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Detailed understanding of hadron production in nuclei is important for nuclear physics, for the study of
hadron-nucleon interactions, and for quantum-electrodynamic experiments involving nuclear targets. The
double differential electron-nuclear cross section is calculated for the region of electron energy loss corre-
sponding to excitation of the first nucleon resonance, using a Fermi-gas model of the nucleus. This simple
model allows us to reach an analytic expression for the cross section and to tie directly onto the Czyz-Walecka
threshold calculation. Further, the quasielastic scattering is calculated in exactly the same nuclear model to
indicate the reliability of this approach. Since the results here are model-dependent, such experiments should
allow some insight into the nuclear physics.

I. INTRODUCTION

f 1HERE is strong motivation to investigate the pro-..duction of hadrons in nuclei: One would like to
understand the nuclear physics of the production
process and eventually to use nuclei as targets for
studying hadron-nucleon interactions. This is perhaps
the only presently feasible way to examine in detail the
interactions of very short-lived particles and resonances.
Here we consider inelastic scattering of electrons from
nuclei in the region of excitation energy corresponding
to the first nucleon resonance and make a erst attempt
to compute the cross section in this region. The advan-

tages in using electrons are that the basic interaction
between the electron and the target nucleus is known
and that we have both the three-momentum transfer
to the nucleus q and the energy loss co of the electron
as variables, the only requirement being that q'=
q„'= q' —co' be spacelike.

Furthermore, if one detects only the anal electron,
then any electrodynamic process connected by one-

photon exchange with the nucleus can be described by
only two form factors, Wz,&(q', q.P).' ' Knowledge of
these functions is essential to anyone carrying out
quantum-electrodynamic experiments with nuclear
targets; electron scattering allows us to map out the
form factors in the relevant region: q'&0, q. p& —2q'.
The quasielastic scattering contribution to these form
factors has been calculated by several authors, '~ while

Czyz and Kalecka' have estimated the contribution
from single-pion electroproduction in the region of
electron energy loss just above meson threshold. %'e

now extend these estimates up through the N* (1236).
It should also be noted that separation of the strictly

nuclear effects from meson production is itself import-
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ant, since information on short-range nucleon-nucleon
correlations is contained in the high energy-loss tail of
the quasielastic peak. ' In addition, the usual sum rules
for electron scattering~ ~ do not include mesonic degrees
of freedom.

In anticipation of experiments to be carried out into
the region of pion production, w'e look at electron
scattering from a free Fermi gas in the Born approxima-
tion. This rather simple model allows us to reach an
analytic expression that should at least reproduce the
gross features of the inelastic cross section and also to
tie directly onto the threshold results of Czyz and
Walecka (who use the same Fermi-gas nuclear excita-
tion spectrum). To give us some indication of the
reliability of this approach, the quasielastic scattering
is calculated in exactly the same nuclear model: The
electron is considered to scatter elastically from a single
nucleon in the Fermi sea, the recoiling nucleon lying
outside the Fermi sphere because of the exclusion
principle. Most importantly, for mesons near the 3-3
resonance, the strong anal-state interaction is simulated
by a nucleon isobar, treated as a discrete state. That is,
electromagnetic excitation of the P33 resonance is
assumed to dominate single-pion production in this
region. Therefore, the calculation differs from the
quasielastic only in that the elastic nucleon-nucleon
vertex is replaced by the nucleon-isobar electromagnetic
vertex.

