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Impact-parameter amplitudes for potential scatterings are calculated in the various approximations, and
the results are compared with the exact phase-shift analysis up to the second diffraction minimum. General
trends of the approximate cross sections are given which should be taken into account in the study of cor-
relation effect in nucleon-nucleus scattering experiments. An improved form of the amplitude for momentum
transfer up to the second diffraction maximum is given. Parametrization of the nuclear correlations in terms

of the two-nucleon amplitude is discussed.

I. INTRODUCTION

IGH-ENERGY scattering experiments are often
analyzed by the impact-parameter method, with
the amplitude given in the form!

f(k, q) = f“’bdwo(qbw(b, k), (1.1)
0
where
B(b, k) =ik[1—ex®07], (1.2)
x(b, ) =— k- [“' VadZ, t=b+Z. (1.3)

In (1.1), we have used c=m=7%i=1, and V. is an
effective interaction defined through the representation
(1.1) itself. The fact that the simple form (1.1),
derived! in the approximation of small momentum
transfer q and using a wave equation of some sort, may
have a more general validity?? and satisfy the high-
energy unitarity makes it very attractive for further
theoretical study. Composite system scatterings have
also been treated by Glauber,* using (1.1) and several
additional assumptions, as discussed in Sec. IV.

On the other hand, it is not a simple matter to
relate Vit of (1.3) to the potential V which appears, for
example, in the Schrédinger scattering equation. Such a
connection for a local potential V has been shown in a
roundabout way by Blankenbecler and Goldberger
using the dispersion relations for the amplitude, but for
practical purpose of improving the representation it
would be desirable to find a more direct connection.
The difficulty in such an attempt seems to arise from
the nonlocal nature of the scattering operator 3=

I R. Glauber, in Lectures in Theoretical Physics, edited by W. E.,
Brittin and L. G. Dunham (Wiley-Interscience, Inc., New York,
1958), Vol. 1, p. 315; H. Feshbach, in Course 38, International
School of Physics “Enrico Fermi,” edited by T. E. O. Ericson
(Academic Press Inc., New York, 1967).

?W. N. Cottingham and R. F. Peierls, Phys. Rev. 137, B147
(1965) ; T. Adachi and T. Kotani, Progr. Theoret. Phys. (Kyoto)
Suppl., 316 (1965); E. Predazzi, Ann. Phys. (N.Y.) 36, 228
(1966). For recent references, see M. M. Islam, in Lectures in
S%e;r;etical Physics (University of Colorado Press, Boulder, Colo.,

! R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 (1962).

¢R. J. Glauber, in High Energy Physics and Nuclear Structure,
gditedl ggfnG Alexander (North-Holland Publishing Co., Amster-
am, .
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V4+VGyg. We note that the unitarity condition
gives ImJ in the dispersion relations in an essentially
separable form, while ReJ is not.

Here we are concerned with the accuracy of various
approximations used in the past and possible improve-
ments at large angles. This problem is of some interest,
since recent nucleon-nucleus scattering analyses®™
seem to require improved representations, and also a
better understanding of the accuracy is desired in the
variational formulation proposed recently.® Several
improved forms of amplitudes for the potential scatter-
ing have been given by Schiff® and by Saxon and
Schiff.’® Among others, their formulas at large angles
contain factors which depend on 8=g¢/2k, where q is the
momentum transfer, such that B of (1.2) is now a
function of 8. More recently, Feshbach™ has given still
another form of amplitudes which is similar in form to
(1.1). Most of these formulas are extremely effective
in reproducing the large forward-diffraction peak, but,
as q gets large, with ¢=2k(1— cosf), the agreement
with the partial-wave calculation is not as good.

We report here the result of a simple computer
experiment we have carried out to ascertain the
general trend of deviations each approximate amplitude
makes from the “exact” amplitude. This will in turn
help to correctly determine the parameters involved
in the theory. The problem may be less critical if one
takes (1.1) as a “correct” representation of f and uses
the inverse Fourier-Bessel transform of f, rather than
the form B with particular V. The multiple-diffraction
theory of Glauber* is such a case. However, the result
presented here may still have some general validity
even in those cases without potentials. We emphasize,
however, that although the representation (1.1) is
simple and conceptually appealing, the form of B with ¢
dependence (85%0) to be discussed in Sec. II is equally
valid and perhaps more tractable within the potential
scattering theory.

