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APPENDIX

Using the convention rq"~p(i) =p(i}, rg'on(i) =
—n(i), the third component of the nucleon isospin
operator applied to the isospin functions of 'He given

by Eqs. (7) and (11) yields

&"f'= -(1/~&) f"+(V'!)t',
»"'i =+ (1/'/3) f (—V ') f-',

r&o&f."=--'f"--'&2''
(-1/~) f'+-*.t"+V&f',

~"&f"=+(«~~)1'+-'.f"+V~t'
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The Morse function is assumed to approximate a nonlocal or velocity-dependent nucleon-nuclear potential.
Analytic neutron and proton wave functions and eigenvalue formulas are obtained for all states of all

nuclei, using a modified version of an analytic perturbation method due to Pekeris. The eigenvalue formula

is in approximate agreement with the following experimental data: (1) the last-particle binding energies

of neutrons and protons, (2) the neutron and proton magic numbers, {3) the positions of the S-wave-

size resonances in total-neutron-cross-section data, and (4) the recent experimental work on deeply bound

inner particle states by Amaldi et al. The eigenvalue formula gives results that are consistent with recent
Hartree-Pock calculations.

I. INTRODUCTION
' PREVIOUSLY, Green, Darewych, and Berezdivin'

(GDB) noted the possibility of using the Morse
potential to arrive at analytic eigenvalues and analytic
wave functions for single-particle states in velocity-
dependent nuclear potentials. Their results compared
favorably with the numerical solutions of Wyatt, VVills,

and Green. ' The procedure of GOB involved fitting the
effective energy-dependent potential together with the
centrifugal potential by an approximating Morse po-
tential. ' In the present work, the numerical fitting
procedure used in the earlier study is replaced by a
modified version of a technique used by Pekeris. '
Thus, one arrives at explicit formulas for the effective
state-dependent Morse-function parameters and for the
eigenvalues. This should greatly enhance the utility of
the approximate method.

II. VELOCITY-DEPENDENT POTENTIALS

In this work, velocity-dependent potentials of the
form

V(r, p) = —V,t, (r) —(N, /grl)

X[V'p(r)+2V. ~(r) V+g(r) V'j (1)
are considered. Here, $0(r) is the static form factor,
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which may differ from $(r), the velocity-dependent
form factor. If use is made of the wave function

R(r) V~ (e, p) and the definitions

x=r/o, ~ '= W/E, , R(x) =—G(x)/x,

Ro ——5'/2esa' e '= V/E X(x) = (1+be)'"G(x) .

(2)

it is possible to transform the usual Schrodinger equa-
tion for such potentials into the form

X"—r (x, e~) X—[e '/(1+b)]X=0, (3)
where u(x, & ) is the energy-dependent potential

pp
1+be 4 1+be 4 (1+be)'

bP' l(l+1) b(1—$) e '
4

2x(1jb$) x' (1+be) (1+b)

In this paper, an analytic method is developed for the
approximate solution of Eq. (3) in certain cases of
interest in nuclear physics. Form factors $& and $ are
assumed, for which the first four terms of Eq. (4) be-
come a Morse function. Then all remaining terms are
treated by the quadratic perturbation method.

III. MATHEMATICAL PROPERTIES OF THE
MORSE POTENTIAL

The form of the Morse function used in this calcula-
tion is'

v„,(x) =n, 'Iexp[ —2(x—x,)/dj —2 exp[ —(x—x,)/d)I.
(3)
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liow substituting this into Eq. (3) for s(x, e„) and
rewriting in terms of the variable y= expL —(&—xo) /'d j,
one obtains

&w——+ —— +~a'(y' —2y x = o;
d2 dy2 d2 dy

l2

IO

8
LLI

6

and now defining

b=2~ d/(1+ b)"' k=2nod,

J"(s) =e"s "'X(s)

and making the appropriate transformations, one
arrives at the eigenvalue and eigenfunction

lV= —Eo(1+6)Lno —(n —-,') /d j',
F= coF (—n

I
b+1

I s)

(—1) '(n —1) !F(b+1)= co Q . . s&'. (9)
(n—j—1)!j!F (b+j+1)

The normalization constant co cannot be given explicitly
as the unspecified quantity (1+h$) is contained in an
integral. If b=0, the constant co is given by

n—1 n—1

j'-o k-o

0
0 I.O

V

2.0

FIG. 2. The centrifugal potential and its quadratic fit in y
space. Note that y=O corresponds to x= ~, and y 4.85 corre-
sponds to x=O. The points at which the 6t deteriorates I,

'x1 and
xg) are given as functions of the nuclear radius (R).

prescription, which is well suited to diatomic molecules
but not nuclei. In the present work, the quadratic
representation is used for all perturbations although
varying prescriptions for the c's are employed.

