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Whereas the determinantal wave functions constructed from the solutions of the Hartree-
Fock equations satisfy the virial theorem, those constructed from self-consistent-field
schemes with a local exchange approximation do not necessarily. A scaling procedure, which

goes back to Fock, allows considerable improvement and good agreement with the Hartree-
Fock results. The virial theorem criterion agrees with previous empirically based asser-
tions that Slater's potential "overestimates" exchange effects. In addition, and also in an

ab initio way, it can be added that Kohn and Sham's potential "underestimates" them, at
least for light atoms. Numerical results and comparison of various methods are presented.
A Slater-type local exchange potential is suggested, VHFS" = -X6[{sx)p{r)],where X is
determined by the virial theorem, Applications to solid-state physics are discussed.

I. INTRODUCTION

The Hartree-Fock (HF) equations have been the
cornerstone upon which most of atomic, molec-
ular, and solid-state theory has been built. Some
of the applications required approximations, and
those proposed by Slater proved to be extremely
fruitful. ' He suggested replacing the nonlocal
exchange terms in the original equations by an
averaged local exchange potential. He further
approximated this average by the exchange poten-
tial of a free-electron gas with the same local
density. Tha, t is,

V p.(r) = —g J'y*. (r')y.(r'), d'r'
exc z . j j )

x y (r)&
m. .msj sj

justed so as to verify it by means of a scaling
procedure. '

In this paper we study the effects of scaling, in
both the HFS and HFS' schemes, upon a series of
light atoms. The total and "binding*' energies of
electrons, as well as other properties are com-
pared with the HF values. The improvements
and the regularities observed are substantial.
Moreover, comparison with more elaborate local
exchange potentials, " is favorable to the scaled
Slater- type exchange potentials. "

In the light of the scaling procedure, a better
local exchange potential is proposed. It is Slater-
type and the coefficient A is determined by the
virial theorem. Applications are discussed, in
particular to solid-state problems. It does not
seem unreasonable that the coefficient determined
for the atomic case could be carried over to the
solid.

is replaced by

VHFS y.(r) = —6[(8v)p(r)]"'p. (r), (2)
II. SCALING, THE VIRIAL THEOREM,

AND LOCAL EXCHANGE

where p(r) is the electron density.
The Hartree-Fock-Slater (HFS) equations lead

to a great number of useful calculations especially
in connection with the augmented plane wave
(APW) method for solids. ' Several authors'
proposed a modified exchange potential VHFSi
which is two-thirds of VHFS, i. e. , VHFS~
= —,VHFS. Computations with this modified poten-
tial (HFS') have been made and they seem to yield
better comparison with HF in atomic calculations'
and with experimental results for energy bands
in solids. ' From a fundamental point of view, it
is not quite clear yet which one is to be preferred. '

In any case, it should be observed that whereas
the wave functions provided by the HF method
satisfy the virial theorem, 'y' the HFS and HFS'
ones do not necessarily. Yet, they can be ad-

The reason why the HF wave function satisfies
the virial theorem is simple. The expectation
value of the Hamiltonian with respect to the HF
function is stationary for arbitrary variations of
the spin-orbitals, in particular for a norm-pre-
serving scale transformation

y(r, r, . . . , yr )

3'/2-pq=—g p(qr, gr, .. . , qr ).

).
op op

(4)

Thus, the HF determinant has optimum scale
automatically, and from the early work of Fock'
we know that any approximate function with this
property verifies the virial theorem
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Top and Vop stand for the total kinetic- and po-
tential-energy operators, respectively. We con-
sider here the atomic case, but there is no diffi-
culty in generalizing to the molecular case. '~'

The HFS wave function does not necessarily
satisfy (4), since the use of (2) instead of (1) does
not prescribe any longer a total wave function
which is stationary under arbitrary variations of
the spin orbitals. The same applies to the HFS'
scheme, even though it might be considered as
derived from a variational procedure. 'y 4

The virial theorem expresses a balance between
kinetic and potential energies. Any change of
one of them should involve a concomitant change
of the other. This imposes a necessary condition
for approximate wave functions. LSvdine has
given a simple procedure for scaling an approxi-
mate solution to the Schr5dinger equation. Since
Top and Vop are homogeneous, of degree —2 and
—1, respectively, their expectation values with
respect to a function with scale factor g can be
expressed in terms of those with respect to th
unscaled function:

T(q)-=J qr*T p dv=rPT(1),
op

V(6) -=J y*V p dv=gV(1).
op

The total energy, which depends on g,

Z(q) = q'T(I)+ qV(I),

is minimized by p=p, where

and then the scaled function y& satisfies the virial
theorem. '~' The optimal energy depends exclu-
sively on the kinetic and potential energies of the
unscaled functions. Obviously, any homogeneous
operator ~op of degree p, has the scaled value

Q(g) = q Pn(I).

This last relation shows that scaling affects the
computation of physical quantities from an ap-
proximate wave function. The "stretching" or
"shrinking" of (3) must be prescribed in a non-
arbitrary fashion, given by (7).

In the case of the HFS and HFS' schemes for
atoms there is no basic difficulty in computing p.
Once it has been determined, the scaled functions
are given by (3) and for most applications the use
of (8) will be a sufficient tool. The question is
now how much does g differ from unity, and how
significant is this difference in the numerical ap-
plications.

III. NUMERICAL RESULTS

We study the scale factors and total energies
for light atoms in the nonrelativistic HFS and

HFS' schemes. The HFS and HFS 'equations were
solved, and the expectation values of the kinetic-
and potential-energy operators obtained from the
solutions led to the optimal scale factors and en-
ergies. Since we are dealing with approximations
to the HF equations, we compare our results with
the numerical HF values given by Froese~ and
the analytical ones of Clementi. "

The computer programs" were based on the
work by Herman and Skillman" and by Zare. "
In Table I we present the results for the unscaled
HFS method and the scaled one (HFS-SC). In
Table II the corresponding results are shown for
the HFS'and HFS'-SC methods, i.e. , unscaled
and scaled local exchange approximations with
exchange potential VHFS = 3VHFS.

The scale factors show remarkable regularity:
In the HFS scheme they are always smaller than
unity, and they are larger than unity in the HFS'
method. They both approach one with increasing
Z, yet for Z = 36 their difference with unity is
still significant. This accounts for changes in the
total energy and other properties which are non-
negligible. The fact that the scale factors show
these regularities is rather important. It has
been stated that the HFS scheme "overestimates"
exchange effects. ' The results of Tables I and II
indicate that, in this laaguage the HFS' scheme
"underestimates" them. More precisely, the
virial theorem criterion indicates that the HFS
wave functions should be "stretched" and the HFS'
ones "shrunk. " One may surmise that there ex-
ists a Slater-type potential such that the optimal
scale factor associated to it is unity. For this
potential the determinantal wave function automat-
ically satisfies the virial theorem. Of course,
A will not be a universal coefficient, but it will
depend on the nuclear charge and configuration
considered. We study this further in the discus-
sion,

We see in Tables I and II that the HFS results
improve more by scaling than the HFS'ones.
Very roughly from 70 to 3O% of the difference be-
tween the HF and HFS total energies is recovered
by scaling in the range of Z from 3 to 36. In the
same range, the HFS' energies improve approxi-
mately 0. 005 Ry by scaling. The HFS' method
agrees better with HF than HFS when we consider
total energies before and after scaling, except in
He and Li, where the HFS-SC results are better
than the HFS'-SC ones.

With increasing Z both approximations, HFS
and HFS', give smaller relative errors, before
and after scaling. A reasonable question is how
small can this error be for a given Z. Approach-
ing this problem Lindgren" tried a local exchange
potential of the form

V =-C6(-,* 2) ~ ~3
(

)~~3
( )



M. BERRONDO AND O. GOSCINSKI 184

TABLE I. Energies and scale factors for some light atoms in the HFS scheme. The differences with HF value are

denoted by 6 {HFS) and by 6 (HFS-SC} for the unscaled and scaled case, respectively. All values in Rydbergs.