5R. H. Bassel and C. Wilkins, Phys. Rev. Letters 18, 871
(1967) ; Phys. Rev. 174, 1179 (1968).

¢ W. Cysz and L. Lésniak, Phys. Letters 24B, 227 (1967).

?D. K. Ross, Phys. Rev. 173, 1695 (1968); L. I. Schiff, ibid.
(to be published).

8Y. Hahn, Phys. Rev. 174, 1135 (1968).

¢ L. I. Schiff, Phys. Rev. 103, 443 (1956).

10D, S. Saxon and L. I. Schiff, Nuovo Cimento 6, 614 (1957).

11 H. Feshbach (to be published).
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II. IMPACT-PARAMETER REPRESENTATIONS
AND POTENTIAL SCATTERINGS

We collect here some elementary formulas used in
our calculation for potential scatterings, most of which
are well known.!' For simplicity, we consider the
Schrodinger equation with a local Gaussian-type
potential. We have

[T4+V—-EJ¥r=0, (2.1)
with
T=—1Ve  E=i%/2m=1F, (2.2)
where m=%=c=1. As usual, we set
¥ =¢*ird(r), (2.3)
and obtain
(V.24 2ik;+ Vo— 2V) & (r) =0. (2.4)
The amplitude is given by
2
fkpky) =— 41——1;;, etV (r)W (1) dor
1 .
—— - [ ewvama, (2.5)
2

where we have the usual asymptotic behavior of ¥
given by

W (1) —ekitf(0) e /r, (2.6)
ie., .
&(r)—1 as |kir|—o—o, (2.7

The Born amplitude is obtained from (2.5) by
setting
®(r) =1 (2.8)
and thus
folk, ) == (2m)7 [eervar. (29)
If we choose the Z axis to be parallel to k; (system I),
and take the XZ plane to be the scattering plane, then
we have

(ki—ky) -r=q-r=kZ;(1— cos®)— kb sin® coséy,

(2.10)
where

[k'] =|kfl=kr
r=b1+Z,

k"— k/E q,
cos® = k;- ks

0<g<2k

The ¢1 dependence of the integrand of (2.8) is contained
only in (2.10), so that we can perform the d¢r integra-
tion of d% = b1dbidZ1dér using

Jo(a) = (2r)—1 /2' €™ cosgdg, (2.11)

0
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and obtain
fer=— /m brdbr /m dZy V(r)Jo(2kb: sin}® cosiO)

0 —o

X exp(2ikZ; sin?@),

/w bidby Bp1 (b1, q, k) Jo[ b1g(1—p52)42], (2.12)
0

where

Bpr=— / deI V(b Ze2) V2 )es%21,

B=g/2k. (2.13)
We used in (2.12) and (2.13)
1— cos®=¢%/2k*=2p2, g=2k sin}0
cosi®=(1—p2)12, sin @=(¢/k) (1—82)12.  (2.14)

On the other hand, we can equally well choose the
Z axis to be parallel to the vector k;+k; (system II)
and again the XZ plane to be the scattering plane.
Then we have
q-r=—gbr cos¢r,
&r= b11dbuidZyydén, (2.15)

and thus

o o 2x
fBII=_(27r)—1/ bndbn/ dZn V(f)/ dér
o 0

0

X exp(—igbrr cosprr)

=/ bridbir Jo(gb11) B (&, brx),
0

(2.16)

where

Bpn=— f dZu V(b Ze) ], (247)

and noting that Jy(a) is an even function of . Although
(2.12) and (2.16) look quite different in detail, they
originate from (2.8) which is independent of the choice
of coordinates, and thus we have

fei=fpi1=f5. (2.18)

We were not able to give a direct transformation from
(2.16) to (2.12) in any simple way, but the accurate
numerical analysis on the computer checks the validity
of (2.18), which was in turn used to check the accuracy
of the subsequent calculation. It is significant to note
that these two B-dependent factors cancel, although
they have individually a very large effect on f for
¢<i.

We can improve on (2.8) by solving (2.4) after
dropping the V,* term since, for q not too large, ®
should be a slowly varying function of r. Thus

(2ik; V—2V) @y =0, (2.19)
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with the boundary condition (2.7). Here, (2.7) is
simple only if we take the system I, in which the Z axis
is parallel to k;. Thus, we have

ik (6/6Z1) q’ol = Vq)o[
and obtain

e
$or= exp [-— %/ azy V[(b12+ZI’2)1/2]] . (2.20)
Substitution of (2.20) into (2.5) gives

Jor= /m brdby Jo[gbi(1—B%) V%] Bu (g, &, b1), (2.21)
0

where
Bo=— / " 421 V() Bt (b, Zt, B)e7F, (2.22)

(2.21) is the form closely related to the ones studied by
Schiff,® Saxon and Schiff,’ and more recently by Ross.”