In the presence of a number of quadratic perturba-
tions, the eigenvalue is given by

W= 20.73L(A+1)/A](1+8)

dL(n —1) lyF (b+j +f) F2(by 1)
X

(n j 1)!—(n ——l—1)!j!I!F(b+j+1)F (b+l+1)

—1/2

(10)

X Qg—,—
I

MeU, (12)
(~ 2+Q )1/2 d j

when a=1 I' and 0;=Z;c;;. The wave function is of
the same form as Eq. (9), except that now

40' i i ~ I I i s s i
I

s

20— 4I/O

n- -20—

E
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I I I I I t I l I I
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FIG. 1. A Morse function approximates the nonlocal nucleon-
nuclear potential. The 6tting points for perturbations are indi-
cated on the plot.

The analytic wave function and eigenvalue apply only
for s states. Pekeris4 has given a method for handling
the centrifugal perturbations by using the quadratic
representation

8&= Cj.+C2y+ Cly ~

Pekeris evaluated the constants using a particular

s= 2 (up'+Q3) '"dy (13)

Equation (!2) is our basic eigenvalue formula. Let us
now consider the evaluation of the perturbation terms.

IV. CENTRIFUGAL POTENTIAL

Expressing the centrifugal potential in terms of the
variable y, one has V,=l(l+1)g(y), where

g(y) =(xo—dlny) '.
This function must be approximated by a quadratic
perturbation. In the work of Pekeris, the constants were
determined by expanding V, (y) in a Taylor series
about the point y= 1, and then evaluating c~, c2, and cs
from the expansion. For this work in which the centrif-
ugal eGect is proportionally much larger, the function
V,(y) is fitted at three strategically located positions of
y: Speci6cally, y=0.25, which corresponds approxi-
mately to the surface of the velocity-dependent nucleon-
nuclear potential, and y=0.75 and 1.25, which corre-
spond to the points on either side of the potential min-
ima (see Fig. 1).Figure 2 shows the function V, (y) and
the quadratic approximating function. Clearly, these
functions agree quite well except near the origin and in
the region outside the nucleus.

In order to determine quantitatively the accuracy of
eigenvalues obtained from the quadratic method, they
have been compared with nunierical calculations of the
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A =50
S-P levels ABAcUs Q.P.

A =210
ABACUS Q.P.

Tmr.E I. Accuracy of the quadratic perturbation method for
the centrifugal potential. The differences in S states are probably
due to rounding errors in the calculation of input parameters for
the codes.

find values for x~ at which the last-particle separation
energies for neutrons are approximately correct over the
entire range of mass numbers. One may, in fact, do this
over a considerable range of the well-depth parameter
Gp.

1P

1D

25

2P

—48. 14 —48. 15

—38.31 —38.81

—22.95 —23.96

—6.51 —7.08

—11.03 —11.01

—5.88 —5.29

—57.26 —57.30

—53.17 —53.30

—45.51 —46.07

—35.64 —36.72

—24. 55 —26. 22

—13.22 —15.19

—2.55 —3.92

—28.57 —28.55

V. SPIN-ORBIT, SYMMETRY, COULOMB, AND
VELOCITY-DEPENDENT PERTURBATIONS

A spi(n-orbit interaction of the Thomas type is not
feasible, since the static and velocity-dependent form
factors are not specified. Cohen~ has cited experimental
data which indicate that the spin-orbit potential should
be proportional to A "'. A simple volume spin-orbit
interaction was finally chosen

V,.= A ..LA-"'ng'(y' —2y), (18)

25 38 25 44 where A„is an adj ustable parameter, and

2D —19.78 -19.82

—12.81 —12.55

L= ', / fo-r j=l+ '„L=———',(l+1) for j=l—s.

3P

—5.51 —4.35

—9. 'IS —9.71j
—7.71 —7.49

eigenvalues of some higher-angular-momentum states
using the mAcUs Code. ' Results of these calculations
for useful ranges of the parameters xo and d are given
in Table I. As can be seen, the results are quite good.

