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A simple analytic electron-atom independent-particle model (IPM) potential for use in phe-
nomenological studies is examined. The potential is given by V) =2(NT -2)/7,T=1
- [(ey/ d_1)H+1]" 1, where Z is the number of nuclear protons, N the number of core elec~
trons, and Rydberg units are used. The adjustable parameters d and H are evaluated using
(1) Thomas-Fermi screening functions, (2) Herman and Skillman Hartree-Fock-Slater (HS-
HFS) screening functions, (3) HS-HFS eigenvalues, (4) Hartree-Fock eigenvalues, and (5)
experimental separation energies. Good agreements with HS-HFS eigenvalues and screening
functions for electrons in neutral atoms is obtained if H =daN°‘4, where d is adjusted for
each element and @ =1.05 for HFS and 1.00 for HF models. The success in fitting energy
values and screening functions suggests that the potential embodies exchange and possibly
correlation effects. Applications of the model to excited states and elastic and inelastic
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collisions are discussed.

1. INTRODUCTION

The nuclear independent-particle model! (IPM),
based upon phenomenological analytic shell and
optical-model potentials, has contributed greatly
to the development of techniques for calculating
nuclear elastic and inelastic scattering cross sec-
tions, transition probabilities, and other impor-
tant properties. An analytic atomic IPM, which
maintains a close relationship to fundamental
theoretical models, could also be useful to applied
atomic physics for the approximate calculation of
analagous atomic properties. Motivated by this
need, the present study takes as a starting point
an approximate analytical characterization of the
universal Thomas-Fermi potential. 2,3
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2. ANALYTIC REPRESENTATIONS OF THE
THOMAS-FERMI POTENTIAL

In the IPM approximation, the radial Schrodinger
equation for one-electron orbitals of angular mo-
mentum ! and principal quantum number 7 is

<-;,ir—z -uﬁﬂ - V(v)+Enl> P, (r)=0, @)

where # has units of Bohr radii (a,), and all en-
ergies are in Ry. Here, E,; is the eigenvalue,
and V(7) is a central atomic potential due to the
Z units of nuclear charge and the average effect
of the N remaining core electrons.

Analytic representations of atomic potentials

1
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have already been proposed. Almost all such at-
tempts have made use of analytic approximations
to the potential derived from the statistical model
of Thomas and Fermi®3 (TF). In the simplest
form of this theory, the potential energy of a sin-
gle electron in a neutral atom is taken as

V(r)=- ZZ¢TF(x)/r , 2)

where the screening function ¢ 7p(x) satisfies the
dimensionless TF equation

x1/2(d2¢TF/dx2)= ¢TF3/2 R (3)

where x=7ZY%/u,, p,=3%(37)?/*=0.8853. In the
usual elementary treatment, the screening func-
tion ¢ is assumed to satisfy ¢ pp(0)=1 and
¢TF(x)=0as x-». These equations were first
solved by Bush and Caldwell* with a differential
analyzer. The points in Fig. 1 are interpolated
from their numerical values.
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FIG. 1. Comparison of analytic representations of
the TF screening function. The TF function (Ref. 4)
appears as dots; the legend for various analytic repre-
sentations are indicated in the diagram. The expanded
horizontal scale at the top of the figure refers to the
upper curves. (r is in a.u.)

Several analytic forms have appeared in the
literature which fit the numerical output of Bush
and Caldwell to various degrees of approximation.
Sommerfeld® has used

¢s(x)=[1 +x/(12)2/3)0 772]"3-885. (4)
More recently, Gaspar® employed the form
¢g(x)=e'°'1837”/(1+1.05x), (5)

while Teitz” has suggested
¢t(x)=[1+ (FmPex]-2, (6)

Figure 1 also gives these three functions.

Latter® has given a very precise (0.3%) fit to
¢p~! in the form of a polynomial of the sixth de-
gree in x'/2, However, his use of six parameters
is unnecessarily cumbersome for the applications
which we envisage.