Obviously, the system II will be cumbersome in
satisfying the boundary condition (2.7), and thus
corresponding solution of (2.19) will not be simple.
Thus, we do not consider &1 for this case explicitly,
but make a further approximation on (2.21), following
the original derivation by Glauber.!

If we make a small-angle-scattering approximation
at high energies, then, in (2.21) and (2.22),

(1—p2)12—1, eizazzk_,l’

(2.23)

which is reasonable from the point of view of its effect
cancelling in the Born amplitude. Thus, we get

o= / " budby Jo(gb) Bo(b k), (2.24)
0

where

Bo=— [ 4z V() da=—ik(ero0—1), (2.25)

xo(b) =— k- / “ vz

—00

(2.26)

This is the Glauber amplitude,! and it is obtained here
as a small-angle approximation to (2.21). Since both
(2.21) and (2.24) are approximate, it is not clear
a priori which one is better since errors made in suc-
cessive approximations may cancel. It is the main
purpose of this paper to compare these two formulas
for a specific case, and see if one can make a general
statement of the range of validity for each of these two
formulas. Note that, unlike in the Born amplitude f3,
the correction factors dependent on 8 in (2.21) are
significant, and do %ot cancel out because ®o of (2.20)
already contains the crucial information (2.7) with the
choice of the coordinate system I.

More recently, Feshbach!' has considered a slight
modification of the form (2.24) by replacing V in
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(2.26) by
—V/k—>—Va/k=(k2—2V)2—k
~—(V/k)[1+V/2k4----], (2.27)
and thus
fa= / “ bdb To(qb) Bu(k, b), (2.28)
0
where
' 14 Z1
By=— [ dZ1 Vu exp(— ;e.[ VHdZ1'>
=—ik(exd—1), (2.29)
xa(b) = — k1 f T Vandzy. (2.30)

We also define fiom by

Fron= f * bdb JoLgb(1— )] Box (k; b, q),
0

where

Y 7 Z1
BOHZ — j dZI V}{ €xp ('— -
— k —c
The approximations involved in the derivation of
(2.28) are identical to the case with (2.24), in addition
to the fact that, in (2.29), the multiplicative Vy is put
in instead of the usual V in order to have the form
(2.30). To first order in V/(2k?), (2.24) and (2.28) are
the same, and there is again no a priori reason why the
substitution (2.27) should improve the amplitude,
since the B-dependent terms have been neglected in
both formulas. Since, as in fp, the 8-dependent effects
may nearly cancel and the approximation (2.23) is
very difficult to estimate, we decided to look at a
simple model case to examine the formulas (2.21),
(2.24), and (2.28). The result will be discussed below.
The form (2.24) or (2.28) is obviously much simpler
than (2.21), and the fact that (2.24) with V replaced
by an effective Vs may have a more general validity
makes it of some interest to search for a better V.
Vu of (2.28) is one such form. For this purpose, we go
back to (2.4) and write it as

1k(0/0Z1)®=Vd+(—1V.2)®,
=Ve+[e(—3V) 818,
=(V+Vr)®, (2.31)

where we have assumed that ! exists. Since Vi is now
a local operator like V, we have

V,,dZ{) 28721,

i [
®= exp [— 7@/ (V—}—VT)dZI'], (2.32)

and thus we have the exact amplitude given by

f= / " bab JiLab(1—62) 1B (g, b, k), (2.33)
0
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where

Bl b b =—1 [ azivirewaie(e, s, 2. (234

Obviously, (2.32) is extremely nonlinear in & and
(2.33) is perhaps useless from a practical point of view.
Besides, the form (2.34) does not give (1.2) in any
simple way. From (1.2), we have

53] N Z
B(b, k)%—%/ dZ Ve exp(— 2/ dz’ Ve,f).