II. ELECTRON-NUCLEUS CROSS SECTION

Ke now proceed to analyze the general electron-
nucleus scattering process in the one-photon exchange
approximation (Fig. 1), with only the final electron
detected. The usual Feynman rules yield the cross
section

d o=2Z a (dp2j'2~)q 4W„~„„Dpq p)2 yggf+7& —(1)

where m is the electron mass, Mr is the target (nuclear)

6 W. Czyz and K. Gottfried, Ann. Phys. (¹Y.) 21, 47 (1963).' S. D. Drell and C. L. Schwartz, Phys. Rev. 112, 568 (1958).' K.%.McVoy and L. Van Hove, Phys. Rev. 125, 1034 (1962).
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where 0 is the normalization volume, E is the initial
target energy, I P) and

I
P') are the Heisenberg state

vectors of the initial and 6nal nuclear states, respec-
tively, J„(0) is the electromagnetic-current operator of
the strongly interacting system at x„=o and
indicates an average over the initial target states. Now,
covariance, parity conservation, and current conserva-
tion imply~"

FIG. 1. Electron scattering process in lowest order in a.
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But q„gives zero when contracted with the electron
current, and q'= q' —~' and q. I'= —coMz for the
three-momentum transfer to the nucleus q and the elec-
tron energy loss in the laboratory system co. Therefore,

+' =w~(q' ~)4.—w~(q' ~)44e.4 (4)

in the lab system, giving the lab cross section

d'~/da, d~, = (Z'~ /M, )

xLw2(q2, ~)+2w&(q', (o) tan'-', ej, (5)
where ~))r = (a' cos'~e) /4'' sin'-', e is the Mott cross sec-
tion, and we have neglected the mass of the electron.
We must now evaluate the form factors 8'~,2 for quasi-
elastic scattering and for meson production.

A. Quasielastic Scattering

Our model for quasielastic scattering is simply that
the electron scatters from a single nucleon in the free
Fermi sea, with the recoiling nucleon required to lie
outside the Fermi sphere. In other words, because of the
Pauli principle, the nucleon cannot scatter into an
already occupied state. In short, our model for the
nuclear transition current is, in the lab frame,

J„= Q a),+,),'&i+a' I j„ I kx)
kX

x.~e(~,—
I
k I) e(l k+q I

—z.), (6)
where a~(a~~) is a free-nucleon annihilation (creation)
operator, and the matrix element is that for the free-
nucleon electromagnetic vertex:

(n'ze) "&&'=&+q I z.(o) I &) =iM&(k')

&& LF~(q') v.—Fm(q') ~.~.3~(~)
We are now in a position to evaluate the tensor 8'„,.

Inserting the above expressions into Eq. (2), and con-

' R. Von Gehlen, Phys. Rev. 118, 1455 (1960).
xo M Gourdin, Nuovo Cimento 21, 1004 (2961).» J. D. Sjorken, 1960 (unpublished).

dk
e(~+e~—"m) e(&~—

I
k I) e(l k+q I

—&r)

with

1 qk q k
+Tm(q') —k — q„k.— q, I, (8)M' " q' q' i

T, (q') =-',q'(Fp+2MF p) '+x2q'(Fz" +2M'") ',

Tm(ql) =2M'(Fp'+q'Fp')+2M'(FP'+q'F2"'). (9)

The similarity between Eq. (3) and the quantity in
square brackets in Eq. (8) should be noted. This form
is to be expected by the same argument of covariance
and current conservation which led to Eq. (3), except
that the form factors T&.2 depend only on q'. (This is
because q k and q~ are not independent when a discrete
6nal state is considered. ) This observation will be im-
portant in considering isobar production, where the
traces are much more tedious.

Once again we drop the terms in q„ through contrac-
tion with the electron current. Next we identify the
remaining terms in Eq. (8), which is valid in the lab
frame, with those of Eq. (4), the reduction of W„„ in
the lab frame, and thereby separate out JV~ and 8'~.
Choosing the three-momentum transfer q as the polar

"All results will be presented for 2=
¹ $A The general case

is"easily recovered.