The shape of the ¢TF(x) on semilog paper sug-
gested to us that a generalized distribution function
(GDF)® is of the form

bopp( D=1 +8/( ). )

Such a function has proved useful in representing
atmospheric density distributions when departures
from a simple exponential falloff (8=0) occur at
small values of x. This function contains a special
cases the Fermi-Dirac function (8> 0) (which is
mathematically the same as Woods-Saxon IPM po-
tential of nuclear physics), the Maxwell-Boltzmann
f(unction (B=0), and the Einstein-Bose function

B--1).

For our purposes here, we reparametrize this
function using H=(1+pg)"!, in which case

x/8

(x)=[H(e™" " =1)+1]"". (8)

¢GDF

The solid line in Fig. 1 represents this function
for the parameter values 6=4.478 and H=6 +1.

It is clear that the GDF function achieves the best
fit to the TF function in the region x = 0-8, which
is the major range of interest. The rapid falloff
of the GDF function beyond x = 8 poses no problem
in our applications - indeed for some purposes it
is an asset. A minor improvement in the fit may
be obtained if the shape factor H and the scaling
factor § are adjusted independently.

Latter has discussed the problem of the asymp-
totic behavior of the TF and Thomas-Fermi-Dirac
(TFD) potentials. Because of this problem, it is
customary to use a TF or TFD potential only out
to the radius 7, at which it equals V, =- 2/7, and
to use V=V, for »>7, Effectively, one uses the

screening function ¢ only for x<x,=7,2"%/p,
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and uses ¢(x)=Z-!at x>x, Inthe present work,
we wished to avoid this ad hoc device, which in-
troduces a discontinuity in the derivative of the
potential at »,. We do this by writing the potential
for an electron in a neutral atom in the form

vir)==2r"'[(z-1)Q(r)+1] , (9)
where from ¢TF(x), we evaluate

QTF(x,Z)=[¢ (x)-z"1/0-27Y. (10)

TF

We fit Qpp(x, Z) by the GDF function, using x as
the independent variable. Fits for a sample of
elements from Z =5 to 100 showed a rather unex-
pected behavior in the parameters 6 and H: In-
stead of these parameters remaining approximately
constant, they varied approximately as Z'/3. This
first observation suggested that we use the radial
coordinate #» rather than the scaled radial coordi-
nate x. Accordingly, for further discussions, we
parametrize our modified screening function in
the form

r/d _

Q(r)=[H(e 1)+1] ¢ (11)

where d is approximately the same for all ele-
ments; Fig. 2 shows screening function shapes
for various H.
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FIG. 2. Shapes of screening functions corresponding
to various H (d=1).

Energy eigenvalues were calculated with such a
potential with d =0. 57 and H =0. 72Z'/3 using the
eigenvalue subprogram of the Herman and Skillman
HFS! computer code. The energies were as ac-
curate as those of Latter. However, it became
clear in the course of the study that local changes
in d and H could greatly improve the eigenvalues.

Previously, Stewart and Rotenberg!! have noted
that by scaling the radial coordinate of numerically
generated TF potentials differently for each state,
they could greatly improve the accuracy of the
eigenvalues and wave functions obtained from it.
The present analytic framework provides a far
simpler procedure for doing this and should achieve
comparable results. We may also adjust d and H
to a HF calculation such as carried out by Mann, !?

Let us first consider the application to the HFS
approximation, i.e., in which an approximate ex-
change correction is applied based upon the free-
electron gas theory. '

3. ANALYTIC FITS OF HFS SCREENING
FUNCTIONS

HFS self-consistent field calculations have been
carried out by Herman and Skillman'® (HS) for
neutral atoms for Z=2-103. They express their
one-electron potential energy in terms of a “nor-
malized” potential U, which is the same as our
¢ in Eq. (2). These were transformed to modified
screening functions QHS(‘)’) using Eq. (10). For
each Z, values of the parameters H and d were ob-
tained by a least-squares fit of the GDF function
[Eq. (11)] to Qgg(#). The values of the d’s ob-
tained fluctuated markedly around 0.8. The re-
sulting values of H tended generally to increase
as a function of N=Z -1 but displayed local corre-
lations with the fluctuations in d. Empirically it
was found convenient to express H in the form

H=daN" 12)

where, when v was fixed at 0.4, the parameter o
was found to be approximately 1. 05 for all ele-
ments. Using this relationship, least-squares
fits were made to obtain new values of d. This
one-parameter description of the HFS screening
function proved to be nearly as accurate as the
one obtained by varying both H and d. Figure 3
illustrates several fits to Qug(#) obtained in our
studies.

