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Impact-Parameter Amplitudes for Large-Angle Scatterings and Particle Correlations
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Impact-parameter amplitudes for potential scatterings are calculated in the various approximations, and
the results are compared with the exact phase-shift analysis up to the second diffraction minimum. General
trends of the approximate cross sections are given which should be taken into account in the study of cor-
relation eGect in nucleon-nucleus scattering experiments. An improved form of the amplitude for momentum
transfer up to the second difraction mawimum is given. Parametrization of the nuclear correlations in terms
of the two-nucleon amplitude is discussed.

f(k, q) = bdb Jo(qb)B(b, k),

where

B(b, k) =ikt 1—e'«' o&g, (1.2)

g(b, k)= —k ' V,gfdZ, r =b+Z. (1.3)

In (1.1), we have used c=m=5=1, and V,gf is an
effective interaction de6ned through the representation
(1.1) itself. The fact that the simple form (1.1),
derived' in the approximation of small momentum
transfer g and using a wave equation of some sort, may
have a more general validity" and satisfy the high-
energy unitarity makes it very attractive for further
theoretical study. Composite system scatterings have
also been treated by Glauber, 4 using (1.1) and several
additional assumptions, as discussed in Sec. EV.

On the other hand, it is not a simple matter to
relate V,ff of (1.3) to the potential V which appears, for
example, in the Schrodinger scattering equation. Such a
connection for a local potential V has been shown in a
roundabout way by Blankenbecler and Goldberger'
using the dispersion relations for the amplitude, but for
practical purpose of improving the representation it
would be desirable to 6nd a more Chrect connection.
The difBculty in such an attempt seems to arise from
the nonlocal nature of the scattering operator 3=

' R. Glauber, in Lectures in Theoretical Physics, edited by W. E.
Brittin and L. G. Dunham t'Wiley-Interscience, Inc. , New York,
1958), Vol. 1, p. 315; H. Feshbach, in Course 38', International
School of Physics "Enrico Fermi, " edited by T. E. O. Ericson
(Academic Press Inc., New York, 1967}.

'W. N. Cottingham and R. F. Peierls, Phys. Rev. 1N', B147
(1965);T. Adachi and T. Kotani, Progr. Theoret. Phys. (Kyoto)
Suppl. , 316 (2965); E. Predazzi, Ann. Phys. (N.Y.) 36, 228
(1966). For recent references, see M. M. Islam, in Lectures in
T4«etical Physics (University of Colorado Press, Boulder, Colo.,
2967) .

I R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 {2962).

~ R. J. Glauber, in High Energy Physics and nuclear Structure,
edited by G. Alexander (North-Holland Publishing Co., Amster-
dam, 1967).

I. INTRODUCTION
" IGH-ENERGY scattering experiments are often. .i . analyzed by the impact-parameter method, with

the amplitude given in the form'

V+VGo'+'g. We note that the unitarity condition
gives Irn3 in the dispersion relations in an essentially
separable form, while Re3 is not.

Here we are concerned with the accuracy of various
approximations used in the past and possible improve-
ments at large angles. This problem is of some interest,
since recent nucleon-nucleus scattering analyses
seem to require improved representations, and also a
better understanding of the accuracy is desired in the
variational formulation proposed recently. ' Several
improved forms of amplitudes for the potential scatter-
ing have been given by Schiff' and by Saxon and
Schiff. ' Among others, their formulas at large angles
contain factors which depend on P =q/2k, where q is the
momentum transfer, such that 8 of (1.2) is now a
function of P. More recently, Feshbach" has given still
another form of amplitudes which is similar in form to
(1.1). Most of these formulas are extremely effective
in reproducing the large forward-diffraction peak, but,
as q gets large, with q=2k(1 —cos8), the a,greement
with the partial-wave calculation is not as good.

We report here the result of a simple computer
experiment we have carried out to ascertain the
general trend of deviations each approximate amplitude
makes from the "exact" amplitude. This will in turn
help to correctly determine the parameters involved
in the theory, The problem may be less critical if one
takes (1.1) as a "correct" representation of f and uses
the inverse Fourier-Bessel transform of f, rather than
the form 8 with particular V. The multiple-diffraction
theory of Glauber is such a case. However, the result
presented here may still have some general validity
even in those cases without potentials. We emphasize,
however, that although the representation (1.1) is
simple and conceptually appealing, the form of 8 with q
dependence (P/0) to be discussed in Sec. II is equally
valid and perhaps more tractable within the potential
scattering theory.