Atom

He

Li
Be
B
F
Ne

Na

Mg
Al

Cl
Ar
K

Ca
Kr

E(HF}'

—5.723 37
—14.8655
—29.1461
-49.0583

—198.8191
—257.0948
—323.7198
—399.2304
-483.7550
—918.9662

—1053.6370
—1198.3304
—1353.520
—5504.114

E(HFS)b

—5.7071
—14.8460
—29.1123
-49.0127

—198.690s
—256.9394
—323.5534
—399.0482
-483.562p
—918.7064

—1053.35s
—1198.043
—1353.213
—5503.48 p

E(HFS-SC) '
-5.7229

—14.8628
—29.1349
-49.0401

—198.7562
—257.0186
—323.6379
—399.1386
—483.6576
—918.8292

—1053.4S9

1198' 17s
—1353.354
—5503.76'

S (HFS)

0.0162
0.0194
0.0238
0.0456
0.1283
0.1554
0.1664
0.1822
0.193p

0.259s
0.278

0.287
0.307
0.634

6 (HFS-SC)

0 ~ 0005
0.0027
0.0112
0.0182
0.062g

0.0762
0.0825
0.091s
0.0974
0.1370
0.14s
0.152

0.166
0.453

0.950 14
0.967 53

0.972 89
0.976 90
0.982 18
0 ~ 982 75
0.984 16
0.985 18
0 ~ 986 14
0.988 57
0.988 98
0.989 48

0.989 89
0.992 91

aReference 12.
bTotal energy computed with the HFS wave function.

Scaled total energy, computed with formulas {5)—(7).

d~ (HFS) = E(HFS)-E(HF).
& (HFS-SC) = E(HFS-SC) -E(HF).
q is given by Eq. (7).

TABLE II. Energies and scale factors for some light atoms in the HFS' scheme. The differences with the HF

values are denoted by 4 (HFS') and 4 (HFS'-SC) for the unscaled and scaled case, respectively. All values are in

Rydbergs.

Atom

He

Li
Be
B
F
Ne

Na

Mg
Al

Cl
Ar
K

Ca
Kr

E(HF) a

—5.723 37
—14.8655
—29.1461
-49.0583

—198.8191
—257.0948
—323.7198
—399.2304
—483.7550
—918.9662

—1053.6370
—1198.3304
—1353.520
—5504.114

E(HFS')b

-5.7157
—14.8553
—29.1362
-49.0430

—198.785s
257.054s

—323.681p
—399.1946
—483.7177
—918.918p

—1053.586
—1198,28)

1353.46s
—5504.005

E(HFS'-SC)

—5.7190
—14.8597
—29.1404
-49.0477

—198.7903
—257.059'
—323.6856
—399.1993
—483.7225
—91S.923p

—1053.59'
—1198.286
—1353.473

5504.01p

S (HFS') d

0.0177
0.0102
0.0099
0.0153
0.0333
0 040p

0.038p

0.035s
0.0373
0.0482
0.05(
0.049
0.05'
0.109

~ (HFS' -SC)'

0.0044
0.0058
0.0057
0.0106
0.028s
0.0357
0.0342

0.031)
0.0325
0.0432
0.046

0.044

0.047

0.104

1.024 66
1.017 64
1.012 15
1.009 82
1.004 77
1.004 08

1.003 78
1.003 42
1.003 17
1.002 34
1.002 18
1.002 06
1.001 90
1.000 95

aReference 12.
Total energy computed with the HFS' wave function.
Scaled total energy computed with formulas (5) -(7) .

dQ (HFS') = E(HFS') —E(HF) .
D (HFS'-SC) = E(HFS'-SC} —E(HF) .
P is given by Eq. (7).

where u is the radial electron density and C, n,
and m are adjustable parameters (equal to unity
in VBFS). The minimum of the energy surface
EHFf, (C, n, m) determines the optimal values of
C, n, and m. The freedom of adjustable param-
eters, involves the need to solve the self-consis-
tent problem for each set (C, n, m). But there is
a unique p associated to any Slater-type exchange
potential, and in each case the self-consistent
equations have to be solved only once. It is inter-
esting to compare the simple scaling method with

Lindgren's more elaborate scheme, which gives
very good results, but it is not, as claimed, "
the best central local exchange potential approxi-
mation (energy-wise) to the HF solution.