Having obtained the parameters for the analytic
IPM potentials, the eigenvalues were obtained for
a sample of elements. Good eigenvalues in re-
lation to the HS-HFS eigenvalues were obtained for
both the two-parameter and one-parameter de-
scriptions. The latter sets were somewhat better,
suggesting that the asymptotic behavior of these

screening functions were, fortuitously, somewhat
better.
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1.0 T T T T T T the HS eigenvalues E; (HS-HFS) could be improved
further by determining d and a from the E]'
(HS-HFS) rather than from the Qygp(7). Thus, we
B . revised our original estimates of d and o by a

i formal least-squares procedure, minimizing the
m N essee HFS sum

| PARAMETER

———— 2 PARAMETER

Y%= Ej [E]. (HS-HFS) - E]. ] 2/Ej (HS-HFS). (13)

Table I gives some representative comparisons
of d and « obtained from the modified screening
function and from the eigenvalues.

(DIMENSIONLESS)

lllllll

B. Adjustment to HF Energies

Using the same weighted least-squares method
and the same starting values, we obtained new
values for d and « by fitting the energies computed
by Mann'2? from the coupled HF equations. This
is an interesting case, since exchange is repre-
sented exactly in the HF equations. Thus, the
IPM potential for the d’s and o’s determined from
the Mann-Hartree-Fock (MHF) energies includes
an “average” exchange potential. Since the ex-
change potential embodied in the HS calculations

| is now recognized to require modification, %%
3.0 we have concentrated our attention on finding an

SCREENING FUNGTION

1 lLlIll

1

RADIUS, r IPM simulation of MHF calculations.

FIG. 3. Representative fits to modified HFS screen- By adjusting to MHF energies, we computed a
ing functions. The dots give the modified HFS screen- complete set of d’s and a’s for helium through
ing functions. The one-parameter least-square fits are lawrencium. After these calculations were com-
shown as a solid line; the two-parameter results (vary- pleted, we found that setting @ =1 caused no sig-
ing H and d) are shown by the broken line. (r is in a.u.) nificant loss of accuracy in the fits to the eigen-

values. Table II presents the values of d for the
best analytic potentials so obtained. Column 5 of
4. EIGENVALUES Table III gives a sample.set of energies computed
from our analytic potential and the parameter
A. Adjustment of IPM Potential Parameters values of Table II. Column 4 gives the corre-
Using Eigenvalues sponding MHF energies. Column 3 gives HS-HFS
energies. It should be noted that the differences

As might have been expected, we found that between our computed energies and the MHF en-

agreement between our IPM eigenvalues E. and ergies are generally much smaller than the dif-

J

TABLE I. Comparison of various d and o values obtained by fitting HFS screening functions, HFS eigenvalues, and
HF (Mann) eigenvalues.

z d® d® P d° aC 44

5 0.877 0.977 1.120 0.780 1.02 0.979
10 0.466 0.443 0.997 0.466 1.04 0.500
15 0.920 1.060 1.140 0.919 1.08 0.867
20 1.140 1.080 1.010 1.170 1.05 1.154
30 0.593 0.559 1.000 0.598 1.02 0.612
40 0.951 1.010 1.090 0.942 1.06 0.866
50 0.846 0.789 1.000 0.841 1.03 0.841
70 0.725 0.752 1.090 0.632 1.00 0.654
90 1.060 1.090 1.080 0.924 1.02 0.927

aFit of d to HFS screening functions with ¢=1.05. bFits of d and @ to HFS screening functions.