'R. H. Bassel and C. Wilkins, Phys. Rev. Letters 18, 871
(1967);Phys. Rev. 174, 1179 (1968).

~ W. Cysz and L. Lesniak, Phys. Letters 24B, 227 (1967).
~ D. K. Ross, Phys. Rev. 1I3, ,1695 (1968); L. I. Schiff, ibid.

(to be published}.' Y. Hahn, Phys. Rev. 174, 1135 (1968).
9 L. I. SchiG, Phys. Rev. 103, 443 (1956)."D. S. Saxon and L. I. Schi6, Nuovo Cimento 6, 614 (1957)."H. Feshbach (to be published).
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II. IMPACT-PARAMETER REPRESENTATIONS and obtain
AND POTENTIAL SCATTERINGS

We collect here some elementary formulas used in
our calculation for potential scatterings, most of which
are well known. ' For simplicity, we consider the
Schrodinger equation with a local Gaussian-type
potential. We have

[T+V E)%'=—0,
with

fez=-

w~ere

brd'br dZz V(») Jo(2kbz sin-', O~ cos-', O~)

(2.12)

X exp(2ikZz sinmpO'),

bzdbz BBz(bz, q, k) J'p[bzq(1 p )

E= lzmk'/2m = -'k' (2.2) 0BI Z V[(b 2+Z 2) z/Sjei2e szz'

where m=h=c=1. As usual, we set

+=e"*"'C(r),
and obtain

P =q/2k.
(2.3)

We used in (2.12) and (2.13)

(2.13)

()7'+2ik; 7,—2V) 4 (r) =0.

The amplitude is given by

2m
f(k» k;) =— e ' z'V(»)%'(r)d'»

4n-P

1
ez'VC (r) d'»,2'

(2.4)

(2 S) q r= —qbrr cos4rr,

d'» = bzzdbzzdZzzd(bzz, (2.15)

1—cosO' =q2/2k2= 2P~, q = 2k sin~O~

cos-'O~ = (1—P') 'I' sin 0' = (q/k) (1—P') '" (2.14)

On the other hand, we can equally well choose the
Z axis to be parallel to the vector k,+kf (system II)
and again the XZ plane to be the scattering plane.
Then we have

where we have the usual asymptotic behavior of 0"
given by

+(r) eik; r+f(.e) eikr/»
fezz =—(2~)(2.6)

brrdbrr dZzz V(») d(t)zz

l.e.)
C(r)-+1 as

f
k; r f~—a. (2.'7)

—00 0

X exp( iqbzz c—os(bzz)

The Born amplitude is obtained from (2.S) by
setting

bzzdbzz Jo(qbn) &Bzz (ki bzz) | (2.16)

and thus
C(r) =1

j (k, g) = —(2 )-'f e' 'VA. (2 9)

where

dZzz V[(bzP+Zzzm) zi'g (2.17)

and noting that Jo(a) is an even function of a. AlthoughB choo th a s to e Para lel to kz (system I), (2.12) and (2.16) look quite different in detail, theyand take the XZ lane to be the scatterin lane then originate from (2.8) which is independent of the choicewe have
of coordinates, and thus we have

(k;—kf) r=q r=kZz(1 —cosO) —kbz sinO co&z, BI BII B. (2.18)

where
(2.10)

bI+ ZIp

k;—kf= q,

cos =k~iI{lf.