In Table IG we present the total energy and scale
factors for argon obtained with various methods.
It should be noted that some local exchange
schemes involve a "tail" correction to account
for a proper asymptotic behavior of the potential
at large r. "&" The calculations reported in Ta-
bles I and II did not involve this "tail" correction
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TABLE III. Total energies of argon obtained with dif-
ferent approximations to the HF equations. All values
in Rydbergs.

E.= (g.l
—V' —2Z/r I g. )

Method Energy

Difference
from HF (10)

HFS
HFS-SC
HFS-M
HFS-MSCa
HFS' a

HF8'-SC
HFS'-Ma
HFS'-MSC
HFL (R f. 10)
HF (Ref. 11)

1053.358
—1053.48 '
—1053.380
—1053.506
—1053,586
—1053.59)
—1053.53 g

—1053.546
—1053.586
—1053.636

0.278
0.147
0.256
0.130
0.050
0.045
0.097
0.090
0.050
0.000

aCalculations with the technique described in this
paper. HFS-M and HFS-MSC stand for the unscaled
and scaled versions of the HFS method with the "tail"
modification, Similarly for HFS'-M and HFS'MSC.

since it is not necessarily an improvement. ' We
tried it as a test in various cases because we
could reproduce Lindgren's reported values for
HFS and HFS' only when the "tail" correction was
made. Calculations including the "tail" modifi-
cation are denoted by HFS-M and HFS'-M.

Our results for argon, shown in Table III, as
well as for other atoms which we do not report
here for economy, indicate that the "tail" correc-
tion improves the HFS result, but it makes the
HFS ' one worse, thus confirming Cowan et a/. re-
sults. ' (Their calculations for argon with HFS
and HFS

' method disagree slightly with ours, in
the same way as their reported HF value differs
from Clementi's. '~) It is seen that with much
less flexibility than Lindgren, we are able to
achieve the same agreement with the HF values.
In fact, the values reported show that the HFS'-
SC scheme is slightly better than HFL in this
case. This of course, is not true in general, and
quite probably Lindgren's scheme improves with-
out a "tail" correction. The remarkable thing is
that simple scaling of the HFS' solution yields
similar or better results than the "optimum"
potential.

The improvement in total energy is probably not
as important as the effect of scaling on other
properties. The "binding energies" of electrons
in a free atom or ion are defined as the energy
necessary to remove the electrons to infinity.
Within the HF scheme Koopmans's theorem leads
to approximate these energies by the eigenvalues
of the HF equations. This is no longer true in
the HFS and HFS' schemes where the "binding
energies" are not equal to the eigenvalues ei, but
are given by

if one assumes that the spin orbitals of the atom
and the ion are the same. Here g; denotes the
spin orbital

rpg (r)a(o) or op&(r)P(o).
The E; are, of course, sensitive to the scheme

employed and to scaling. It is interesting to com-
pare the results obtained with various methods
with the HF results. As an example we make a
thorough comparison in Table IV for argon and
sodium.

It is verified that the eigenvalues Ei do not pro-
vide in general good approximation and in partic-
ular it should be noted that the HFS' Ei are con-
siderably worse than the HFS Ez, especially the
outermost one. The results obtained with (10)
are improved by scaling, the HFS Ei being more
sensitive to it. The outermost eigenvalue in the
HFS scheme is exceptional in the sense that it is
closer to the HF result than the value computed
with (10) using the unscaled functions.

On the other hand it is striking to compare the
Ei obtained using HFS'-SC with Lindgren's and
the HF eigenvalues. The maximum difference of
the HFS'-SC binding energies with the HF eigen-
values is 0.3 eV in argon and 0.6 eV in sodium.
We report only these two atoms as an illustration,
but the agreement for other light atoms is similar,
e. g. , the maximum difference for krypton is 0.8
eV. These results seem to indicate that a Slater-
type approximation can reproduce quite accurately
not only the total energy, but also the HF excita-
tion spectrum.

A good criterion by which to judge the improve-
ment upon scaling of the HFS and HFS' functions
is to study expectation values other than the en-
ergy. Properties like the diamagnetic suscepti-
bility and the nuclear magnetic shielding are par-
ticularly interesting, since they are sensitive to
the behavior of the wave function at large and
short distances from the nucleus, respectively.
They are given by"

and by'9

where N is Avogadro's number, a the fine struc-
ture constant, and ao the Bohr radius.