CFits of d and a to HFS eigenvalues. dFit of d to HF (Mann) eigenvalues with o =1.00.
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TABLE II. Values of d to fit HF energies (o =1.00). TABLE II. (continued)
Note for Z=1 (H), d is indeterminate; for Z=2 (He),
d=0.215. Z  Symbol d Z  Symbol d
VI VI
Z _ Symbol d Z _ Symbol a 55  Cs 1.022 87  Fr 0.818
I I 56 Ba 1.108 88 Ra 0.859
3 Li 0.563 11 Na 0.561 57 La 1.150 89 Ac 0.899
4 Be 0.858 12 Mg 0.621 58 Ce 1.081 90 Th 0.927
5 B 0.979 13 Al 0.729 59 Pr 0.970 91 Pa 0.887
6 C 0.880 14 Si 0.817 60 Nd 0.938 92 U 0.880
7 N 0.776 15 P 0.868 61 Pm 0.905 93 Np 0.872
8 o 0.708 16 S 0.885 62 Sm 0.873 94 Pu 0.832
9 F 0.575 17 cl 0.881 63 Eu 0.842 95 Am 0.822
10 Ne 0.500 18 A 0.862 64 cd 0.862 92 Cm 0.842
65 Tb 0.830 97 Bk 0.830
v v 66 Dy 0.754 98 cf 0.790
19 K 1.006 37 Rb 0.744 67 Ho 0.728 99 Es 0.778
20 Ca 1.154 38 St 0.798 68 Er 0.702 100 Fm 0.766
21 Se 1.116 39 Y 0.835 69 Tm 0.677 101 Mv 0.754
22 M 1.060 40 Zr 0.866 70 Yb 0.654 102 No 0.742
23 v 0.996 41 cb 0.831 71 Lu 0.665 103 Lw 0.755
24 Cr 0.837 42 Mo 0.825 s - 0672
25 Mn 0.866 43 Te 0.855 23 T 0676
26 Fe 0.807 44 Ru 0.803 e w 0679
27 Co 0.751 45 Rh 0.788 v Re 0,680
28 Ni 0.700 46 Pd 0.737 v
29 Cu 0.606 47 Ag 0.754 "6 o0 0,680
30 Zn 0.612 48 cd 0.775
31  Ga 0.631 49 In 0.810 I 0.679
32 Ge 0.649 50  Sn 0.841 % Pt 0.661
79 Au 0.657
33 As 0.663 51 Sb 0.870
34 Se 0.675 52 Te 0.896 80  Hg 3'2';(1)
35 Br 0.684 53 1 0.919 Z; IT):) P
36 Kr 0.689 54 Xe 0.940 o o 0726
84 Po 0.744
85 At 0.761
ferences between the HS-HFS and MHF energies. 86 . 0.777

Columns 6 and 7 give the derivative of the energy
with respect to parameters d and «.

C. Experimental Energies

(hydrogenlike) nonrelativistic energy is 8100 Ry.
Since the form of the potential automatically pro-

In addition to obtaining values of d and «, which vides for some screening, it is not surprising
give good agreement with the HF energies, at- that so large a binding energy cannot be obtained
tempts were made to find values of d and « that for any reasonable set of screening parameters.
give the experimental ionization (ESCA)!® po- As an alternative approach, the relativistic ef-
tentials for selected elements. These experi- fects tabulated by HS were subtracted from the
mental energies were first averaged to eliminate experimental energies for a sample of elements
spin-orbit splitting. For Z <40, a and d values with Z =240. Then values of d and ¢, similar to
were readily found that provided reasonable agree- those obtained from HFS and HF energies, were
ment. However, for Z =50, relativistic effects found to give energies in reasonable agreement
became appreciable. That these effects cannot be with those obtained from the experimental data.
accounted for in the present nonrelativistic frame- This agreement, however, deteriorates somewhat
work, is best seen by considering, as an example, for very heavy elements. The experimental ESCA
thorium (Z =90). The experimental binding en- values averaged over the spin-orbit effect and
ergy of a 1s electron is 8060 Ry, the correspond- corrected for the relativistic terms of HS are