+&k+qx' lq„~(0) I kx&&kx li„~(0) I k+qx'&j, (&)

where the superscripts e and p indicate neutron and
proton, respectively. Upon performing the traces, we
have

3M'
4n.Ak '
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axis, and denoting the polar angle by 7., we have

3M

F

X d&
b)co+pe —p),+,) e(4 —

I & I) e(I &+q I
—4)

~Hk+q

&&[Tr(q)+(1/2M)Tp(q)k sinrJ,
3M' Tp(q')

x ~(~+p"—p"',) ~(k~ —
I ~ I) ~(l &+q I

—k~)

q2

I
p"— kcosr

I
+—,k'sin'r . (10)

lql »Iql
We erst employ nonrelativistic kinematics both for the
target nucleons (k~ 4M) and for the recoil nucleons
(this will be good for small

I q I), retaining only leading
order terms in

I
k I/M in the integrand. We take

account of the k' dependence of the binding of the target
nucleons by allowing for an effective mass M*. For
small energy loss, we also use the same effective mass
for the recoiling nucleons; i.e., they still experience the
nuclear matter potential. This does not give a proper
treatment of the threshold region but rather an
average description in the region of discrete levels.
The energy-conserving 5 function then becomes
8(cv —Iqlp/2M~ —k q/M*), which, because of the
hnite momentum distribution, causes the cross section
to vanish identically outside cv &co&co, where.-=Cl q I'/2M*+ I q I k./M*3,

~--=e(l q I
—2k ) Cl q I'/2M* —

I q I
k /M*j.

Clearly, a tail in the momentum distribution introduces
a tail into the quasielastic cross section. Performing the
angular integrations we have

3Mr(20 & M* 2~
4m.A &3~'Aj M(M+co)

I q I

dk kn k 1—n k'+2M*co 'I'
0

1 T2(q')
X Ti q'+-

I I q I

3M@ ( 2Q Tp(q') M* 2'
4vrA &3m'A Mp M(M+a)) I ql

X dk kn(k) $1—e((k'+2M*a&)' ')]
0

M*(o q
' 1 Ijt'

k2

Here e(k) =8(kg —k) for the Fermi distribution; i.e.,
n(k) is the occupation-number distribution of plane-
wave states. The normalization volume 0 is dined by
relation

4,f dkm(k) =A.

At this point we could insert some distribution (spher-
ical in momentum space) other than a Fermi gas and
perform the integrals numerically. For a shell-model
nucleus, wehavee(k) = g ' e„' (k), where the sum is
over the occupied levels; for a harmonic-oscillator
potential, we have for the e = 1 and n=2 shells

2' t'k " ( k' )"'
(2/ —1) ll 4,k & kp'j

'

2l
equi (k) =b„,p —, (1+-',)

((k/kp)' l' k l" k'l
XI

' -ll -I exp --
I

(»)
( f+; & kp& kp' j

with kp'=Mes, . In this approach we still have plane-
wave initial states and simply use the shell model to
determine their population. For a consistent calculation,
the momentum distribution should not contain relativ-
istic components; it must be cut off at some maximum
(target nucleon) momentum, say, k /AM. For the
Fermi distribution, we can perform the above integrals
exactly; the results are given in Appendix A.

For high I q I (say, I q I &2k&), we must employ
relativistic kinematics to describe the recoil nucleon.
Now for large energy loss, we should not use the eGec-
tive mass for the recoiling nucleon, since it is well
above the Fermi sea. For the final nucleon energy, we
will therefore assume

p~ (k2+M—P) 'I&

For the initial bound nucleon, we have

pg= k'/2M+ U(k') =k'/2M*+ U(0),

where U(k') is the effective single-particle potential in
nuclear matter. In this form it is clear that the po-
tential electively shifts the electron energy loss co to
take into account the nuclear binding. Our approach
will be to treat U(k') as a constant p. The final result
should then be displaced toward the more inelastic
region by this average separation energy ~, which will
increase with q and approach some constant value for
very large q (when the Pauli principle no longer restricts
the recoiling nudeons). Finally, then, the energy-
conserving b function becomes