To serve as a general nucleon-nuclear potential, the
parameters xo and d of the Morse potential are assumed
to depend upon A as follows:

d, =0.656/ug. (16)

The resulting centrifugal constants are

cg= l(l+1) L1.87g(0.25) —1.25g(0.75)+0.375g(1.25) j
cm=l(l+1) L

—4g(0.25)+6g(0.75) —2g(1.25) j, (17)

cm
——j(1+1)EZg(0.25) —4g(0.75)+Zg(1.25) j.
Substitution of these into Eq. (12) yields an eigen-

value formula for nl states as a function of A, with
parameters no, 8, d~, x~. Following the suggestion of
Frahn and Lemmer, ' the value 8=1 is used, and Eq.
(16) establishes the value of d&, hence only no and x&

are considered free. By fixing no and varying x&, one may

~E. H. Auerbach, Srookhaven National Laboratory Report
No. BNL 6562, 1962 {unpublished) .

~%. E. Frahn and R. H. Lemmer, Nuovo Cimento 5, 1564
(1957).

The well-depth parameter n&' is maintained independent
of A. To ensure that 2s, 3s, and 4s eigenvalues are zero
at mass numbers 12, 55, 155, respectively, which are
approximately the positions of the s-wave-size reso-
nances, we impose the relation

TABLE II. Model parameters used in calculations.

Parameter
symbol

X1

Parameter description

Well-depth parameter

Potential-minima radial parameter

Well-diffuseness parameter

Velocity-dependence parameter

Spin-orbit-strength parameter

Symmetry-strength parameter

Numerical
value

2.0

0.52

0.328

1.0
0.50

90.0

7 B.L. Cohen, Am. J. Phys. 33, 1011 (1965).

Calculations were made using this form for a broad
range of well-depth parameters uo, always maintaining
x~ such that the last particle separation energies for
neutrons were reasonable. The constant A„was ad-
justed in these calculations in an attempt to force the
single-particle levels to group in such a way as to give
the magic numbers. The search for magic numbers put
some definite limits upon the parameter ap. An np which
corresponds approximately to no'8~~45 MeV gave the
best results. Figure 3 shows a plot of the neutron last-
particle states as a function of A along the line of P
stability. The smooth curve is the numerical curve due
to Green which fits the experimental data. The magic
number breaks are also indicated.

Proton single-particle states may be considered if
one adds, as a perturbation, an electrostatic potential
from some assumed charge distribution of the nucleus.
For simplicity a Coulomb potential due to a uniformly
charged sphere of radius R=1.2A'" F was assumed.
The same quadratic perturbation method may be used,
but the electrostatic potential must be divided by
1+bed before it is added to the effective velocity-depen-
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TABLE III. Quadratic perturbation constants.

Centrifugal

CQ, Os 535

C~ =1.668

CIA =1.525

Spin orbit

C~= —4.0

Cgg =2.0

Coulomb

C),II =0.0755

CII =0.0985

CN =—0.0151

Symmetry

C24= —8.683

C34 =4.342

Energy-dep.

CIII =—0.0482

Cm; =0.0607

C~= —0.0124

dent potential. The quadratic perturbation constants
were thus chosen to ensure the following reasonable
properties of $:

$~0 as r~ao,

~1 as y = 1, and g~ a,s r~. (20)

These characteristics of $, or similar ones for g(0) &0,
are necessary for the velocity-dependent potential,
Eq. (4), to have the repulsive core that is characteristic
of the Morse function.

As expected, a symmetry term must be added to
account for the last-particle separation energies of
protons. A symmetry interaction of the form

V.~ '= t,A,[($—Z)/A 1(y"-—2y) (21)

was chosen, where A, is an adjustable parameter, and
t,=+~ for protons and t, = ——,

' for neutrons. Here A, is
adjusted so as to give correct last-particle separation
energies for both neutrons and protons and the param-
eters shown in Fig. 3 are readjusted. The last term of
Eq. (4) 8/(1+8) (1+b$) (1—$) s s may also be
treated by the quadratic perturbation method using
relations (20). Inclusion of this term will require an
iteration of Eq. (12), in order to solve for W. Conver-
gence is rapid as the term is tailored to be small over the
important regions of the nucleus.