ing HF energy is 7102 Ry, and the unscreened given in column 2 of Table II.
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TABLE II. Comparison of Energies for Z=10, 20, 30, 40,50, 70, and 90.
Shell ESCA HFS HF IPM dE/dd dE/da
Z=10, d=0.500, H=1.203
1s 63.70 62.99 65.54 64.24 7.20 -25.90
2s 3.30 3.17 3.86 3.54 6.03 —-4.66
2p 1.30 1.47 1.70 1.88 6.22 -5.02
Z=20, d=1.154, H=3.747
1s 296.80 293.50 298.70 297.40 4.68 ~80.30
2s 32.20 31.63 33.65 33.06 3.42 -30.90
2p 25.70 26.18 27.26 28.10 3.48 -35.20
3s 3.20 3.88 4.49 4.09 2.07 -6.97
3p 1.90 2.48 2.68 2.72 1.97 -6.60
4s oo 0.40 0.39 0.49 0.44 -0.73
Z=30, d=0.612, H=2,352
1s 710.00 698.40 706.60 705.60 9.85 -163
2s 87.80 85.12 88.72 86.35 19.00 -72.3
2p 76.20 75.55 77.85 77.53 18.60 -82.0
3s 10.10 9.79 11.28 10.50 13.20 -18.8
3p 6.40 6.66 7.68 7.40 13.00 -19.0
3d 0.70 1.26 1.57 1.76 12.20 -15.6
4s e 0.62 0.59 0.72 2.09 -1.45
Z=40, d=0.866, H=3.748
1s 1290.00 1291.00 1301.00 1303.00 6.97 -251.0
2s 177.60 178.00 182.80 182.90 12.10 -127.0
2p 164.00 163.80 167.00 169.80 11.90 -143.0
3s 30.00 29.80 32.12 31.97 11.10 -45.0
3p 24.30 24.36 26.05 26.68 11.10 -47.2
3d 13.20 14.32 15.05 16.58 11.40 —-49.2
4s 3.60 4.23 4.85 4.35 5.50 ~10.5
4p 2.00 2.73 2.99 2.80 4.97 -9.24
4d oo 0.52 0.62 0.47 3.08 —-4.43
5s o 0.44 0.42 0.44 0.76 -0.85
Z=50, d=0.841, H=3.991
1s 2065.00 2069.00 2082.00 2085.00 7.42 -363.0
2s 307.70 307.80 314.00 313.00 18.00 -195.0
2p 290.90 288.80 293.00 295.60 16.20 -218.0
3s 60.40 60.07 63.21 61.52 15.50 -77.7
3p 52.40 52.09 54.43 53.79 15.60 -82.2
3d 35.40 37.16 38.34 38.77 16.20 -89.0
4s 9.10 9.76 11.03 10.34 9.35 -22.6
4p 6.07 7.06 7.95 7.66 9.13 -21.5
4d 1.68 2.53 2,75 3.03 8.02 -17.0
5s s 0.92 0.96 1.07 2.59 -3.25
5p oo 0.44 0.50 0.53 1.70 -1.97
Z=70, d=0.654, H=3.557
1s 4195.00 4190.00 4209.00 4216.00 14.2 -613.00
2s 682.30 682.90 692.00 686.50 34.2 -364.00
2p 671.20 554.00 660.40 660.50 32.0 -403.00
3s 153.90 153.40 158.40 152.60 38.2 -~166.00
3p 143.70 140.00 143.90 139.50 38.4 -177.00
3d 111.40 114.70 117.20 113.40 39.5 -197.00
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TABLE III. (continued)