(2.35)

In order to compare (2.34) with (2.35), we simply
make the approximation (2.23), and further require
that

; Z
VeVt exp (* ;;/ Veffdzl) . (2.36)
Equation (2.36) can be rewritten as
i [Z i (%
InV— 7 / (V4+Vr)dZ'~ InV 5— % / Vet:dZ'.
Using the fact that Ve'= Ve and V1=V, we have

z
InV4-£1 j ImV7dZ'~ InVes,

z z
] (V+ ReVyp) dZ'N/ VetdZ',
or
z
VetV exp (k‘l / ImVTdZ’> ,  (2.37a)

~V+ ReVy, (2.37b)

where Vr is defined by (2.31). In the approximation
(2.23), we than expect from (2.37) that

zZ
ReVrxV [exp (k"‘ / ImVTdZ’) — 1] . (2.38)

Obviously (2.38) should be dependent on the ap-
proximation (2.23). If we make ®~J®y in Vp, for
example, then

Vr= (7 [—3VZ]®) = (Por [ — 1V.2]d0r),
{68+
2 {( ) Tz

_i[(gj)Jr(g:Z,_U)ggg]}, (2.9

Z
U= —J1 f viz'.

where
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Apparently @ is not a very good approximation to ®
for large ¢, and thus the form (2.39) would not be very
good for alarge-angle region. However, if we assume that
at least the Z-dependent part of ® is reasonably well
reproduced by (2.39), then, with

ReVrx3(9U/0Z)?,

ImVyr—3(0*U/02%), (2.40)

we immediately satisfy (2.38) to first order in ImVy/k,
and that

ReVrV?/22, (2.41)
as given by (2.27). Therefore, the above discussion
seems to bring out more explicitly the various ap-
proximations used in (2.24) and (2.28). Further
indication that (2.39) is not quite right comes from the
form given by Schiff and by Saxon and Schiff, where we
essentially have 850 and

Vo (@,T®;). (2.42)

However, (2.42) involves both % and g, so that it is not
clear at present whether a form simpler than (2.42)
may be possible. Still another indication of the failure
of (2.39) comes from the variational method proposed
recently.? Equation (2.39) results if the d function
defined there is replaced by a simpler form, as

43'01_1T I S)(l/d) <S I T l Dor )Nq)ol_lT‘I)o], (243)

)

|s) is a trial function. However, for many cases,
explicit calculation'? shows that the second term in d is
not negligible compared to the first term.

As a conclusion, we emphasize that due to the com-
plicated cancellation of the effect of 8 in (2.21), the
various approximate amplitudes are only good to first
order in V, and it is not clear how well higher-order
effects are reproducible. Therefore, physical inter-
pretations of the experiments which rely on the higher-
order effect in the representations (2.21), (2.24), and
(2.28) should require additional care. This is essentially
the same conclusion reached by various authors.”-!!
We further define several forms of approximate ampli-
tudes which will be explicitly studied in the next
section. They are

where

¥4
T Dor [ az’ @oI—IT

—

d=(slT]s)+é<s

(s|T|s)

i o)
fafok 5 / bdb JoLgb(1—62)112]
0
) Z1
X / dZy V (r) &#%*21, f dZy'Vra (2.44)

12'Y. Hahn, Phys. Rev. (to be published).



1026 YUKAP

and

Fan=—1} [ " bdb Jo[gb(1— )]

) ; Zy
X f dZ; V(r)e?‘f‘z"zl(l—— 2 / dzy VTA)

i (@ i a
x|~y [ oz (1= [ azva)] a9

where

Ve Vra =S T Po1, (2.46)

and
fae=fa with B3=0, (2.47)
fane=fan with B=0. :248)

The forms (2.44) and (2.45) give nearly the same
result and are the improved amplitudes for ¢ up to the
second diffraction maximum.

III. RESULT OF CALCULATION

The numerical calculation we have carried out is very
trivial but seems to show several interesting features
of the various approximate amplitudes. For simplicity,
we choose the form

V(r) =3Ge4"(1+p1?), (3.1)

where m=%=1, and r*=3*+Z2 The p-dependent term
is added to readily reproduce the diffraction peaks and
valleys near the angles where experimental cross sec-
tions also have them. The parameters used in the cal-
culation are 4 =0.20, p=0.30, £=2.0, and the strength
constant G is tried with G=—0.10, —0.20, and —0.40.
Needless to say, the form (3.1) may be an over-
simplification; when high-energy particles are scattered
off complex nuclei, many inelastic channels are open
which give rise to an effective interaction Ves with
appreciable imaginary part. This is also true for the
nucleon-nucleon interaction above the production
threshold and with L-S and tensor forces. Some
estimates of a large Im Vs on the scattering amplitudes
at larger angles were made, for example, by Feshbach!
for a simple model. We have not carried out such
calculations, and thus our discussion is limited in this
respect.

