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Isospin S»~ Rules and the Photodisintegration of the dl =3 Nuclei
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Three sum rules for the electric dipole photodisintegration cross section of the A =3 nuclei are split into
their anal-state isospin components. The isospin doublet contribution to the three-nucleon breakup mode
is estimated to be of the order of 10-20 jo and originates primarily in the high-energy region.

I. INTRODUCTION

ELECTRIC dipole sum rules allow for the calculation
& of the first few moments of the total photoahsorp-

tion cross section from the ground-state wave function
and the two-nucleon potential. Since isospin is a good
quantum number for low Z nuclei, it is interesting to
split the photo cross section into its isospin components
and analyze the relation betw'een final isospin states and
excitation or breakup modes. The first example of any
such relation was found in the photodisintegration of
the 'H-'He isospin doublet; where, by the use of isospin
sum rules for a ground state with a fully symmetric
space component, Barton' has shown that the two- and
three-body photodisintegration channels are pre-
dominantly isospin p and & respectively.

In this paper, we derive isospin component sum rules.
Although we restrict ourselves to the 2=3 isospin
doublet some of the results have a larger validity. In
Sec. II, we show how the sum rules are written for each
final-state isospin. In Sec. III, the general isospin wave
functions for 'H and 'He are presented. The bremsstrah-
lung sum rule is calculated in Sec. IV and is related to
the proton and neutron mean square radii. Its relation
to the nonrelativistic Cabibbo-Radicati sum rule is
shown. The ordinary and energy-weighted isospin sum
rules are derived for particular potentials in Secs. V and
VI. Comparison with the data to extract the isospin
purity of the breakup modes is made in Sec. VII. The
Appendix gives the isospin algebra used in the derivation
of the sum rules.

II. DERIVATION OF THE SUM RULES

The electric dipole photodisintegration cross section
is given by

where E~=E ED is the photo—n energy, I 0) and I f) are,
respectively, the initial and 6nal states, df/dE is the
density of final states, and S is the electric dipole
operator. In the long-wavelength approximation,

S=-',o Q (C r;)rt~'&, (2)

with 8 the photon polarization direction, r; the position
vector of the ith nucleon relative to the c.m. , and r3&&

the isospin component of the ith nucleon. The cross
section is averaged over photon polarizations.

Sum rules' are derived by using closure over the
complete set of final states. Thus, we find from

4n'
dE Ego(E) = — df(E Eo)"+'—

fbC

x &0 I
& I f)(f I

&
I o& (3)

that for e= —2, 0, 2

—1 (4tr'/jto) (0 I XP I o&,

os= —(2s'/jic) (0 I[[X,X)],D]I 0),

t ———(4s'/jic) (0 I [K,S]' I 0),

' G. Barton, Nucl. Phys. A104, 289 (1967). ' J. S. Levinger, Nuclear I'koto-Disintegration (Oxford Uni-' N. Cabibbo and L. A. Radicati, Phys. Letters 19, 697 {1966}. versity Press, London, England, 1960).
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where K is the nuclear Hamiltonian of which
I f), E;

I 0), Eo are eigenstates and eigenvalues.
If the isospin of the ground state is Ip, the electric

dipole operator will produce 6nal states J=Ip—1 Ip,
lp+1 (no 0-+0 or I(Ipp) while conserving To, the third
comPonent of T: thus, Ioo ——Io ——xp(Z —iV). The closure
property applied to obtain the usual sum rules (4) may
be separated into its final-state isospin components by
means of the appropriate projection operators according
to

Pr = i.

A sum rule (4) may be now separated into its final-
state isospin components

p i(I) =(4pr'/Ac) (0 I
SPzS I 0),

op(I) = —(2n'/Ac) (0 {{PC,K)]Pre —50Pz[K, S]}I0),
p (I) = (4pr'/Iic) (0 I [n, 3e]P Pe, u]I 0).

exchange of any nucleon pair; fp' is antisymmetric and
iPo" symmetric under exchange of the nucleon pair 23.