$L"+(M2+Q2) 1/2 (M2+(Q+q) 2)112j—

Iql ( ~Ill'~
llrllql I 2M 2I&l I, Mlql'&~

'
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where we still treat the target nucleon nonrelativistically,
and where I= cosr. Ke then have"

3Mr i 20 2e. " kn(k)

4rA 4,3n'A
I q I, (M'+k')'"dk

1/2

X 1—n k'+2Mce 1+
2M

1Ts(q'), M~ ~ I q I

' ~

3M' 20 2's (q'-') 2rr " kn, (k)
4a.A 3srsA M'

I q I e (M'+k') "-'~k

1 n—k'+, 2Mce
I
1+

2M

(M'+k') '"— ce Mco ce
I qI1+

IqI 2M 2

Again, these integrals can be performed for the Fermi
distribution n(k) =it(kz —k); the quasielastic results
are compiled in Appendix A.

transforms like a four-component spinor on the n index
a,nd like a four-vector on the v index (the spinor index is
now suppressed); each vector component satisfies the
Dirac equation. For the nuclear transition current, we
now have"

J.= Zb ~~'(~+qh'(&*) li. l&~(&))a~0(k —I&I),

(14)

where b~t is a free isobar creation operator. For the
nucleon-isobar transition current, we take the com-

pletely covariant gauge-invariant couplings of Gourdin
and Salin"

(nsZe) s(k'=k+q, X*Iq„(0) Ik, X)=(MM')

X co„(k')ps{iLCs (q') /p$ (q,p„—qg.„)
—LC, (q ) /, j(k„'q„—k' q~„„)—I

C, (q ) /, )
X (k„q,—k qg„.) IN(k), (15)

where M' is the isobar mass. From photoproduction
data, "Cs(0) =0.298; C4(0)+Cs(0) = —0.0336, and only
the C3 coupling need be retained for small q'. If we now
introduce the spin-+2 projection operator and evaluate
the trace, we again obtain Eq. (8), but with

B. Meson Production

Near pion threshold, Czyz and Kalecka' use the
single-nucleon electroproduction amplitude of Fubini,
Nambu, and Wataghin and the Fermi-gas excitation
spectrum. Their amplitude is good only to order 1/M
and consequently good only for low-energy pions. They
compute both the coherent and incoherent cross sections
for electron energy losses above meson threshold, but
well below the 3-3 resonance. (The interactions of the
pions with the nucleons is restricted to a single produc-
tion event, also a good approximation for very low-
energy pions. ) If we neglect nuclear recoil corrections,
the thresholds for these processes are co=p, for coherent

production and

~=~+(I q I/2M') (I qI —24) e(I q I
—24) =1+~.„.

for incoherent production, where p, is the pion mass, and
co; again enters because of the finite momentum dis-
tribution. The reader is referred to Ref. 5 for the explicit
forms of the cross sections near pion threshold; these
will be commented upon in Sec. III.

%'e now look at pion electroproduction in the region
of the 3-3 resonance and assume that S* production
dominates single-pion electroproduction. Further, we
treat the —,'+ nucleon isobar as a discrete state, described
by a Rarita-Schwingertc wave function co .(k) which

"We have let 1—sr I
k Is/3f

I g Is=1 in the integranci. This
is the only approximation used; for the Fermi distribution,
a&

I
it Is/M I g Is& c's"throughout the range of integration for all

I q &2k'.
~ W. Rartta and J. Schwinger, Phys. Rev. 60, 61 (1941).

X (M+M)+-'
3

X I 2+ „(q' M"+M') —
I
. (16)

)

The form factor Cs"(q') =Csv(qs) =Cs(q') is Plotted" in
Fig. 2 and will be discussed in Sec. III.