The point of view taken in this paper is that, for a
given form of the interaction Vs, which may or may
not be complex, an approximate form of the amplitude
is acceptable if it is capable of reproducing the correct
values at all g. Even if the presence of a large ImVest
may affect the large ¢ behavior of the amplitude, the
ambiguity of determing the correct parameters of Vs
using an approximate formula still remains. Besides, it
is not clear whether a large ImV,s in the nucleon-
nucleon interaction, for example, would not contradict
the additivity assumption of phases in the Glauber’s
multiple-scattering theory.* We are also neglecting here
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possible effects due to nonlocality and energy depend-
ence of the effective interactions. The exchange effect
may also be important. In this respect, the discussion
given below is specifically for V of the form (3.1) with
particular set of parameters, but the conclusion and the
general behavior of the amplitude we are interested in
may have a larger region of validity.

A. Born Amplitude and the Partial-Wave Analysis

The two different forms fpr of (2.12) and fsu of
(2.16) were calculated for all momentum transfer,
0<¢<2k. To the accuracy of the computer program,
we find that these two forms are identical. Since the
individual factors in (2.12) which depend on 8 have
strong effects on f, a delicate cancellation is taking place.
We also used (2.18) as a numerical check in our later,
less elaborate calculations of other quantities. The
function fp is real and extremely good at small g. The
exact amplitude fg is obtained for each % and g by the
partial-wave method, which required /<15 for £<2.0.
Because of a large cancellation among these partial
waves at large ¢, we restrict our discussion to regions of
¢<2.0, where we have an accuracy of 1 part in 103,
while near g=0 we have at least 1 part in 10°.

We next evaluated for and fe of (2.21) and (2.24),
and the result is again compared with the exact fg, as
given in Table I. The parameters used are 4 =0.20,
p=0.30, and G=-—0.10, —0.20, and —0.40. The
agreement of | fg | and | for |? with | fg |? is excellent for

=—0.10, and less so for G=—0.20 and G=—0.40, as
expected. It is more significant, however, that each
approximate amplitude deviates from the exact one in
some specific way.

First of all, | for |> is consistently lower than |fg |?
even in the region where Refor itself changes sign. It is
appreciably better than | fg |2 in the region between the
first minimum and the second maximum, but decreases
too fast beyond the second maximum. On the other
hand, | f¢ |? seems to have less sharp peaks and valleys
than | fz [? and thus crosses over | fz |? at several points,
but it follows the exact value rather closely.

We have also evaluated | fx |2 of (2.29) keeping the
V? term in (2.27). It gives slightly improved values
near the first diffraction minimum, and over-all values
are lower than | fg |2, which is too high in that region.
We did also try |fiom |?, which is the same as | for |2
with ¥V replaced by (2.27); the result is not as good as
| fe |2 This indicates that some of the variations we
are studying fall within the error made in the 8=0
assumption, and it is difficult to make a correct error
estimate.

Thus, the amplitudes with 80 are consistently
lower than | fz |* and approach the correct value near
the rising part of the peaks, while 8=0 makes the
|f|? less sharp in its diffraction oscillations. These
general trends would be useful in actual applications of
the forms fu1, fo, and fy. That is, fits to experiment
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TasLE 1. Differential cross sections | f |* for a modified Gaus- TaBLE II. Dependence of |f|? on the potential parameters.
sian potential. The values for each momentum transfer ¢ corre- 1, 0, and | denote the values of |f|? increased, unchanged,
spond to fa, fa, for, fH, and fg, respectively. The parameters used and decreased, respectively.
are k=2.0, 4 =0.20, and p=0.30,

A )} (T) I 0 0 0 | | |
¢ G=-0.10 G=-0.20 G=-0.40 ¢ T oL 10
0.0 2.592 10.37 41.48 0:0 Lol rta
2.588 10.30 40.31 0.4 Trroee il
2.588 10.30 40.31 08 T oo o
1.2 t 1t 1 0 0 0 0 | |
2.605 10.44 ii:zg L4 A A N
1.6 R I B
0.8 0.2083 0.8330 3.332 1.8 T o | 17 0 | 7 1 |
0.2080 0.8669 3.261 2.0 LI S A N R S A A
0.2012 0.7751 2.849
3.110
0.2044 0.8118 3.155 TaBLE III. The real and,imaginary parts of the amplitudes as

well as | f |2 are given. For each g, we have fg (fitted), for (fitted),
Jf1om, and fg. The parameters used are G=—0.40, £=2.0, 4 =0.20,