The 'H and 'He ground states are thoughts to be
approximately 92%%up fully symmetric ."Sstate, 2% mixed
symmetry 'S' state and 6% 'D state. If, as an initial
approximation, the ground state is considered fully
symmetric in the space coordinates, Eq. (8) becomes

I 0&=4'o'2 "'(x'f "—x"t'). (10)

The electric dipole operator S given by Eq. (2)
acting on the ground state Ip= —,

' of the general form
Eq. (8) will generate I= p and po states. The I= p states
P are symmetric in all nucleons. Explicitly the I=2,
I3——+-', state is

&'=3 '"["(')p(') p(')+p(') "('»(')
+p(1)p(2))o(3) ]. (11)

Application of the operator X) to the ground state
I 0), using the relations in the Appendix, yields

& I 0)= (e/2v3) o' {[(2/v3) gCp —rC'p

+[rC,'+ (2/v3) tiCo"]f'+v2[(2/v3) pCo'+rCo"]p}.

(12)

III. GROUND-STATE WAVE FUNCTION

(13)
j'.3 = —zf —3p.

In 'H and 'He, the ground state is Ip=-', . (Ioo=+
for 'He, Ipo= —-', for 'H). For three nucleons there are In terms of the c.m. coordinates r, y,two orthonormal isospin-ip eigenstates f', I"constructed,
respectively, by coupling nucleon 1 to the nucleon pair I'g= gy)
(23) in an isospin singlet and in an isospin triplet.
Consequently, f' is antisymmetric under interchange of
nucleons 2 and 3, while g" is symmetric. Explicitly, we
have for 'He

i'=2 ' 'p(1) [p(2) N(3) —n(2) p(3)],
&"=6 '"[»(1)p(2) p(3) —p(1)p(2) ~(3)

—p(1)~(2)p(3)] (7)
and similarly for 'H.

The ground state of 'H and 'He has, in general, the
form

I o) =C'o'f'" C'o"0', —
where Cp' and Cp" are both space- and spin-dependent
functions, Cp' being antisymmetric and Cp" symmetric
under exchange of the nucleens 2 and 3. The eigenstate
(8) is then antisymmetric under any permutation. For a
pure spin-~ state Verde4 has shown the space- and
spin-dependent components of the ground state have the
general form

C'o'=2 "'[(iPo'+iso")x'+go' —4'o )x"],
C'0" =2 '"L(A' —i'")x"+ (0'0'+6 )x'] (9)

where x', x"are the spin states (S=-', ) analogous to (7),
and f&P, ihip', ihip', ihip" are functions of the sPatial coordi-
nates. ihip' is symmetric and Po antisymmetric under

4 M. Verde, Handbuch der Physik (Springer-Verlag, Berlin,
1957), Vol. XXXIX; G. Derrick and J. M. Blatt, Nucl. Phys.
8, 310 (1958).

From Eq. (12) we obtain by inspection the results of
applying to S I 0) the projection operators Pz

Pl/2S I 0)= (e/2%3)—o {[(2/&3)'f)C'p

y[rC.'+(2/v3) qC',"]f'},
Po~,D I 0)= —(e/Q6) o [(2/&3') yCo'+rCo"]f'. (14)

IV. fdEo/Ey SUM RULES

According to the first of Eqs. (6) we obtain the
p i(I) sum rules from the norm of the vectors given by
Eqs. (14) and taking the polarization average. Thus,

&—1(2) = ppr zo {(C'o'
I rzp +&'

I
C'o'&

+(Co" I ~zi'+»' I C'o")}, (15)

~-i(p) = p~'~{ «"'
I sc'

I
C"'&+«'o"

I
r'

I
C'o"

&

+(4/v3) (Cp' I(y r) I Cp")}, (16)

where we have used the fact that ((o a) (e b) )p, i,, =
-,'(a b) for any vectors a and b and where u =e'/fic.

The mean square matter radius R ' is given by

R '=x(0
I g r'

I 0)=e(0
I
r'zp'+r'

I 0), (17)

' B. F. Gibson, Phys. Rev. 139, B1153 (1965).



P HOTODISINTEGRATION OF A = 3 NUCLEI

—(4/~3) (@"
I (t *) I

@'o")}
and, for both 'He and 'H,

(0 I g r'r 't'
I 0)=2IIR«' (19)

which defines the isovector radius Ey, hence,

o. &(-', ) =~'a. (R ' ,'R—r-'). (20)

Equations (18) and (20) give the bremsstrahlung
weighted integrated cross section in terms of the matter
radius (17) and isovector radius (19) of the ground
state. Addition of Eqs. (18) and (20) yields

therefore, Eq. (15) can be written as

1 2~2~ 2

To interpret the expression in brackets in the right-hand
side of Eq. (16) we note that, for 'He,

(0
f Q «P r &*&

I 0)= s I (C o'
I

r~
I 4 o')+. (4 o"

I
x4p'

I 4 o")

Equation (26) was obtained by Gerasimovr and by
Scheck and Schulke' by generalizing the nucleon
photomeson production sum rule of Cabibbo and
Radicati' to 3H and 'He. Here the result is obtained by
using only isospin invariance and the long-wavelength
approximation for the electric dipole operator.