0&q&2k

Jp(a) = (2~)-z e cos~, (2.11)

The Qz dependence of the integrand of (2.8) is contained
only in (2.10), so that we can perform the +z integra-
tion of d'»=bzdbzdZzd(bz using

Ke were not able to give a direct transformation from
(2.16) to (2.12) in any simple way, but the accurate
numerical analysis on the computer checks the validity
of (2.18), which was in turn used to check the accuracy
of the subsequent calculation. It is signi6cant to note
that these two p-dependent factors cancel, although
they have individually a very large effect on f for
q+1

We can improve on (2.8) by solving (2.4) after
dropping the V',2 term since, for q not too large, C
should be a slowly varying function of r. Thus

(2ik; z)7,—2V) C'()=0, (2.19)
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2.26) by2 7) He, e (2.7)» '

k (kp 2 V) u' —k

conditzon ' . '
h, h the Z axis V/k~ —VH/

2k+. ..$ (2.27)

zvith the o
k the system&, 'n~ '

(V/k)L1+V

Ple o y'
Thus wes para}}e}to ~ us

and thusik(zi/UZI) C'oz = VC'oz

bdb Jo(qb) Bzz(k, b),
and obtain

~ Z

dZI' VP(bz'+Zz ) j~P IIP (2 20)4'pr = exp

u
' '

f (2.20) into (2.5) givesSubstitution of

where

fzz =

ZI
VadZIUZI V~ exp

(2.28)

fOI

where

(1—P') 'z')B«(q, k, b,),bzdbz JoLqbz (2.21)
= —ik (ezxa 1)

yzz(b) =—k ' VH(r) dZz'.

(2.29)

(2.30)

bW iso definef o y
dZI V(r) 4pz(bz, ZI, k) e'

bdb Jp qp b(1—48') I")Bpzz(k; b, q),

2ZVa IdZ ~ e2ikP zz

bzdbz Jo(qbz) BG(bz, k),

ik e'«I —o1), (2.25)dZI V(r)4oI= —ik(e*

XG(b) =—k '

p
—' "' B,b, k), (2.33)bdb Jptzqb(1 P') II'QB(q, —

o the ones studied by fIOH

0
iff" d o 1 b

ill be cumbe some in

ZI

'" y

p~= — Zi Va exp
ol tio of (2.19) ll

s involved in t e
2 21) follo i g

'th (2.24), In a

further approxima
'

1111 le scatterzng

( )
the same, an no a

is rea m the point of view o i s
h8 l d 7

c

can e ornancelling in the orn

2 24) may near y

1
elow.

fG

'll b

0

2.28). The result zvz(. ), an
where

t th t (2.24) ith V n l
l 1M(i

Bg-
CO

ccz

2 28) is one such form
VdZ'.

litude, ' and it is obtained here
ik (I)/UZI) C = VC + (—p,' C,

(2.31)=—(V+ Vr) 4,

(2.21) and
since errors ma e in

e Vz is now

h h one is better s a e in

t awe h t 4 'exists. Since

s may cance.
ulas

we have assume
m are these two formu a

k a general
p „f...,.....

2 32)

of alidit fo f h

= e —— V+Uz)dZz
h 8 lit d f , 4= exp ——

z

statemen o

M (2 21)
like in the orn

t '
de iven by

delze dent o

ave the exact amplitu e g'' 1'nfo io ( .»contains the crucia i o

f
rdinate system I." has considered a s ig

0

C 01C

More recently, Feshbac as
V ig,modi6cation of the form
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where

( ) ioo2zx&@(k, b, Zx) ~ (2.34)dzi V «'
n.onlinear andis extreme y

jnt of view.
Obviou»y (2

f, m a practical p»n(233) ispe»ap'"""'
d „not give (12) 'the form (234)Besides, e

(1 2), we havesimple way. From

OO

dZ' V,ffdZ V,~f exp

8(q, b, k) = —-',

ReV,=-,'(a V/aZ),
I v '—(a-'U/az'), (2.40)

to first order in Im Vr/k,we imme ia eyw d t 1 satisfy (2.38) to i's o
&(b k)=—

o and that
Re V Vo/2k'

above discussionherefore, t e a ov
1 1 th ious ap-

2.28) . F th(2.24) andp

b S o dShi
t 2.39) is no q

iG where weform given
'

enbySchiBan y a
essentially have P/0 and

(2.41)
(2.35)

simply
require

are (2.34) with (2.35), we
tio (2 23), d f thmake the approximation

that

(2.36)V,(gdz'VC V ff exp

ood aPProxim ation to ~'Coi is not
ou]d not b ve"-

App "ty "
h th f (239)and thus

we assume that
well

reproduced by

Equation (2.36) can be rewritten as

Z

lnV —— Z
Z

(V+ Vr) dZ' 1nV, xx
—— V,«dZ'.