1.2 0.00203 0.00812 0.03247 and p=0.30.
0.00214 0. 0.06110
00993 g Ref Im f Iz
0.00159 0.00555 0.02566
0.05417 1.0 0.6119 0.4239 0.5540
0.00186 0.00763 0.04330 0.6461 0.3703 0.5545
0.5627 0.3254 0.4226
1.4 0.00033 0.00132 0.00528 0.6340 0.3899 0.5540
0.00039 0.00225 0.02004
0.00052 0.00316 0.02424 1.2 0.0381 0.2125 0.0466
0.01942 0.0717 0.1754 0.0359
0.00048 0.00307 0.02624 0.0325 0.1474 0.0228
0.0653 0.1976 0.0433
1.6 0.00098 0.00392 0.01566 )
0.00100 0.00422 0.02050 1.4 —0.1600 0.0715 0.0307
—o0. 0.04 )
0.00109 0.00482 0.02310 0.1469 % 0.0241
—0.1504 0.0368 0.0240
0.01991
—0.1484 0.0650 0.0262
0.00111 0.00508 0.02662
1.6 —0.1631 —0.0058 0.0266
1.8 0.00059 0.00238 0.00950 —0.1631 —0.0117 0.0267
0.00060 0.00246 0.01090 —0.1486 —0.0140 0.0223
0.00060 0.00238 0.00930 —0.1629 —0.0092 0.0266
0.01028 1.8 —0.1045 —0.0363 0.0122
0.00064 0.00271 0.01250 —0.1069 —0.0285 0.0122
—0.0898 —0.0253 0.0087
2.0 0.00020 0.00080 0.00321
—0.1052 —0.0378 0.0125
0.00020 0.00084 0.00389
0.00018 0.00066 0.00200 2.0 —0.0500 —0.0392 0.0040
—0.0509 —0.0231 0.0031
0.00353
—0.0388 —0.0188 0.0019
0.00020 0.00082 0.00360

—0.0464 —0.0380 0.0036
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TaBLE IV. The approximate amplitudes using Vr= Vr4. For each value of ¢, the column contams f 4G, f4, fana, [an, and fg.
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The parameters used are & =2.0, 4 =0.20, p=0.30, and G= —0.10 and —0

184

Ref Imf ISP
g G=—0.40 ~G=—0.10 G=—0.40 ~G=—0.10 G=—-0.40  G=-0.10
0.0 6.308 1.612 1.320 0.0837 41.54 2.607
6.308 1.612 1.320 0.0837 41.54 2.607
6.287 1.612 1.392 0.0848 41.47 2.607
6.287 1.612 1.392 0.0848 41.47 2.607
6.305 1.612 1.318 0.0834 41.50 2.605
0.4 4.686 1.200 1.115 0.0705 23.20 1.444
4.634 1.196 1.112 0.0709 22.71 1.436
4.666 1.200 1.180 0.0714 23.17 1.444
4.607 1.196 1.174 0.0719 22.61 1.436
4.633 1.195 1.105 0.0703 22.69 1.432
0.8 1.783 0.4601 0.6560 0.0411 3.609 0.2134
1.657 0.4521 0.6366 0.0417 3.149 0.2061
1.765 0.4600 0.7037 0.0418 3.612 0.2134
1.623 0.4517 0.6715 0.0423 3.084 0.2058
1.662 0.4502 0.6275 0.0409 3.155 0.2044
1.2 0.1642 0.0473 0.2395 0.0147 0.0843 0.00245
0.0604 0.0403 0.1974 0.0142 0.0426 0.00182
0.1525 0.0472 0.2632 0.0150 0.0925 0.00246
0.0366 0.0400 0.2030 0.0144 0.0426 0.00181
0.0653 0.0408 0.1976 0.0140 0.0433 0.00186
1.6 —0.1436 —0.0315 0.0214 0.0012 0.0211 0.00099
—0.1519 —0.0327 —0.0102 0.0003 0.0232 0.00107
—0.1480 —0.0315 0.0240 0.0013 0.0225 0.00099
—0.1559 —0.0328 —0.0136 0.0003 0.0245 0.00107
—0.1629 —0.0333 —0.0093 0.0004 0.0266 0.00111
2.0 —0.0763 —0.0155 —0.0349 —0.0019 0.0070 0.00024
—0.0356 —0.0131 —0.0265 —0.0017 0.0020 0.00018
—0.0746 —0.0155 —0.0434 —0.0021 0.0075 0.00024
—0.0339 —0.0131 —0.0245 —0.0017 0.0018 0.00017
—0.0464 —0.0141 —0.0380 —0.0023 0.0036 0.00020
should Ef, regixrded as excellent if the above trend is For £=2.0, we have roughly
reason .
Ogv?ouZl;‘,,eilfri)Tg dtlilggges Vet using a particular fr; G=—0400,  4=0200,  p=0.300,
representation, either (2.21), (2.24), or (2.29), then fe; G=-—0.385, A=0.190, p=0.315, (3.2)
| f£ |? can be reproduced. Table III shows a rough fit fua; G=—0415, A4=0.210, p=0.330.