VI. WAVE FUNCTIONS AND THE
EIGENVALUE FORMULA ~

In view of the perturbations discussed in Secs. IV
and V, one may now write the single-particle eigenvalue

formula as a function of the state variables 3,2, n, l, j,
and t, using Eq. (12).The expressions for Qs, Qs, and Qs

may be put in the form

l(l+1), Z—1
Q,= Css „, +Cps(t, +-s, ) „, +Css W, (22)1+8

l(l+1) I. Z—1
21 +Css sts +Css( g+ s) pi/3

A —2Z+Csst, +Css W, (23)1+5

l (l+1) I. , Z —1
Qs =Css „, +Css „,+Css(t.+s)

A —2Z+Csst, +Css W. (24)
1

A set of model parameters uo, x~, d'~, 8, A„, and 3, and

-2.0

"~ -e.o

0
e

t l l l I I I

t -60

I -4.0—
aa 2 IS

xt ~ .656
dt ~ .438
4N

t t I"5.0 t I

loo
ATOMIC MASS NUMBER

FIG. 3. The square root of neutron single-particle energy levels
for the last-particle states along the line of P stability. Magic
number breaks are indicated.

A. K. S. Green, T. Sawada, and D. S. Saxon, The ENclear
IndependenI Par&'cle Model (Academic Press Inc., New York,
1968).
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ATOMIC MASS NUMBER

FIG. 4. The square root of n~ui. re. ~age-particle energy levels
along the line of P stability. Magic numbers and last-particle
binding energies are indicated. Because of a lack of s ace the j
quantum numbers for some states are denoted by (+ or (—).
Also the N quantum number is deleted for the N ~3 levels.
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TABLE IV. Comparison of the author's model (MG) with experimental proton states (Ref. 9).

State

1S1)2

1P1I2

016
Expt MG

43%5 57.5

19+1 30

12%1 21

Ai27

Expt MG

57&7 69

32+3

S32

Expt MG

80&8 73

Ca4o

Expt MG

77m 14 77

32&4

50

the corresponding parameters C;; are given in Tables II
and III.

In Figs. 4 and 5, the neutron and proton single-
particle states are plotted as functions of atomic-mass
number. In order to place more emphasis on the high-

lying states, the square root of the absolute value of
the eigenvalue has been chosen as the ordinate. The
last-particle states, indicated by closed black circles,
cluster quite well around the line of average last-particle
separation energies. The magic numbers are indicated
where space permits. In Fig. 4, the magic number 20
for neutrons is not strong, owing to the height of the
2S~~~ state. The magic number 40 looks stronger than
50, because of the closeness of the levels 16g~2 and 2D~~~.

The magic number 82 fails to occur because the 3S~~.
state is too high; likewise the magic number 126 fails
only because the 4S&~. state (not shown) is much too
high. In Fig. 5 the proton magic numbers 20, 28, 82 all
have similar problems with S states.

There exist some direct experimental data on single-
particle levels for moderately large nuclei, and although
such data have not been considered in the variation of
the model parameters, it is interesting to compare the
results. In Table IV calculations with the authors'
model (MG) are compared with experimental proton
levels for O' Al', S", and Ca~, which were obtained
from studies of the (P, 2P) and (e, e'P) reactions. ' Note
the agreement is better for the heavier nuclei. In Table
V the neutron levels of 0' and Ca" are compared with
recent Hartree-Fock calculations. The 6rst calculations

t'Bassichis, Kerman, and Svenne (BKS)j have been
corrected for deformations. " The second calculation
LMcCarthy and Kohler (MK) j has used a two-body
interaction derived from meson field theory. " As can
be seen, the agreement is quite good. Recent ad-
vances" " have enabled Hartree-Fock calculations to
be made for quite large nuclei, and in Table VI Hartree-
Fock calculations for the neutron levels of Zr~ and
Pb'08 [Tarbutton and Davies (TD)] are compared

-2.0

«4O

a

-80

-IO.O

TABLE V. Comparison of the authors' model (MG) with
Hartree-Fock calculations (BKS) (Ref. 10) and (MK) (Ref. 11)
for neutrons states.

t I

IO

ll
IOO

ATOMIC MASS NUMBER

State BKS
016
MK MG

Ca4o

BKS MG
FIG. 5. The square root of proton single-particle energies along

the line of P stability. Magic numbers and last-particle binding
energies are indicated.

1S1I2

1P312

1P112

1D312

—52 —61.0 —65

—26.59 —33.2 —38
—17.90 —25. 1 —28

—62.74 —64

—50.88 —58

—35.15 —35

—19.92 —20

OU. Amaldi, invited paper to the 6fty-second Congresso della
Societh, Italiana di Fisica, 1966 (unpublished) .

