, o. ) =1, for w/3 ~ o. ~m:

, icos '(-1/4) 2m 28c =m'a'X' J sin8
~v/3 38 3&
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