which is obtained using the behavior of | f | as functions

of the parameters G,

A, and p, as given in Table II.

Since we picked the larger | G| value, the effect dis-
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cussed above is exaggerated, but again the trend seems
to persist as G and k are varied.

B. Effect of Vr

The form (2.44) and (2.45) with Vr in the approxi-
mation (2.46) is evaluated and also a similar form with
8=0. The result is very encouraging, except in the
region beyond the second maximum, and this indicates
that (2.39) is probably not a good approximation. The
form (2.35) with Vess=V+ ReVr, where Vris given by
(2.39), is also tried, and the result seems to indicate
that the 3-dependent factor is important as soon as the
d/db factors in T are included. Finally, some attempts
were made to replace the factor exp(i28%Z) by an
equivalent S-independent form. The 8 dependence in
Jo is so strong, however, that it was difficult to cancel it
in any other way. The result is given in Table IV.

Thus, unless one is willing to go to more involved
large-angle formulas, such as those given by Schiff, the
accuracy involved in the various amplitudes is about the
same near the second maximum, and it would be
difficult to extract any other new effects of the same
order of their difference in an unambiguous way.

IV. PARTICLE CORRELATIONS

We consider in this section the nucleon scattering
from a composite target nucleus using the representa-
tions of the two-particle amplitude discussed in Sec. II.
Since the nucleons inside the target nucleus are bound
and interacting with each other, the scattering ampli-
tude should contain information of this correlation as
well as the off-energy-shell properties of the two-
nucleon amplitude. They show up at high energies for
large momentum transfer ¢ as corrections to the un-
correlated amplitudes. Thus, in order to isolate these
effects in a convincing manner, one has to have first of
all a reasonably efficient representation of the ampli-
tude at moderately large angles, and also a reliable
theory to take the correlation into account. We con-
sider in some detail the formulation proposed recently?®
and compare it with the multiple diffraction theory of
Glauber* and its modification by Feshbach.! We
restrict our discussion to elastic scattering.

The Glauber theory* assumes the representation
(1.1) and writes the nucleon-nucleon elastic scattering
amplitude in the form

F(k, q) = /m bibTo(gh)B(kB), (4.1
0

where
r4) |2,5(a>(A—1 Z r;)
’ bA) )

'dSTA.

B(k, b)=ik/dr[%(r1, La,e e,

Xr(b, bl}' °*
T=1—¢%,  dr=d--

(4.2)
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Yo is the target ground-state wave function and x

depends on the positions of all 4 target nucleons. The
essential simplifying assumption of Glauber is that

A
x= 2 xi(b—by k),

(4.3)
=1
and x; in turn can be expressed as
Ti(b—bs, k) = 1— e¥xi= (2ik) L / ¢ b0
Xfi(q, K)dqu. (44)

In (4.4), f; is the two-nucleon amplitude which is
assumed given. Substitution of (4.3) into (4.1) gives
immediately the multiple-scattering expansion

F=F+Fyt---, (4.5)

where

ik
Fi= 12— > / P giad / 5(471 3 )Ty | o dr, (4.6)
Y 7

—_—Z/dzbemb/am U3 R TNT | o 2,

27 >j
cte. (4.7)

As it stands, F, contains some correlations coming
from the c.m. é function and also the averaging over
the target ground state. However, the approximation
(4.3) may be too crude.