V. JdEo SUM RULES

To evaluate the second of Eqs. (6) we consider
separately the kinetic energy and potential energy
commutators with the dipole operator. We evaluate the
contributions

ao(I)& &~= —(2s'/I&c)(0 II[K, $]PrS—SPr[&, &]}10),
(27)

o;(I);„q=—(27«'/fic) (0 I I[V, X)]PrQ X)Pr[V,—$]}l0)

with

o &= —era(3R 2 —Rr ). (21)

This reduces to the form of Davey and Valk for their
particular ground-state wave function.

Elimination of R„' between Eqs. (18) and (20)
yields the relation

2a g(-2) —o r(-,') =-',m'nR«', (22)

K = (IP/M) (k'+-,'p'),

~12+~23+ ~31)

separately. Then since B=X+V,
ao(I) =ao(I)& +ao(I) ~

A. Kinetic Energy Term

(29)

(30)

which is the nonrelativistic form of the Cabibbo-
Radicati sum rule. ' For a fully symmetric ground state,
of the form given by Eq. (10), R '=R&'=R' and Eqs.
(21) and (22) reduce to those derived in Ref. 1.

The matter and isovector radii are related to the
proton and neutron mean square radii R„2, R„'. From
the definitions

~R,'= (o I P «[k(1+»)]; I o),

P1 =P)

P2= & 2P)

P3
———k—-', P.

(31)

k, p are fi ' times the momenta in the c.m. system
canonically conjugate, respectively, to r, y. They are
related to 5 times the momenta of the nucleons by

I&IR„'=(0
I
Qr [-', (1—r )]; f 0),

[&o P»] ='& s

By use of the commutation relations
(23) [r., k,)=fh.,

and Eqs. (17) and (19), we have that

ZRo' ', AR '+I+r', ———

1VR„'= ', AR ' IgR«2. -—
For 'He, 'H, Eqs. (24) read

(24)

2R '('He) =2R '('H) =-'R„'+-'Rr'

R '('He) =R '('H) =-'R '—-'R ' (25)

The equality of proton and neutron radii of the mirror
nuclei is a result of isospin invariance.

From Eqs. (25) one gets the isovector radius

Rr'=2R '('He) —R '('He) =2R„'('He) —R,'('H),
which substituted in (22) yields

-', m'u[2R„'('He) —R,'('H)]=2a &(-', ) —a &(2). (26)
'P. O. Davey and H. S. Valk, Phys. Letters 7, 335 {1963).

[r., ps]=0, [&o, k»] =0, (n, , P=x, y, s)

(32)

7 S. B. Gerasimov, Zh. Ehsperim. i Teor. f'iz. Pis'ma v
Redaktsiyu 5, 412 {1967) I English transl. : Soviet Phys. —JETP
Letters 5, 337 {1967)j.

s F. Scheck and L. SchCilke, Phys. Letters 25B, 526 {1967).

one finds that

[IC, 0]= i, (ef&2/2M) I
—(s lr) [rp& —»&"]

+(s p) L«3'" —-'(»"'+»'") ]} (33)

The result of the application of (IC, X)] to the ground
state I 0) [Eq. (8)] can be found by application of the
results in the Appendix. The ao(I)&,; are evaluated
using the PrX) I 0) given by Eq. (14).

The kinetic energy contribution to the sum rule is then

ao( ', ) &,&ll ao(2)-&c&~= ', vr'~(I&, '/M) -=20 MeV mb. (34)
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The total contribution ap(-', )q;~+ap(p)q;, gives the
Thomas-Reiche-Kuhn sum rule. '

B.Potential Energy Term

The potential energy contribution to the integrated
cross section from

ap(I) (,&
= —(6pr'/Ac) (0 I I [VN, n]Pzn

—nPz[vpp, n] } I 0) (28')

depends on the form assumed for the nucleon-nucleon
interaction. Since the ground state is predominantly
fully symmetric, we will assume for simplicity that I 0)
is given by Eq. (10).