"W. H. Bassichis, A. K. Kerman, and J. P. Svenne, Phys.
Rev. 160, 746 (1967)."R. J. McCarthy and H. S. Kohler, Phys. Rev. Letters 20,
671 (1968)."R.M. Tarbutton and K. T. R. Davies, Nucl. Phys. A120, 1
(1968).

"M. Baranger, in Proceedings of the Internatioeal Nuclear
P/physics Conference, Gatlinbzcrg, Tenn. , 1966, edited by R. Becker
et al. (' Academic Press Inc., New York, 1967)."C. W. Nestor, K. T. R. Davies, S.J.Kreiger, and M. Baran-
ger, Nucl. Phys. A113, 14 (1968).
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TAm, E VI. Comparison of the authors' model (MG) with
Hartree-Fock calculations (TD) (Ref. 12) for neutron states of
heavy nuclei.

State TD
Zrgg

TD
pb208

1PaIa

1Pu2

iDan

2R(2

1F7/2

1Faia

2Pai~

2P1(2

1Gg(2

1G7&2

2Dg2

2Dai2

351'

1Hgga

2F7n

2Fayg

3Pai2

3P1(a

111an

—90.8
—68.0
—67.3
—46.3
—44. 7

—41.4
—26. 2

23 ~

—20.2

—18.7
—8.4

3.2

—96.0
—82.0
—77.2

—58.7

—51.6
—22. 66

—33.75

—25. 79

—17.52

—15.49

—11.73

—8.43

—106.2
—86.05

—84. 85

—66.95

—65.64

—63.94

—48.88

—47.54

—44. 23

—43.35

—32.11

—30.34

—26. 58

—24 ~ 75

—23 ~ 97

—16.88

—14.18

—11.27

—8.50

—8. 18

—6.89

—3.30

—105.34

—96.10

—93.035

—79.39
—74.49

—3?.68

—58.98

-52.89

—33.38

—31.75

—38.65

—32.07

—25.60

—23.05

—8.83

—20.34
—13.96
—15.81

—12.85

—6.80

—6.13

—4.64

with the authors' model. '2 The agreement is reasonable,
except for the 2Sj12 and 3S&i2 levels, which are much too
high. This is due, of course, to the strong repulsive core
of the Morse function. Note that the agreement is still
reasonable for the l&0 states for higher principal
quantum numbers.

A major improvement for the S states could be had
for particular nuclei or a group of nuclei by subtracting
a quadratic perturbation term which cancels part of the
repulsive core of the Morse function. For example, one
could replace l(l+1) in the centrifugal perturba. tion
term by /(l+1) —)I, and readjust the basic Morse

parameters. This would correspond approximately to
subtracting the term X/x' from the Morse potential.
The parameter A, would establish a control over the
strength of the repulsive core of the Morse potential.

VII. CONCLUSIONS

An analytic wave function and an eigenvalue formula
have been obtained which represent neutron and proton
single-particle states in all nuclei. Effects due to the
spin-orbit interaction, symmetry e8ect, ( oulomb inter-
action, and velocity dependence are included. The
model agrees approximately with data on last-particle
separation energies and magic numbers. Fair agreement
with experimental data on single-partide energies is
obtained. %ith the exception of some S states, fair
agreement with recent Hartree-Pock calculations is
obtained. The agreement could be improved by local
variations of the model parameters.

Some justification for a repulsive core in the e6ective
n-N interaction arising from velocity-dependent e8ects
has been given. Even should such a core exist, it is
probable that the core of the Morse function is unrealis-
tically strong. Still it seems that only S-state energy
levels are harmed by this.

The wave function Eq. (9) is analytic; however, it is
not the true radial wave function. The true radial
wave function is given by

G(x) = (1+BED) "'e *"s"'F'-(s). -

Since $ is undetermined, the true radial wave function is
analytic only in the static limit (h=0). The analyticity
of the static Morse single-particle wave functions
suggests that they may form a convenient basis set from
which to do Hartree-Fock calculations. The energy
levels in the Morse potential are closer to the Hartree-
Fock results than are those of the harmonic-oscillator
potential. Difhculties arising from the unrealistic be-
havior of the harmonic-oscillator potential at the
nuclear surface probably would not occur with the
Morse wave functions. On the other hand, one would be
almost certain to encounter difBculties with the S states
with the Morse wave functions. The Morse potential
has a 6nite number of discrete levels, which may or may
not be an advantage over the ininite number of har-
monic-oscillator levels. It will probably be necessary to
attempt Hartree-Fock calculations with the Morse
basis before the question may be resolved.