Shell ESCA HFS HF IPM dE/dd dE/da
Z=70, d=0.654, H=3.557
4s 30.30 29.59 32.19 30.79 27.7 -58.90
4p 25,20 24.07 26.17 25.33 27.4 —58.90
4d 13.40 14.01 15.32 15.11 26.8 —56.00
4f 3.10 1.18 1.47 1.94 24,2 —40.50
5s 1.40 3.74 4.20 3.85 11.4 ~12.80
5p 2.26 2.41 2.27 9.75 —~10.50
6s 0.38 0.36 0.35 0.77 —0.62
Z=90, d=0.927, H=5.580
1s 7066.00 7078.00 7102.00 7116.00 6.94 —893.00
2s 1253.00 1227.00 1239.00 1235.00 23.7 —559.00
2p 1258.00 1188.00 1196.00 1200.00 19.4 —617.00
3s 313.80 308.50 315.00 311.80 25.2 —286.00
3p 302.80 289.10 294.20 292.70 24.4 —305.00
3d 241.70 252.50 255.80 255.00 26.1 —338.00
4s 79.00 77.75 81.46 81.38 20.9 —124.00
4p 71.70 68.78 71.84 72.52 21.0 —-126.00
4d 48.40 51.99 54.06 55.51 21.0 —-129.00
4 24.20 28.70 29.43 31.91 21.9 —125.00
5s 16.50 17.45 18.94 18.54 13.2 —43.50
5p 13.50 14.00 15.09 15.02 12.9 —41.80
5d 6.15 7.97 8.283 8.71 12.0 —-36.30
6s 3.42 2.98 3.386 2.90 5.65 -10.50
6p 3.05 1.97 2,135 1.85 4.85 —8.56
6d 0.52 0.592 0.38 2.51 —3.52
s 0.36 0.342 0.34 0.67 —0.86

S. SCALING PARAMETER AND

where V), is the nuclear potential, and V, is the
RADIAL ELECTRON DENSITIES

potential energy due to the electronic cloud. The
function
Figure 4 gives the value d obtained by fitting

Mann’s energies with o fixed at 1. 00. One sees
only a loose correlation between the minima of d
and the magic numbers. It would appear that d,

which in this parametrization influences both the
scale and shape of the potential, is strongly af-

fected by the middle electrons as well as by the

outer electrons.

T(r)=1-Q(»)=HT(HT +1)"*, (15)

where T=(e%-1) and t=7/d. To obtain the elec-
tronic part of the radial probability density 477%p(r),
we have, from Poisson’s equation

Here it must be recognized that the electrostatic
potential arising from a charge density is rather
effectively “filtered” out of the radially fluctuating
components in the density. This is apparent, for
example, inthe smoothnature of the HS-HFS screen-
ing functions illustrated in Fig. 3. Accordingly,
two very similar potentials can arise from fairly
different charge densities. The wave functions
and eigenvalues are, of course, responsive to
the potential rather than the density function.

It is constructive to write our analytic potential
in the form

V=V +V =2r"'[NT-2Z2], (14)

4mr2p(v)== 72V [ NT(7)/7]

= (N/d)E[ He/(HT +1)7][- 1 + 2He >/ (HT+1)] .

(18)
Figure 5 gives a plot of the radial probability density
divided by N/d as a function of £ =#/d. This
scaling is used to obtain clarity in the face of the
irregularities of d. We see that the increasing
H corresponds to increasing the inner concen-
tration of the electronic cloud.

6. CONCLUSION

A simple analytic atomic IPM potential with a
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FIG. 4. Graph of the optimum values of d that were
obtained by fitting Mann’s HF energies with a=1.0.
Symbols denote filling orbitals (*competitive).
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continuous first derivative has been found, which
uses only two parameters. With one parameter
(a) established for the entire Periodic Table and
one parameter (d) adjusted for each element, we
can fit all bound-state energies within a few per-
cent. The fact that these IPM energies also agree
approximately with the experimental removal en-
ergies confirms the approximate validity of Koop-
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FIG. 6. Wave functions for the 4p
state of argon. (x is in a.u.)

mans’s'’ theorem for atoms. For the outermost
states, somewhat greater departures occur, but
one must recognize here that multiplet splittings
are proportionally larger and more varied for
such states.

Figure 6 shows a radial wave function for the
4p state of Ar based upon our IPM potential. It
is shown in comparison with the HF wave function
of Mann and the HFS wave function of HS. The
close similarity of all three wave functions is en-
couraging. The scaled TF wave function of
Stewart and Rotenberg, which involves a much
more complex calculation, is practically the same
as our IPM wave function.