For a local potential of the form

Vpp = V(r) [w+x6', +y(P,+zP,], (35)

where 6'„6'„6',are the space, isospin, and spin exchange
operators of nucleons 2, 3, one obtains

[Vpp, n]= —xpev(r) (S r) (rp~p rp ) (x(P—,+y6',). (36)

The result of the application of the commutator given
by Eq. (36) to the ground state of the form in Eq. (10)
is obtained by use of the formulas in the Appendix.
The vectors Pzn I 0) for the case of fully symmetric
ground state are obtained from those given by Eq. (14)
by the substitutions C'p'=2 ' 'fp'x', &p"——2 "tPp'x, ".
Then one can evaluate the right-hand side of Eq. (28')
finding

ap(k);.a= —~p'~x(4p', «'V(r) 4p'),

ap(p) ' t= ~s'n(x y) (fp', —r' V(r)f p). (37)

The integrated cross sections for the two 6nal
isospin states are

"(-:)=~-V /M) [1-*(M/~) e","V( )~'n
ap(sp) = pzz'cz(li'/M) [1—(*—y) (MlfP) (4p', r'V(r) 0'p')],

ferent in the spin singlet and spin triplet states (s =0, 1)
of the nucleon pair.

For a symmetric ground state, the contribution to the
sum rule given by Eq. (28') can again be reduced to a
matrix element involving only the spatial part of the
ground state. One proceeds in the way described for the
previous case and finds

ap(k) -p= —p~'~(A' k[v"'+ Vo']re'),

o(')'- = —l ' (A' V'"re'). (4o)

&O ILn, V ]P„,[V,n]l O)=4~(x'+y')

X (fp', [rV(r) ]Qp*),

&O I[n, V„]P„,[V, n]l 0)=g"(x—y)'

X (4'p', [rV(r) ]Vp') (43)
The sum rules are then

VL Jdss„u sUM RULzs

These sum rules are given by the last of Eqs. (6) . We
shall assume in this case that the ground state is fully
symmetric, i.e., that

I 0) is given by Eq. (10), and we
shall also assume that the nuclear interaction has the
form given in Eq. (35). From the reality properties of
the vectors [K, n]I 0) and [V, n]l 0), one obtains

(O l[n, K]Pre, n]l 0) =&0 l[n, K]Pz[K, n]l 0)

+9&0 I [n, Vpp]Pz[vpp, n]I 0) (41)

The commutators [K,n] and [Vpp, n] have been
evaluated in Eqs. (33) and (36). Application of these
results to the ground state of Eq. (10) with use of the
formulas in the Appendix and separation of the I='-„&
components gives the results

(01[n, K]Pzzp[K, n]l 0)= (0 I[n, K]Pp(p[K, n]}0)

(e'fP/9M) (f()e Kgp. ) (42)

when the nuclear interaction is assumed to be given by
Eq. (35).

The sum ap( —',)+ap(2) agrees with the expression
derived by Verde. 9

A nonlocal separable potential' " that has been
used" "in calculations of the photodisintegration of 'H
and 'He is the s-wave spin-dependent form

&lr I
V"

I lr') = —(~./M) g.*(&)g*(&') (39)

with g, (k) = (kp+pp) ', in the momentum representa-
tion. The strength X, and range P, parameters are dif-

az(-', ) = (4/9) zr'a(h'/M)

X (Pp' I K+9(xP+yz) (M/fz2) [rV(r) ]P}fp')

ag(-', ) = (4/9) ~'n(h'/M)

X (O', IK+9(x—y)'(M/fl') L V(r) ]'}A*) (44)

VII. COMPARISON WITH THE DATA

The cloud-chamber experiment of Gorbunov et al."
gives the following sums for 'He with uncertainties due
to counting statistics and intensity measurement

9 M. Verde, Nuovo Cimento 8, 152 (1951)."Y.Yamaguchi, Phys. Rev. 95, 1628 (1954)."A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49, 15
(1963).

~ I.M. Barbour and A. C. Phillips, Phys. Rev. Letters 19, 1388
(1967)."J.S. O' Connell and F. Prats, Phys. Letters 20B, 197 (2968).