d V~= V, we haveft= V,gg anU
'

the fact that Veff — eUsing

Z

ln V+ Im Vz dZ' ln V.rf,

(V+ ReVr)dZ'
Z

V,ggdz',

or

V ff V exp k Imv, dZ', 2.37a

(2.37b)V+ ReV~,

ned by (2.31). nI the approximation
f o (2.37) th t(2.23), we than expect from

—1 . (2.38)e p k ' ImVpdZRe V~ V exp

v' should be dependens ou ent on the ap-
l C 4 i V,(2.23). If we ma eproximation

&=(C' L o~ jC') (C'ox o(C' L
—

o
' —o~r'gC'ox,

Vx (CfTC;). (2.42)
~ ~

oth k and q, so that it is not)
h thesent w e e

db i 1re lace y a

C'ox xT s)(1/d) (s
~
T

~
C'ox)-C'ox 'TC'ox,

where

d = s J T
i s) + - s TC'ox

Zg

dZ C'Or '& s

—s Ti s).

fu . we, f r many case,we, r swever, or
~ ~

hat the second term
unction. o

lation" shows t a
dtoth 6 ttrm

w. '-''h--" ~
pa

thet of p
'

(2.21), eation of the e ec o
xi "' P"" '

llh- h dand it is no
h sica in er-

( ) ~ o
he same conclusio n reached y va rs. ~

of a roximate amp '-
te sam

e several forms o ap%e further de6ne
1 tl studied in t etudes w ich h will be exp ici y

section. They are

where

. iaoV aoV 'aV-'
~ ~

+ a~ '-, ab

bdb Jo(qb(1 —P') xl']f~-fo+
2k

dZx'Vr~ (2.44)

VdZ'.

to be published).~ Y. Hahn, Phys. Rev. (to
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arid

1
frizz= —

~

i
X exp

k

fzdb Joggg(1 —Pz)»zg

dZz'V
I

1—— dZz" Vrx
I ~ (2 45)

k

possible eGects due to nonlocality and energy depend-
ence of the effective interactions. The exchange eGect
may also be important. In this respect, the discussion
given below is specifically for V of the form (3.1) with
particular set of parameters, but the conclusion and the
general behavior of the amplitude we are interested in

may have a larger region of validity.

A. Born Amplitude and the Partial-Wave Analysis

where

and
Vr~ =@'or '&4'or,

frizz fg wzth P =0,

fgzzg =frizz with P =0.

(2.46)

(2.47)

', 2.48)

The forms (2.44) and (2.45) give nearly the same
result and are the improved amplitudes for q up to the
second diGraction maximum.

III. RESULT OF CALCULATION

The numerical calculation we have carried out is very
trivial but seems to show several interesting features
of the various approximate amplitudes. For simplicity,
we choose the form

V(&) =2« ""(1+z&') (3.1)

where m=5, =1, and r'=b'+Z'. The p-dependent term
is added to readily reproduce the diffraction peaks and
valleys near the angles where experimental cross sec-
tions also have them. The parameters used in the cal-
culation are A =0.20, p =0.30, k =2.0, and the strength
constant G is tried with G= —0.10, —0.20, and —0.40.
Needless to say, the form (3.1) may be an over-
simplification; when high-energy particles are scattered
oG complex nuclei, many inelastic channels are open
which give rise to an eGective interaction V,«with
appreciable imaginary part. This is also true for the
nucleon-nucleon interaction above the production
threshold and with L S and tensor forces. Some
estimates of a large Im V,«on the scattering amplitudes
at larger angles were made, for example, by Feshbach'
for a simple model. We have not carried out such
calculations, and thus our discussion is limited in this
respect.