The "stretching" or "shrinking" of the wave
function, given by (3), affects )(d and o, and this
certainly ought to be determined by the virial
theorem criterion.
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TABLE IV. "Binding energies" for the electron shells in argon and sodium obtained with different approximations

to the HF equations. All values in eV. (The starred values are those closest to the HF result).

Ar

Na

Method

HFS(~;)
HFsb
HFs-scb
HFs' (,.)

F
HFS'-Sc
HF Lc

HF(E )

HFS(q )a
HFS
HFS-SC
HFS' (~,.)a

HFS
HFs'-scb
HF Lc
HF(~.)d

1s

3162.4
3206.2
3216.9
3094.1
3229.2
3227.2*

3225.9
3227.5

1061.5
1087.1
1094.0
1024.3
1103.4
1101.8
1099.9
1101.5

2s

309.98
323.86
327.8
291.9
335.9
335.2
334.0
335.3

63.6
70.9
72.8
54.6
77.1

76.6
75.7
76.1

246.61
248.34
252.9
227.9
261.4
260.6
259.3
260.4

34.2
35.9
38.1
27.3
42.4
41.9
41.0
41.3

3s

27.92
31.19
32.14
22.64
35.16
34.99
34.6
34.8

3.2
4.6

2.0
5.0
4.98
4.96
4.96

13.69
12.88
13.74
9.07

16.4
16.3
15.9
16.1

indicates the eigenvalue of the HFS or HFS' equations.
We report the "binding energies, "computed with (10), for the scaled and unscaled orbitals in the HFS and

HFS' schemes.
cReference 10.
d Reference 11. W'e report the eigenvalues &z .

Hartree- Fock-Slater wave functions have been
used recently by Saxena and Narasimhan" for
computing yd and o. Since they use the "tail"
correction, their method is in our notation HFS-
M. In Table V we show how their results for Ne,
Ar, and Kr are affected by scaling. The improve-
ment is again non-negligible. Of course, it
should be pointed out that the figures of Table V
depend strongly on what kind of local exchange
approximation is used and better results are ob-
tained with HFS'-SC. Since we are not interested
here in making a detailed comparison of the dif-
ferent schemes but to point out the significance of
scaling and of the virial theorem, we will just
mention two points. Scaling does not improve the
expectation values for helium, but this is a special
ease, since the local exchange potential should not
be there at all. Secondly, perusal of a complete
set of expectation values of powers of r for argon,
given by Cowan et al. ' in the HFS and HFS' ap-
proximations, shows that the difference with HF
is substantially diminished after scaling.

IV. DISCUSSION

The preceding results indicate that when the
necessary condition for approximate wave func-
tions given by the virial theorem is used to de-
termine the optimum scale factor, a substantial
amount of the difference between the HFS and

TABLE V. Local exchange approximations and the
computation of physical properties. The effects of
scaling on computed diamagnetic susceptibilities Xd,
Eq. (11), and nuclear magnetic shielding constants
cr, Eq. (12).

Atom HFS-M HFS-MSC HF

Xd Ne

Ar
Kr

Ne

Ar
Kr

7.088
19.165
29.058

56.278
125.40
327,49

7.3218
19.585
29.470

55.372
124.05
325.20

7.429
20.626
31.315

55.226
123.76
324.56

Computations of Ref. 18, using the Hartree-Fock-
Slater exchange with "tail" correction.

Application of formula (8) to the previous results,
using the appropriate p values ~

G. Malli and S. Fraga, Theoret. Chem. Acta 5, 275
284 (1966).

HFS' approximations with the HF method is re-
covered. The optimal scale factors lead to the
unambiguous statement, independently from any
empirical considerations, that the HFS method
"overestimates" exchange effects and that the
HFS' scheme "underestimates" them.

Furthermore, the HFS'-SC method compares
with HF just as well as HFL, the scheme pro-
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posed by Lindgren. " The latter does not retain
the p'~' form of the exchange potential and in-
troduces parameters which require the solution
of the self-consistent equations several times
before they converge to their optimal values. On

the other hand, the HFS'-SC scheme has only one
nonlinear parameter, immediately determined
by (7), after the HFS' equations have been solved.