Since our IPM central potential is common to
all the electrons in an atom, it provides a com-
plete and orthogonal basis set which should be
helpful for study of residual perturbations. For
some purposes it might be desirable to adjust
the parameters d and « for each [ value, which
would permit greater precision yet still preserve
the orthogonality property. This in effect, would
build in nonlocality, which may be a simple way
to approximate remaining exchange and correlation
effects. One can also deal with the spin-orbit
splitting in a similar way. A table of eigenvalues
and eigenvalue derivatives may be used for this
purpose. '8

In view of our success with the bound states of
neutral atoms and the apparent versatility of our
analytic form for 7, it is not unreasonable to hope
that Eq. (14) might, with minor adjustments in d
and a, be applicable to ions as well.

For excited states, a polarization potential
would probably be needed. We have found a number
of simple analytic potentials which fit our analytic
potential in the range »=0-2 (a,) which go over
asymptotically to P»~*+2»-!, where P is the di-
pole polarizability. Excited-state energiesusing
these potentials are under study.
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For scattering calculations, an imaginary po-
tential will also be needed (as in the nuclear opti-
cal model). In addition, dynamical polarization
and exchange terms such as those studied for the
case of e-He scattering by Callaway et al., '° also
arise whose magnitudes might be established
phenomenologically. It is reasonable to hope that
an analytic IPM optical potential along these lines
could be useful for the calculation of approximate
elastic and inelastic electron impact cross sections

which are needed in applications.

ACKNOWLEDGMENTS

The authors would like to express their thanks
to Professor John C. Slater for his helpful sug-
gestions, Dr. T. Wilson and Dr. J. Conklin for
their assistance with the HS program, and Dr. J. E.
Purcell, Professor Hugh Kelly, and Dr. Frank
Herman for useful discussions.

*Supported in part by U.S. Atomic Energy Commission
Grant No. AEC~-AT=-(40-1)-3798.

T Present address: Honeywell Radiation Center, 2
Forbes Road, Lexington, Mass. 02173.

A. E. S. Green, T. Sawada, and D. S. Saxon, The
Nuclear Independent-Particle Model (Academic Press
Inc., New York, 1968), e.g.
work on the Nuclear IPM.

’L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542
(1927).

’E. Fermi, Z. Physik 48, 73 (1928).

V. Bush and S. H. Caldwell, Phys. Rev. 38, 1898
(1931).

’A. Sommerfeld, Rend. Accad. Lincei 6, 15 (1932);

6, 788 (1932).

SR. Gaspar, Acta Phys. Hung. II, 151 (1952).

"Von T. Teitz, Ann. Physik 15, 186 (1955).

’R. Latter, Phys. Rev. 99, 510 (1955).

%A. E. S. Green and P. J. Wyatt, Atomic and Space
Physics (Addison Wesley Publishing Co., Inc., Reading,
Mass., 1965), p. 445.

YF . Herman and S. Skillman, Atomic Structure Calcu-

, for a recent summary of

lations (Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1963).

3. C. Stewart and M. Rotenberg, Phys. Rev. A140,
1508 (1965).

25, B. Mann, Los Alamos Scientific Laboratory,
Report No. LA-3690 1968.

B3ohn C. Slater, Quantum Theory of Matter (McGraw-
Hill Book Co., New York, 1968), 2nd ed.

“W. Kohn and L. J. Sham, Phys. Rev. 140, A1133
(1965).

D. A. Liberman, Phys. Rev. 171, 1 (1968).

16k, Siegbahn, et al., ESCA Atomic Molecular and
Solid State Structure Studied by Means of Electron
Spectroscopy (Almquist-Wiksells Bokh, A. B. Uppsala,
1967).

T, A. Koopmans, Physica 1, 104 (1933).

B Tables of eigenvalues and eigenvalue derivatives are
available upon request.

135, Callaway, R. W. LaBahn, R. T. Pu, and W. M.
Duxler, Phys. Rev. 168, 12 (1968).