The point of view taken in this paper is that, for a
given form of the interaction V,«, which may or may
not be complex, an approximate form of the amplitude
is acceptable if it is capable of reproducing the correct
values at all q. Even if the presence of a large ImV, fj
may aGect the large q behavior of the amplitude, the
ambiguity of determing the correct parameters of V,ff
using an approximate formula still remains. Besides, it
is not clear whether a large ImV, « in the nucleon-
nucleon interaction, for example, would not contradict
the additivity assumption of phases in the Glauber's
multiple-scattering theory. 4 We are also neglecting here

The two different forms f~z of (2.12) and frizz of
(2.16) were calculated for all momentum transfer,
0&q&2k. To the accuracy of the computer program,
we find that these two forms are identical. Since the
individual factors in (2.12) which depend on P have
strong eifects on f, a delicate cancellation is taking place.
We also used (2.18) as a numerical check in our later,
less elaborate calculations of other quantities. The
function f& is real and extremely good at small q. The
exact amplitude f& is obtained for each fz and g by the
partial-wave method, which required i&15 for k&2.0.
Because of a large cancellation among these partial
waves at large q, we restrict our discussion to regions of
q&2.0, where we have an accuracy of 1 part in 10',
while near q 0 we have at least 1 part in 10'.

We next evaluated f@ and fg of (2.21) and (2.24),
and the result is again compared with the exact fg, as
given in Table I. The parameters used are 3=0.20,

p =0.30, and G =—0.10, —0.20, and —0.40. The
agreement of

~ fg ~' and [ foz ~' with
~ fE j' is excellent for

G= —0.10, and less so for G= —0.20 and G= —0.40, as
expected. It is more significant, however, that each
approximate amplitude deviates from the exact one in
some specific way.

First of all,
~ f,z )' is consistently lower than

~ fz ~'

even in the region where Refqz itself changes sign. It is
appreciably better than

~ fg P in the region between the
first minimum and the second maximum, but decreases
too fast beyond the second maximum. On the other
hand,

~ fg ~' seems to have less sharp peaks and valleys
than

~ f~ P and thus crosses over
~ f~ (' at several points,

but it follows the exact value rather closely.
We have also evaluated

~ f~ ~' of (2.29) keeping the
V' term in (2.27). It gives slightly improved values
near the first diGraction minimum, and over-all values
are lower than

~ fa ~, which is too high in that region.
We did also try

~ fzozz ~', which is the same as )foz P
with V replaced by (2.27); the result is not as good as

~ fear ~' This indicates that some of the variations we
are studying fall within the error made in the P=O
assumption, and it is dificult to make a correct error
estimate.

Thus, the amplitudes with P/0 are consistently
lower than

~ fz ~' and approach the correct value near
the rising part of the peaks, while P=O makes the

~ f ~' less sharp in its diA'raction oscillations. These
general trends would be useful in actual applications of
the forms foz, fg, and f~ That is, fits to .experiment



IMPACT-PARAMETER AMPLITUDES 1027

TxnLE I. Differential cross sections
I f p for a znodified Gaus-

sian potential. The values for each momentum transfer q corre-
spond, to f~, fg, foz, f~, and fF, respectively. The parameters used
are k 2.0, A =0.20, and p=0.30.

TABLE II. Dependence of I f j' on the potential parameters.
T, 0, and $ denote the values of

I f P increased, unchanged,
and decreased, respectively.