An easier way of going from the relativistic form of
the vertex Eq. (15) to the 2't, s(q') is to use the Bjorken-
Walecka (BW) cs prescription. They give the general
form of the vertex function in terms of three scalar
form factors gt, s.s(qs) Lsee BW, Eq. (2.18)j and relate
these to the helicity amplitudes f+, f, LBW, Eq. (6.9)j.
In terms of the latter,

Tt(q') =M"0f Is+
I f Isl,

2's(qs) =MsI (2qc/q*') I f. I y (q /qe ) (I f+ I'+
I f I')), -

'5 We no longer require the recoil momentum to be outside the
Fermi sphere, although decay of the E*might be inhibited by the
Pauli principle.

'6 M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963);
27, 30O (1963)."J.Mathews, Phys. Rev. 137, B444 (1965) .

'8 J.D. Walecka and P. A. Zucker, Phys. Rev. 107, 1479 (1968).~ J. D. Bjorken and J. D. Walecka, Ann. Phys. (N.Y.) 38, 35
(1966).
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Ke must again perform the integrals given by Eq.
(10), where e/,+~ is now the free-particle energy of an
isobar with momentum k+q. But to produce the isobar
from a nucleon at rest, the electron must provide a
minimum three-momentum transfer of (M'2 —M2)/2M

( 350 MeV for the first mX resonance), and we shall
use relativistic kinematics for the isobar. As in the high-

f il l quasielastic case, we neglect the effective mass in
the target states and expect to shift the results by ~

(again, this is really in the energy-conserving b func-
tion). Carrying out the angular integrations, we have
the same results as above in Eq. (13),except that we let
a&(1+a)/2M) ~[1+a&/2M —(1/2M) (M"—M') ]; we

drop the 1—l(lr+/1) term; and of course we replace the
elastic form factors T&,& by the isobar expressions Eq.
(17). The integrals are evaluated for the Fermi dis-
tribution and presented in Appendix A.

III. NUMERICAL RESULTS

i . . U .' J
O. t 0.2 0.3 0.4 0.5 0,6 0.7

q (Ge / )

Fzo. 2. Nucleon-isobar transition form factor from Ref. 18.

where the magnitude squared of the three-momentum
transfer in the isobar rest frame is

In calculating the cross sections for various experi-
mental conditions, the elastic and inelastic form factors
must be speci6ed. For the elastic form factors, we use
the standard "dipole fit'"0

Gjr 4M2 Gs~ G//r

2.79 q' 1.91 —1.91

q*'= f [(M'+M)'+q']/2M'l f [(M'—M) '+q']/2M'}.

Therefore, we need only compare the form of the vertex
given above with that given by Bjorken and Walecka,
obtain the relation between the f+., and the Cg, 4,5, and
write down Ti,2(q') from Eq. (17):

(2)1/I [(MI M) 2+q2][(M +M) 2+q2]1/2

1+

where Gs Fi (q'/——2M)—F2 and G//r Fi+2MF2——For the.
inelastic form factor C3(q'), we use the relativistic 1V/D
calculation of Kalecka and Zucker. "They keep x, E,
and ~ exchange graphs as the excitation mechanism,
with one unknown parameter (g„~g„~~), and obtain a
good Gt to all the existing inelastic e1ectron-proton
scattering data. The form factor is plotted in Fig. 2.

C3 C4 M' —M2 —q21 C4+C// IM'2+M'+q'
2M' j ' 2M'

[(M' —M) '+q']'"
2M'

C3 C4 C4+Cg

p p,
' 2p,'

/4) 1/2 [(M& M) 2+q2]1/2 C M(M+MI) +q2)

lo—
L

8—
EJ

6/-

N

4—

b 2—

I

C: el=. l48.5MeV

8= l3S'

I.ii)
20 30 40 50 60 70 80 90 f00

ELECTRON ENERGY LOSS o/(MeV)

+qs —— (M" M2+q')—C4 C4+Cg

P 2JLf

Fxo. 3. Data are those of Leiss and Taylor, taken from Ref. 3,
for C'2 quasielastic peak with incident electron energy 148.5 MeV
and electron scattering angle 135'. Solid curves are the Fermi-gas
results with no effective mass and with the nuclear matter effective
mass M*=M/1. 4. Dashed curve is for harmonic-oscillator momen-
tum distribution f',no effective mass is used here). All curves
calculated with kg =-,'M.