The question of which, VHFS or VHFSI should
be preferred has been extensively discussed by
Slater. ' Anyhow, they both have the p'I' depen-
dence, that is, they are what we call Slater-type
local exchange potentials. If the coefficient A

is determined by a variational ansatz like Kohn

and Sham's, 4 it involves the use, for all electrons
of the exchange potential correct only at the top
of the Fermi distribution. ' If, instead, the coef-
ficient is chosen by averaging over the momen-
tum of the electrons, the way Slater did, the re-
sulting potential does not follow from a varia-
tional principle. From a fundamental point of
view the latter may not be a drawback, as Slater
has pointed out.

The empirical evidence in various fields does
not indicate which should be preferred, since
VHFS "overestimates" exchange effects. Our
results show that VHFSI is not necessarily the
best Slater-type potential to be used. Several
applications, as computation of the electron
density at the nuclear surface and alkali halide
overlap integrals, wouM confirm this. These
quantities are "extremely dependent on the

amount of Slater exchange used. "" In energy-
band theory the experimentation with the correc-
tion represents a good part of the 5% of non-ab
initio theory which goes into the augmented-plane-
wave calculations. "

It might be desirable to have a nonempirical
choice of the coefficient of p'I' such that the
determinantal wave function associated to it
autom, atically satisfies the virial theorem. This
is accomplished by a potential VHFS I = xVHFS,
where x is chosen so that the optimal scale factor
g is equal to unity. The wave function then has
optimal extension in space. The coefficient x
will depend on the ionic species considered and
its configuration. It should not be difficult to de-
termine it in the atomic case, since for each x,
t) is determined by (7).

An interesting consideration in this connection
is that Slater's averaging over the momentum of
the free electrons is retained in VHFS~~. Where-
as VHFS is associated with the average value of
the function E(1.) defined in Ref. 1, and VHFS'
is associated with E(1), the potential VHF ii is
connected with a "weighted" average of F X) such
that the virial theorem is satisfied for the de-
terminantal wave function constructed from the
solution of HFS". Of course the weights cannot
be specified at this stage; they are in a sense
arbitrary, but are not needed at all from the
practical point of view.

In Table VI we give some results obtained for
the scheme HFS", where VHFSll = xVHFS and

TABLE VI. Energies (in Rydbergs) and optimal scale factors obtained with dif'ferent Slater-type local exchange
approximations V= —6A [(gx) p (r) ]

Atom

Li 1.0
2/3
0.781 25

0.875 ood

0a
&b

0 73053
0.734 37

1.0
zb

0.721 19
0.875 00

0.967 53
1 ~ 017 64
1.000 02
0.958 37

0.984 16
1,003 78
1.000 01
0.999 79

0.98948
1.002 06
0.999 99
1.001 27

E (unscaled)

14.8460
14.8553
14.8627
14.8605

323.5534
323.68 1p

323.6897

98

1198.043

1198.28'
1198.287
1198.287

E (scaled)

14.8628
14.8597
14.8627
14.8636

323.6373
323.6856
323.6897
323.6898

1198.178
1198.286
1198.28 )
1198.28)

aThe value of A corresponds to the HFS scheme.
b The value of A corresponds to the HFS' scheme.
cThis value of A corresponds to the HFS" scheme; A=a, the coefficient for which p =1.0. Notice that the energy

surface E(A,, g ) does not have its minimum at E(z, 1.0).
d This value of A is reported to show that the minimal energy is not associated to HFS", even though we did not

search for the actual minimum.
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for which g = 1. This scheme is an optimal
compromise between simplicity and accuracy.

A point for further discussion is if this is going
to be useful in band-theory calculations. The
answer will be given by the practitioners of this
field, but we venture that the affirmative answer
is not entirely groundless.