G= —0.10 G= —0, 20 G= —0.40

A
p 0

l l l
T o l T

0.0

0.8

2.592

2.588

2.588

2.605

0.2083

0.2080

0.2012

10.37

10.30

10.30

10.44

0.8330

0.8669

0.7751

41.48

40.31

40.31

39.20

41.50

3.332

3.261

2.849

3.110

0.0
0.4
0.8

1.2
1.4
1.6
1.8
2.0

T T

T

T T

l
T

T T

T 0 l T T T

T

T 0 0 0 l l l
1' 0 0 0 0 l l

T o l T T T

0 l T T 0

l T o l T l l
T T o l l l l

1.2

1.4

1.6

2.0

0.00203

0.00214

0.00159

0.00186

0.00033

0.00039

0.00052

0.00048

0.00098

0.00100

0.00109

0.00111

0.00059

0.00060

0.00060

0.00064

0.00020

0.00020

0.00018

0.00020

0.8118

0.00812

0.00993

0.00555

0.00132

0.00225

0.00316

0.00307

0.00392

0.00422

0.00482

0.00508

0.00238

0.00246

0.00238

0.00271

0.00080

0.00084

O. 00066

0.00082

3.155

0.03247

0.06110

0.02566

0.05417

0.04330

0.00528

0.02004

0.02424

0.01942

0.02624

0.01566

0.02050

0.02310

0.01991

0.02662

0.00950

0.01090

0.00930

0.01028

0.01250

0.00321

0.00389

0.00209

0.00353

0.00360

Ref Im f
1.0

1.2

1.4

1.6

1.8

2 ~ 0

0.6119

0.6461

0.5627

0.6340

0.0381

0.0717

0.0325

0.0653

—0.1600

—0.1469

—0.1504

—0.1484

—0.1631

—0.1631

—0.1486

—0.1629

—O. )045

—0.1069

—0.0898

—0.1052

—0.0500

—0.0509

—0.0388

—0.0464

0.4239

0.3703

0.3254

0.3899

0.2125

0.1754

0.1474

0.1976

0.0715

0.0498

0.0368

0.0650

—0.0058

—0.0117

—0.0140

—0.0092

—0.0363

—0 ~ 0285

—0.0253

—0.0378

—0.0392

—0.0231

—0.0188

—0.0380

0.5540

0.5545

0.4226

0.5540

0.0466

0.0359

0.0228

0.0433

0.0307

0.0241

0.0240

0.0262

0.0266

0.0267

0.0223

0.0266

0.0122

0.0122

0.0087

0.0125

0.0040

0.0031

0.0019

0.0036

TABLE III. The real and-imaginary parts of the amplitudes as
well as

I f p are given. For each q, we have fo (fitted), fsz {fitted),
fzy~, and fE. The parameters used are G = —0.40, k =2.0, A =0.20,
and p ~0.30.
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TABLE pp. The approximate amplitudes using Vz =pz&. For each value of q, the column contains flag, fz, fzHg, AH) and fs.
The parameters used are k =2.0, A =0.20, p =0.30, and G = —0.10 and —0.40.

Ref
G= —0.40 G= —0.10

Im f
G= —0.40 G= —0.10

If I'
G= —0.40 G= —0.10

0.0

0.4

0.8

1.2

1.6

2.0

6.308

6.308

6.287

6.287

6.305

4.686

4.634

4.666

4.607

4.633

1 ' 783

1.657

1 ~ 765

i.623

1.662

O. 1642

0.0604

0.1525

0.0366

0.0653

—0.1436

—0.1519

—0.1480

—0.1559

—0.1629

—0.0763

—0.0356

—0.0746

—0.0339

—0.0464

1.612

1.612

1.612

1.612

1.612

1.200

1.196

1.200

1.196

1.195

O. 4601

0.4521

0.4600

0.4517

0.4502

0.0473

0.0403

0.0472

0.0400

0.0408

—0.0315

—0.0327

—0.0315

—0.0328

—0.0333

—0.0155

—0 ' 0131

—0.0155

—0.0131

—0.0141

1.320

1.320

1 ~ 392

1.392

1.3i8

1.115

1.112

1.180

1.174

1.105

0.6560

0.6366

0.7037

0.6715

0.6275

0.2395

0.1974

0.2632

0.2030

0.1976

0.0214

—0.0102

0.0240

—0.0136

—0.0093

—O. 0349

—0.0265

—O. 0434

—0.0245

—0.0380

0.0837

0 ~ 0837

0.0848

0.0848

0.0834

0.0705

0.0709

0.0/14

0.0719

0.0703

0.0411

0.0417

0.0418

0.0423

0.0409

0.0147

0.0142

0.0150

0.0144

0.0140

0.0012

0.0003

0.0013

0.0003

0.0004

—0.0019

—0.0017

—0.0021

—0.0017

—0.0023

41.54

41.54

41.47

41.47

4i. 50

23.20

22. 71

23.17

22. 61

22. 69

3.609

3.149

3.612

3.084

3.155

0.0843

0.0426

0.0925

0.0426

0.0433

0.0211

0.0232

0.0225

0.0245

0.0266

0.0070

0.0020

0.0075

0.0018

0.0036

2.607

2.607

2.607

2.607

2.605

1.444

1.436

1.444

1.436

1.432

0.2134

0.2061

0.2134

0.2058

0.2044

0.00245

0.00182

0.00246

0.00181

0.00186

0.00099

0.00107

0.00099

0.00107

0.00111

0.00024

0.00018

0.00024

0.00017

0.00020

should be regarded as excellent if the above trend is
reasonably well reproduced.