"V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev,
Nucl. Phys. Vl, 305 (1965). The experimental cross section in-
cludes, of course, all multipoles. Gorbunov et al. estimate that
(11&4)'P0 may be electric quadrupole and should be subtracted.
However, S. B. Gerasimov t Phys. Letters 13, 240 (1964)g shows
that for o.o retardation in electric dipole transitions is cancelled
by the higher multipoles.
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o g(3) =—
170 MeV

uncertainties:

170 MeV

~-i(2) = dEo (2-body) /Ey = 1.34&0.05 mb,

dEo (3-body) /Ey = 1.42&0.07 mb,

proton is a I=~ channel, since the deuteron is isospin
zero. The three-body breakup, however, can be both
I=~ and ~. It has been argued by several authors'7
that the near equality o |(2) o &(3) implies o 1(3) is
almost all I=oo final state. Using Eq. (22) and the
experimental value for the total sum o i(-', ) +o r(—', ) =
2.76 mb, we obtain

170 MeV o r(-,') =1.48mb, o i(so) =1.28mb.
oo(2) =—

oo(3) = 170 MeV

dEo (2-body) =26.5&1.3 MeV mb,

dEo (3-body) =43.6&2.7 MeV mb.

The fraction f i of o i(-,') that goes into three-body
breakup is given by

~~(3) =~ x(o)+f-x~-x(o)

(45)

The charge radii measured by electron scattering'~
with uncertainties due to counting statistics are

(Eon'(oHe) )'"=1.87&0.05 fm

(Ecn'(oH) )"'=1.70&0.05 fm,

from which we deduce the like (L) and odd (0)
nucleon radii'

o + 2(3He) E 2(3H) g no(oHe) E H2(IH)

=2.86 fm'

R '=R '('He) =R '('H) =Eon'('H) —~H'('H)

=2.25 fm',

where the proton charge radius was taken as 0.80 fm.
The matter and isovector radii are given by

E '=x(2Er, '+Zoo) =2.66 fm'

E '=2'' —Ep' ——3.47 fm'

Using Eq. (21), the total photonuclear sum for 'He or
'H calculated from the charge radii is o i ——2.16&0.06
mb. This is to be compared with the measured value'
for 'He of o i ——2.76&0.18 mb. There is some evidence
from other measurements'~ of the 'He cross sections
that the two-body breakup cross section of Ref. 14 is
10-15% too large and that the three-body breakup cross
section is 30% too large. These corrections would
reduce the total sum to the value calculated from the
charge radii.

In the following, we shall accept the values of the
partial sums given in Eq. (45) to estimate the isospin
purity of three-body breakup. The results do not
change appreciably if the indicated reductions in the
experimental sums are made.

The two-body breakup of 'He into a deuteron plus

"H. Collard, R. Hofstadter, E. 8. Hughes, A. Johansson, and
M. R. Yearian, Phys. Rev. 138, 857 (1965).

'6 L. I. Schi8, Phys. Rev. 133, 8802 (1964) .' J.R. Stewart, R. C. Morrison, and J.S.O' Connell, Phys. Rev.
138, 8372 (1965);H. M. Gerstenberg and J. S. O'Connell„ibid.
144, 834 (1966).

oo( —',) =37.4 MeV mb, o o(-o, ) =32.6 MeV mb.

The fraction fo of no( —',) that goes into three-body
breakup is given by

~o(3) =~o(o) +f~o(o)
from which we compute fo ——0.29.

The same type of computation for the separable
potential using the Yamaguchi" parameters )0=0.292
fm o, Xi=0.415 fm o, Po=Pi=1.45 fm ' yields fo=0.21.

The fact that fo)f q implies that the I=~ contribu-
tion to three-body breakup comes mainly in the high-
energy part of the cross section.

In conclusion, we have shown how the o. i sums for
the different isospin states can be related to measured
charge radii and how the o0 isospin sums are related to
matrix elements of the space and isospin exchange
potentials. A recent calculation" of three-body sum
rules has been made with the Hamada-Johnston
potential and a variational wave function. This calcula-
tion shows how tensor forces and ground-state 4D states
affect the o.e sum.

'8 Note the fraction of isospin exchange is minus the fraction of
Heisenberg exchange.

'~ M. L Rustgi, Phys. Rev. 106, 1256 (1957).~ V. S. Mathur, S. ¹ Mukherjee, and M. L Rustgi, Phys.
Rev. 127, 1663 (1962)."8. K. Srivastava, Phys. Rev. 137, 871 (1965).~ C, Lucas, Nucl. Phys. A123, 1'l3 (1969).

from which we compute f i=0 095 .Thi.s confirms the
relative purity of at least the low-energy part of the
cross sections.