An improved form of (4.3) has been given recently
by Feshbach,!! who writes

X= Zx;-f- ;wij'i‘"

Then, F can be written again in a series of the form
(4.5), with F; unchanged, but F. containing an ad-
ditional unfactorizable term, as

F2—>— il Z / &b iad / ara(4= L)

T >j

(4.8)

X[TT—Hidl o 2, (4.9)
where

H,'j= 1——6"“"7’.

If the interaction between the incoming projectile and
the target nucleons are additive, with

A
V=H—Hy= Y V., (r—r1),

=1

(4.10)

then the approximation which led to the Glauber
formula (2.25) also gives precisely the form (4.3) with
each x; given essentially by (2.26). Obviously, in the
present case the neglect of the 8 factor and Vr? term in
the equation may have a more serious effect, but it is
extremely difficult in this way to untangle the ap-
proximations involved in the impact parameter rep-
resentation and in the correlations.
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If we assume that the energy transfer during each
collision is negligible compared to %2, then the inelastic
channels projected by the operator Q is negligible, and
the “static” part gives®

B=Byt+Bp+tBa,

=B+ Bleo, (4.1 1)
where
ByJtk(1—exoP), (4.12)
X =—k f  dz(PVP)
— f” iz A /dr[\l/o 34 3 1)
XV.'(I'—I'.'), (413)

1

Bi~— ; f_ Z dz<PV(P<I>o+Q) f_ i dZ' (P®¢'+Q)

XA [A+ i A(P®s+Q) f_ i dZ'(P®; '+ Q)ATAP«1>0>.

(4.14)
In (4.14) we have
P=¢y){§s, Q=1—P, QP=0,
and
A=(H—E,) —PVP, E=Eyt+3};.

B, can be written in a more compact form as

By~ / az <PVS — AP<I>0>

where
1: Z
s==1 (PaotQ) [ az/(Pari+Q)A.

The approximation involved in (4.12) and (4.14) is
simply =0, and P®, is given by

Po,= exp(— % /: Zm (PVP)dZ’). (4.15)

That is, in the static approximation (4.11), xo* is
automatically additive if V is given by (4.10). If we
define

y=1—e%PlA=(PyP), (4.16)

where v and x* are functions of b and k only, then
By=tk[Ay—34(A—1)y*+-..]. (4.17)

Equation (4.17) may be compared with (4.7), since
they involve

B~ Z‘.: (Ta)— ; (TiTj)+--,

By~ AQ)—3A(A—1) (r )+ .

(4.7)

(4.17")

YUKAP HAHN
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Obviously (4.7’) does not allow the ith target nucleon
to be scattered more than once during a complete
scattering, while (4.17") may include such collisions
because the second term involving (y)?, for example,
does not distinguish the target nucleons. T';*T; is a
separable two-particle operator and carries some
correlations as

(TiTy) = (T«(P+Q)T;)
= ([':)(T;)+(T.QT;).

According to Feshbach, one would like to generalize
(4.18) by adding further correlation terms H;; of (4.9).

The static amplitude By does not include the Q-space
effect by definition, but eventually one is interested in
parameterizing the complete F in terms of the two-
nucleon amplitude f. This can be simply carried out by
replacing xo” by an effective . involving both single-
and double-nucleon interactions. How such a modifica-
tion based on the forms By and also how B; are related to
fi is not entirely clear.

We now study the leading terms (4.7’) and (4.19).
If we assume that x; is reasonably small at high energies,
then we have

(4.18)

(Ty)=(1—es)

=—ilxs)— ()t - e, (4.19)
and
(’Y>= 1 — e¥(xs)
=—i{xa)— (i)t - (4.20)

Obviously, the difference between (I';) and (y) is, to

second order,
00 n= )= (X%

which gives the fluctuation of the single-nucleon
scattering phase within the nucleus, as in the compound-
elastic scattering. For small energy transfer during the
collision, however, we expect that (x)u may be small,
and then ¥ is related to f; by (4.4). In this case the
series for By is extremely simple.

To first order in (x;), the various theories proposed so
far all give the identical result, but there is much
variation in the second-order effect. When they are
small, it is not easy to distinguish between the 8=0
approximations and the difference among the second-
order expressions, and that makes it difficult to analyze
the experiments correctly.

(4.21)
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