Obviously, if one de6nes V,«using a particular
representation, either (2.21), (2.24), or (2.29), then

~ f& ~' can be reproduced. Table III shows a rough 6t
which is obtained using the behavior of I f ~' as functions
of the parameters G, A, and p, as given in Table II.

For 0=2.0, we have roughly

fE,' G =—0.400, A =0.200,

G =—0.385, A =0.190,

G =—0.415, A =0.210,

p =0.300,

p =0.315, (3.2)

p =0.330.

Since we picked the larger
~

G
~

value, the effect dis-
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cussed above is exaggerated, but again the trend seems
to persist as G and k are varied.

B. EBect of Vp

The form (2.44) and (2.45) with Vp in the approxi-
mation (2.46) is evaluated and also a similar form with
P=O. The result is very encouraging, except in the
region beyond the second maximum, and this indicates
that (2.39) is probably not a good approximation. The
form (2.35) with V,«= V+ Re V&, where Vz is given by
(2.39), is also tried, and the result seems to indicate
that the P-dependent factor is important as soon as the
(I/Bb factors in T are included. Finally, some attempts
were made to replace the factor exp(i2P'kZ) by an
equivalent P-independent form. The P dependence in

Jo is so strong, however, that it was dificult to cancel it
in any other way. The result is given in Table IU.

Thus, unless one is willing to go to more involved
large-angle formulas, such as those given by Schiff, the
accuracy involved in the various amplitudes is about the
same near the second rnaximurn, and it would be
difFicult to extract any other new eAects of the same
order of their diHerence in an unambiguous way.

IV. PARTICLE CORRELATIONS

Ke consider in this section the nucleon scattering
from a composite target nucleus using the representa-
tions of the two-particle amplitude discussed in Sec. II.
Since the nucleons inside the target nucleus are bound
and interacting with each other, the scattering arnpli-
tude should contain information of this correlation as
well as the o6-energy-shell properties of the two-
nucleon amplitude. They show up at high energies for
large momentum transfer q as corrections to the un-
correlated amplitudes. Thus, in order to isolate these
e6'ects in a convincing manner, one has to have 6rst of
all a reasonably eKcient representation of the ampli-
tude at moderately large angles, and also a reliable
theory to take the correlation into account. %e con-
sider in some detail the formulation proposed recently'
and compare it with the multiple diffraction theory of
Glauber' and its modification by Feshbach. " Ke
restrict our discussion to elastic scattering.

The Glauber theory4 assumes the representation
(1.1) and writes the nucleon-nucleon elastic scattering
amplitude in the form

Pp is the target ground-state wave function and x
depends on the positions of all A target nucleons. The
essential simplifying assumption of Glauber is that

x= gx*(b—b', k), (4.3)

and x; in turn can be expressed as

I';(b —b;, k) —= 1—e'(('= (27r(k) ' e
—iq (b —bs)

where
F—F]+F2+ e ~ ~ (4.5)

ik
d'b e"' b(A-' g r;) I';

l Pp l'dr, (4.6)
1r i

ik
Fp ——g—— d'b e" b(A- P r,) r,r, l y pl

d.,
2 ~;

etc. (4.7)

As it stands, F2 contains sonic correlations coming
from the c.m. 8 function and also the averaging over
the target ground state. However, the approximation
(4.3) may be too crude.

An improved form of (4.3) has been given recently
by Feshbach, "who writes

x= Zx, + Z;,+" (4 g)

Then, F can be written again in a series of the form
(4.5), with F~ unchanged, but Fp containing an ad-
ditional unfactorizable term, as

ik
Fg +——g dbe'pb

2~ .&j

where

drb(A ' gr)
&&lP'P, -H', )l~. l, (49)

B;,=1—e' '~.