'0 This may not be a good representation for G~N(q') for q'-)
1 GeV2. See G. Weber, in Proceedings of the 1967 International
Symposilm on Electron and Photon Interactions at High Energies
(Stanford Linear Accelerator Center, Stanford, Calif. , 1968) .

It should be noted that, given a relativistic form of the
vertex in terms of any set of form factors, this pre-
scription allows us to calculate immediately the contri-
bution of any isobar to the electron-nucleus cross section
(since the remaining factors in Wi, z involve just the
isobar mass) .
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FIG. 4. Data are those of Zimmerman for Ca'0 with constant
three-momentum transfer

~ q ~
=500 MeV and electron scattering

angle 90'. Solid curves are the Fermi-gas results for the quasi-
elastic, pion threshold, and isobar calculations. Dashed curve
indicates displacement 35 MeV to 6t quasielastic peak.

"M. Kawai and K. Kikuchi, Nuclear Matter and Nuclear
Reactions (North-Holland Publishing Co., Amsterdam, 1968).

22P. D. Zimmerman, thesis, Stanford University, 1969 (un-
published) .

Figures 3—5 display the results for a wide range of
experimental conditions. In Fig. 3, the data are those
of I.eiss and Taylor, published in Fig. 7 of Ref. 3. The
solid curves are those for the Fermi distribution, in one
case with M*=M/1. 4, in the other with no effective
mass; the dashed curve is calculated using the harmonic-
oscillator C'2 distribution

~(k) =L1+ss(k/ks) 'j exp( —k'/ks'),

with k0=131 MeV. In this case, the contribution from
each shell should be displaced by its binding energy.
Since these data are in the small-energy-loss regime, the
arguments of Sec. II suggest that we use the nuclear-
matter value" M*=M/1. 4. Alternatively& we could
interpret M* as a variable parameter, adjusted to locate
the peak at the experimental value, but we would again
obtain M*=M/1. 4 for this case. It should be noted once
more that the e6'ective-mass calculation cannot give the
detailed threshold behavior, as is evidenced in Fig. 3
by the appearance of the giant resonance. A convenient
prescription is, for

~ q &ks, to use the nuclear-matter
eGectivemass, butfor q ~

&2k' to neglect the eifective
mass and displace the curves by the separation energy
~. In the latter case, the quasielastic peak may be used
to set e. This is done in Fig. 4: The solid curves are the
quasielastic and isobar production results calculated
here and the threshold result of Ref. 5; the data are
those of Zimmerman"; and the dashed curve indicates
a displacement of e 35)4eV to fit the quasielastic
peak.

Above meson threshold, data become very scarce.
An important result is that the Czyz-Kalecka calcula-
tion indicates that pion production is very small
(compared to typical quasielastic cross sections) for at
least 25 or 30MeV above threshold. This can be
significant for extracting information on dynamical

l.2

u) l.O—

E
O

0.8—
0

ea 0.6p
C4

04
b

CV 0.2—

C': el=7GeV

200 400 600 800
ELECTRON ENERGY LOSS ~{MeV)

IOOO

FIG. 5. Fermi-gas results for quasielastic and isobar contribu-
tions for incident electron energy 7 GeV and electron scattering
angle 6'. Dashed curve is the "radiated" or raw cross section
(calculated with b,e=10 MeV; see Appendix B).

correlations in the far quasielastic region. In Fig. 5,
the solid curves are the Fermi-gas results for a very
high incident energy; the dashed curve is the "radiated"
cross section (see Appendix 8). In any case, it is hoped
that a careful experimental study will be carried out
into the region of pion production. This, together with
a more realistic theoretical analysis, can yield consider-
able new information. A very interesting calculation
will be to estimate the eAects of isobar-nucleon inter-
actions on the cross section.