The isospin purity of the o0 sum rules can be checked
(1) if we assume some set of exchange coefficients
(x and y for the local central potential or Xo and Xi for
the separable potential), and (2) if we choose a value of
the matrix element (r'V(r) ) to give the experimental
~,(total).

For the local central potential we use, as an example,
the Rosenfeld mixture x=0.93, y=0.26.' To get the
experimental total sum, we require

—(M/fP) (fo' r'V(r)go') =0.936)

a value somewhat larger than those obtained by
explicit calculations of this matrix element 0.55,'9

0.72,~ 0.724.~' The isospin sums are then
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APPENDIX

Using the convention rq"~p(i) =p(i}, rg'on(i) =
—n(i), the third component of the nucleon isospin
operator applied to the isospin functions of 'He given

by Eqs. (7) and (11) yields

&"f'= -(1/~&) f"+(V'!)t',
»"'i =+ (1/'/3) f (—V ') f-',

r&o&f."=--'f"--'&2''
(-1/~) f'+-*.t"+V&f',

~"&f"=+(«~~)1'+-'.f"+V~t'
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Independent-Particle-Model Energy-Level Formula*

L. D. Mrr. LERt AND A. K. S. GREEN

Uriiversity of Florida, Gaineseille, Florida 3Z60l
{Received 11 February 1969)

The Morse function is assumed to approximate a nonlocal or velocity-dependent nucleon-nuclear potential.
Analytic neutron and proton wave functions and eigenvalue formulas are obtained for all states of all

nuclei, using a modified version of an analytic perturbation method due to Pekeris. The eigenvalue formula

is in approximate agreement with the following experimental data: (1) the last-particle binding energies

of neutrons and protons, (2) the neutron and proton magic numbers, {3) the positions of the S-wave-

size resonances in total-neutron-cross-section data, and (4) the recent experimental work on deeply bound

inner particle states by Amaldi et al. The eigenvalue formula gives results that are consistent with recent
Hartree-Pock calculations.

I. INTRODUCTION
' PREVIOUSLY, Green, Darewych, and Berezdivin'

(GDB) noted the possibility of using the Morse
potential to arrive at analytic eigenvalues and analytic
wave functions for single-particle states in velocity-
dependent nuclear potentials. Their results compared
favorably with the numerical solutions of Wyatt, VVills,

and Green. ' The procedure of GOB involved fitting the
effective energy-dependent potential together with the
centrifugal potential by an approximating Morse po-
tential. ' In the present work, the numerical fitting
procedure used in the earlier study is replaced by a
modified version of a technique used by Pekeris. '
Thus, one arrives at explicit formulas for the effective
state-dependent Morse-function parameters and for the
eigenvalues. This should greatly enhance the utility of
the approximate method.

II. VELOCITY-DEPENDENT POTENTIALS

In this work, velocity-dependent potentials of the
form

V(r, p) = —V,t, (r) —(N, /grl)

X[V'p(r)+2V. ~(r) V+g(r) V'j (1)
are considered. Here, $0(r) is the static form factor,

*Work supported in part by the Air Force Ofhce of Scientific
Research Grant No. AFOSR-68-1397.

t National Science Foundation Trainee.' A. K. S. Green, G. Darewych, and R. Berezdivin, Phys. Rev.
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which may differ from $(r), the velocity-dependent
form factor. If use is made of the wave function

R(r) V~ (e, p) and the definitions

x=r/o, ~ '= W/E, , R(x) =—G(x)/x,

Ro ——5'/2esa' e '= V/E X(x) = (1+be)'"G(x) .

(2)

it is possible to transform the usual Schrodinger equa-
tion for such potentials into the form

X"—r (x, e~) X—[e '/(1+b)]X=0, (3)
where u(x, & ) is the energy-dependent potential

pp
1+be 4 1+be 4 (1+be)'

bP' l(l+1) b(1—$) e '
4

2x(1jb$) x' (1+be) (1+b)

In this paper, an analytic method is developed for the
approximate solution of Eq. (3) in certain cases of
interest in nuclear physics. Form factors $& and $ are
assumed, for which the first four terms of Eq. (4) be-
come a Morse function. Then all remaining terms are
treated by the quadratic perturbation method.

III. MATHEMATICAL PROPERTIES OF THE
MORSE POTENTIAL

The form of the Morse function used in this calcula-
tion is'

v„,(x) =n, 'Iexp[ —2(x—x,)/dj —2 exp[ —(x—x,)/d)I.
(3)