If the interaction between the incoming projectile and
the target nucleons are additive, with

A

V=H H, = g V, (r—r;), — (4.10)

Xf,(q, Ir) dqi. (4.4)

In (4.4), f, is the two-nucleon amplitude which is

a.ssumed given. Substitution of (4.3) into (4.1) gives
immediately the multiple-scattering expansion

F(k, g) = b(fb Jp(qb) B(k, b), (4.1)

I =f eix

Xl'(1, b, ~, bg), (4.2)

where

B(k, b) = ('k dr
l pp(r&, rp, ~ ~, r&) l'b&'&(&-' g r;)

then the approximation which led to the Glauber
formula (2.25) also gives precisely the form (4.3) with
each x; given essentially by (2.26). Obviously, in the
present case the neglect of the P factor and Vr' term in
the equation may have a more serious eBect, but it is
extremely diQicult in this way to untangle the ap-
proximations involved in the impact parameter rep-
resentation and in the correlations.



i030 YUKAP HAHN

where

B=Bo+B|+Bo,
—BQ+BJ~BQ&

BI~4k (1—ehxh&)

(4.11)

(4.12)

If we assume that the energy transfer during each
collision is negligible compared to k', then the inelastic
channels projected by the operator Q is negligible, and
the "static" part gives

Obviously (4.7') does not allow the ith target nucleon
to be scattered more than once during a complete
scattering, while (4.17') may include such collisions
because the second term involving (y)', for example,
does not distinguish the target nucleons. I'; F; is a
separable two-particle operator and carries some
correlations as

r,r, )= (r, (p+Q) r, )

xp~ ———& ' dZ PVP r, )&r, )+&r,Qr, (4.18)

dZA dv p'bA ' r;

and
X V;(r—r,), (4.13)

B, — dZ —PV(PCp+Q)
k

dZ'(PC'o '+Q)

i s —I
Xh h+ —h(PC +Q) ZZ'(Ph' '+Q)h hPO)

00

(4.14)

According to Feshbach, one would like to generalize
(4.18) by adding further correlation terms H;; of (4.9) .

The static amplitude B()does not include the Q-space
eGect by deinition, but eventually one is interested in
parameterizing the complete Ii in terms of the two-
nucleon amplitude f. This can be simply carried out by
replacing xp by an effective x,ff involving both single-
and double-nucleon interactions. How such a modiica-
tion based on the forms Bp and also how Bl are related to
f; is not entirely clear.

We now study the leading terms (4.7') and (4.19') .
If we assume that x; is reasonably small at high energies,
then we have

In (4.14) we have

P=O.)Qo
and

Q=i —P, QP=0,
(r ) = (1—(""')

=—i (x')—(x")+' (4.19)
A. = (&—Bo)—PVP, E=Ep+-'k'. and

Bl can be written in a more compact form as (&)=1 sh(xD

=—~&x')—&x )'+ " (4.20)

where

B dZ PVS mc,
Obviously, the di6erence between (I';) and (y) is, to
second order,

zS=———(PCp+Q) dZ'(PC)() '+Q) A.
(x)f)=&x; )-&x;), (4.21)

i Z

PC, = exp —— PVP dZ' .
k

(4.15)

That is, in the static approximation (4.11), xo is
automatically additive if V is given by (4.10). If we
define

1 e'z,n~ (P&P—)— (4.16)

where y and gp~ are functions of b and k only, then

Ba ——ikEAV —-',A (A —1)y'+ ~ ~ j. (4.17)

Equation (4.17) may be compared with (4.7), since
they involve

B-g (r;)—P (r;r, )+ ~ ~, (4 7')

Bp A (y)—pA (A —1) (y)'+ ~ ". (4.17')

The approximation involved in (4.12) and (4.14) is
simply P =0, and PC() is given by

which gives the Quctuation of the single-nucleon
scattering phase within the nucleus, as in the compound-
elastic scattering. For small energy transfer during the
collision, however, we expect that (x)() may be small,
and then p is related to f; by (4.4). In this case the
series for Bp is extremely simple.

To 6rst order in (x;), the various theories proposed so
far all give the identical result, but there is much
variation in the second-order eGect. %hen they are
small, it is not easy to distinguish between the P=O
approximations and the difference among the second-
order expressions, and that makes it difFicult to analyze
the experiments correctly.
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