In summary, the inelastic electron-nucleus cross
section has been calculated in three different regions of
energy loss, using the same (Fermi-gas) nuclear model.
In the quasielastic region, the electron scatters elas-
tically from individual nucleons; for threshold pions, the
Fubini-Nambu-Kataghin single-nucleon electroproduc-
tion amplitude is used, and pion-nucleon interactions
are restricted to the production event; in the region of
the first resonance, isobar excitation is considered to
dominate. These results are model-dependent and
should allow some insight into the nuclear physics.
For example, the cross sections would appear consider-
ably diferent if the chief mode of energy loss were
excitation of collective oscillations.
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APPENDIX A

%e here collect the results for the Fermi distribution

(d'~/dOsdes) l.b (~ 03s/Mr)

X(Ws(q', td)+2Wt(q' cu) tarP-'8]

where Mr is the target (nuclear) ma, ss, Z is the nuclear
charge, q is the three-momentum transfer to the
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nucleus in the lab frame, co=a~ —@ is the electron
energy loss, and the Mott cross section is o.~=
(cc'cos'Q)/4eP sine+, with ec (@) the initial (final)
electron energy.

Quasielastic Contribution

Tg(q') =-'q'(Fgv+2MFsv)'+gq'(Fg»+. 2MFg»)'

Tp(q ) =2M (F&v +q Fp" ) +2M (Fc" +q Fp» ),

where M is the nucleon mass, q'=46].Oisin ~~8, and
F~,s" v are the usual nucleon form factors. Let Q=
I cl I/kv.

If Q&2. Let v= M—'cv/kv'

If Q) 2. Let v= (Mcc)/kv~) (1+co/2M).

3M' 2x

Ak, Q

ikv', v Q
'

Ti(q') ———T.(q') ———
2M' Q 2

X —+1 ——+ ——— + ——2T'2 q'

TV( q', co = 3M' M*kp x
'(~ '")=

4 Ak, ~M(M+ ) e

1 kv' v Q'i'
X Tx(q') + ——T~(q')4M' Q 2&

2 ——1 —+1

=0 otherwise.

3MT kg2
2

2

if 0&v& —', (2Q —Q')

(v Q)'x 1-I- ——
I

&Q 2)
~ l(2Q-e) «-:(2Q+Q)

3MT M*kg —2v
4sAkv'M(M+cd) Q

1 kp~ ( v Q
c

X Tx(q') + ——Tg(q') 1—v—

=0 z,&-', (e+2Q),
if 0&v&-', (2Q —Q')

where M* is the effective (nucleon) mass in the nuclear
matter, A is the number of nucleons, and kg is the
Fermi momentum.

3M' M k~ mk'(~''") =
4 Ak, M(M+ ) e M

(v Q
' M co (v Q

' 1 q'x 1—
I

——— +-
&e 2 kv

I a I &e

2 ——1 +1

X —,+1 — —,+
if -'(Q' —2Q) &v&-', (Q'+2Q)

(v Ql'x 1—
I

———
I

~Q
k(2Q —Q') &v& k(2Q+e'), =0 otherwise.

3Mr M*kv s. kv'

4)rAkv' M(M+(o) Q M'

M cd v Q') ' 1 q'
X ---I +-

I cl I Q 2& 2
I cl I'

Isobar Contribution (Q &2)

T~(q') =M"(I f+ I'+
I f I'), -

( q4 q2)'(c')=&'I ~ —If I'+ —IIf I'+ If I'))-g4

where M' is the isobar mass and

Q')'
X 1 v

)ce 2)

&'(e+2e).

if 0&v&-', (2Q —Q')
((M'+M) '+q'l ((M' M) '+q')—

For the Ã* (1236), keeping only the C'3 coupling of
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(Arp/dQpdpp) (~, pp, 8).