The question of the choice of x in the solid-state
case is immediate. Clearly, the optimal x for
the solid could be determined only if an accurate
cohesive energy calculation could be done. One
could ask how much does x change when going
from the separated ions to the solid, and how

large are the errors made when the same x value
is used. From the discussions of Froman and
Lowdin, ' on the virial theorem and cohesive en-
ergies of solids, we should expect that very
serious errors are not introduced. Their con-
clusion is that when one uses the same orbitals
for the solid at the equilibrium distance as those
employed for the free constituents, the cohesive
energy is rather insensitive to scaling. What
really is important is to have the virial theorem
satisfied by the wave functions of the free ions
to start with; then, proper account of the kinetic-
and potential-energy changes in cohesion can be
made. This is particularly true for ionic crys-
tals.

Since cohesive energies for alkali halides from
the APW method are already available, " it is
interesting to see what is the best x for a solid.
In a first approximation, according to the pre-
ceding arguments, it is desirable to have the
virial theorem satisfied for the free ions. This
is accomplished by the VHFS» scheme.

In summary, wave functions obtained from a
local exchange approximation to the nonlocal
Hartree-Fock exchange operator do not neces-
sarily satisfy the virial theorem. Scaling im-
proves the agreement with the HF scheme, and

provides understanding of the properties of the
Slater and the Kohn and Sham exchange. A Slater-
type exchange potential leading to wave functions
which satisfy the virial theorem is proposed.
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The Breit equation for two Dirac particles in an external magnetic field, with anomalous

magnetic moments introduced phenomenologically as Pauli moments, is taken as the starting

point for a Chraplyvy- Barker-Glover reduction. First-order perturbation theory employing

the nonrelativistic wave function for the 8 ground state is then used to derive expressions for
the diagonal matrix elements of the Hamiltonian which depend linearly upon the field. These

expressions are symmetric in the masses and anomalous moments of the particles and agree

with previous results to relative order n . However, additional higher-order terms arise
due to changes in the anomalous moments (in principle, obtainable from field theory), to re-
duced mass corrections, and to factorization of the moments as free-particle moments times

shielding corrections. Contributions to the shielding expressions are interpreted as arising
from (1) relativistic mass corrections, (2) spin-orbit coupling, and t'3) spin-other-orbit
coupling. In the case of atomic hydrogen the first two effects dominate the electron shielding

and the latter dominates the proton shielding. Similar calculations and interpretations may

be applied to magnetic shielding in larger atomic and molecular systems.

I. INTRODUCTION

Because of the relative ease of performing the-
oretical calculations as well as experimental mea-
surements on the bound electron-proton system,
the hydrogen atom has long provided a fruitful
testing ground for physical theories. In addition,
new concepts which have arisen from successful
theoretical treatments of intera, ctions in atomic
hydrogen have found useful application in dis-
cussing similar interactions in larger atomic and
molecular systems. New precision measure-
ments'y' of the electron-proton g-factor ratio in
atomic hydrogen in its ground electronic state
have made it of interest to reinvestigate the the-
ory behind these measurements, since the experi-
mental precision will soon be beyond that of pres-
ently available theoretical calculations. '

Both the electron and the proton g factors are
modified when the two particles become bound to
form the hydrogen atom. Calculation of bound-
state modifications to the electron g factor, based
on the Dirac equation for the electron in a central
Coulomb field and an external magnetic field,
have been performed. ' Similarly, the modifica-
tion of the proton g factor to order &' (a is the
fine-structure constant) is the well-known Lamb

diamagnetic shielding correction. 4 The results
of these calculations for the '8 ground state are,
to order &',

g (h)=2(1- -'a2Z2)
e y

g (I)=g (1- —,'~'z),
P P

where ge(h) and gp(h) are the electron and proton
g factors for atomic hydrogen, gp is the free pro-
ton g factor, and Z is the proton charge. These
treatments may be extended'y' to higher order in
a' (the next contributions, of order &'Z' and
a'Z', are important for heavy atoms), but they
then ignore important contributions discussed be-
low. For example, it is commonly assumed that
the Dirac result for the electron g factor g =2e
may be replaced in Eq. (1)by the more exact re-
sult obtained from quantum electrodynamics, '

g = 2[1+o.'/2x- 0 328 ~/w2+ 0{o')1 {2)

This replacement is apparently a good approxima-
tion to order &', but not to order &', as is shown
below. Furthermore, the above treatments ne-
glect the effects of the motion of the proton, and
they ignore the possibility of bound-state modifi-