Gourdin and Salin (this should be good for tt' &1 Gev'), changed by Lh; thus the soft correction is directly pro-
portional to the unradiated cross section, which we

r(q')=)( ' denote by
P 4

x (M'+M)'+
3I, M'

(The results immediately above are the only ones
which pertain specifically to the $+ isobar; the expres-
sions for T&,& in terms of the Sjorken-Walecka helicity
amplitudes and the expressions below for W&,& apply
to any isobar. ) Wq (q', p)) and Wz(qp, co) have the same
form here as the Q) 2 quasielastic results above, except
that we rede6ne

Mp) )' cg ) M" M'—
k,' ~ 2M&' 2kr'

APPENDIX 3
Experimental studies of this type are severely

hampered by the di6iculty in applying radiative correc-
tions to high-energy inelastic scattering results. The
problem is that one must then include the correction
from high-energy bremsstrahlung with correspondingly
low-energy loss, and this will be a large correction when
the cross section is very large at the lower excitation
energy. However, this correction involves integrations
(on p)p) over the nuclear cross sections

(d o/dppdQp) (8J p)&) pp) 8)

(d'o/dp dQp) (~, pp+~p, e),

where co~ is the energy of the radiated photon, and

(d'o/d ppdQp) (pI, pp, 8)

is just what the experimenter is trying to measure. An
approach which suggests itself is to use the model given
here for the nuclear cross section and "radiate" it,
giving a prediction for the "raw" experimental data. If
this reproduces the main features of the data, the model
can then be used to calculate explicitly the high-energy
bremsstrahlung corrections for the particular experi-
mental conditions.

This program is easily carried through in a Meister-
Gri6y23 approach. Here the radiated photons are classi-
fied as "soft" or "hard" according to whether they have
an energy smaller or greater than some cuto6 Lh. This
cutoB must be small enough so that the variation in the
cross section is small when the relevant energies are
"N. T. Meister and T.A. GriBy, Phys. Rev. 133,81032 (1954) .

For the hard correction, denoted by

(d'o p/dQpdpp) (~, pp, 8),

(d'os/dppdQp) (pI, pp, 8) = (d'op/dppdQp) (pI, pp, 8)

+ (d'o, /dppdQp) (p), , pp, 8)

= (d'op/dppdQp(pI, pp, 8) + (1+8&)

Xe'&(d'op/dppdQp) (pg) pp, 8).

This can be "solved" for the unradiated cross section

dpop ( d'og d'op &

d dQp &d dQ dppdQpj

where it must be remembered that the hard cross section
involves integrations over the unradiated cross section.
For the soft part, we have

f'), = (o)/rr) [(13/6) ln(q'/r)p') —-', ln (pr/pp) ],
"op (n/pr) [in(hp'/gop) ——][ln(g'/rrP) —1],

where m is the electron mass. The hard part is given by

It 6j.—07k 2'
d p

—
/

2ln ——1/
ns j(~&) =-

de2dn2 7P

G)p 26' d Op CL ~ dc'+ —ln — (pg —cop, p2, 0)+—
61 sz d62d02 ll" Qe 62+g

where
copg ——pg —pp/[1 —(2pp/Mr) sin'-', 8]

p)kp ——pg/[1+ (2pg/Mr) sm ptt] —pp.

"G. R. Henry, Phys. Rev. 149, 1217 (1966).

the variation in the cross section must be considered,
but the peaking approximation can be used for the
radiated photons. The cutoG he should be chosen large
enough so that the hard cross section is smaller than
both the unradiated and radiated cross sections.
Ideally, Lh should then be varied to ensure that the sum
of the hard and soft corrections (i.e., the radiated cross
section) is unaffected over a reasonable range of hp
values. The required expressions for this method are
given very nicely by Henry'4 and will be repeated here
for completeness. If we denote the radiated and the soft
cross sections by subscripts E and s, respectively,


