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A simple analytic electron-atom independent-particle model (IPM) potential for use in phe-
nomenological studies is examined. The potential is given by V(r) =2(N'f -Z)/r, & =1
—f(e ~ -1)H+1],where Z is the number of nuclear protons, N the number of core elec-
trons, and Rydberg units are used. The adjustable parameters d and H are evaluated using
(1) Thomas-Fermi screening functions, (2) Herman and Skillman Hartree-Fock-Slater (HS-

HFS) screening functions, (3) HS-HFS eigenvalues, (4) Hartree-Fock eigenvalues, and (5)

experimental separation energies. Good agreements with HS-HFS eigenvalues and screening
functions for electrons in neutral atoms is obtained if H=dnN ', where d is adjusted for
each element and 0. =1.05 for HFS and 1.00 for HF models. The success in fitting energy
values and screening functions suggests that the potential embodies exchange and possibly
correlation effects. Applications of the model to excited states and elastic and inelastic
collisions are discussed.

1. INTRODUCTION 2. ANALYTIC REPRESENTATIONS OF THE
THOMAS-FERMI POTENTIAL

The nuclear independent-particle model' (IPM),
based upon phenomenological analytic shell and
optical-model potentials, has contributed greatly
to the development of techniques for calculating
nuclear elastic and inelastic scattering cross sec-
tions, transition probabilities, and other impor-
tant properties. An analytic atomic IPM, which
maintains a close relationship to fundamental
theoretical models, could also be useful to applied
atomic physics for the approximate calculation of
analagous atomic properties. Motivated by this
need, the present study takes as a starting point
an approximate analytical characterization of the
universal Thomas- Fermi potential. '~'

In the IPM approximation, the radial Schrodinger
equation for one-electron orbitals of angular mo-
mentum l and principal quantum number n is

where r has units of Bohr radii (a,), and all en-
ergies are in Ry. Here, E~~ is the eigenvalue,
and V(r) is a central atomic potential due to the
Z units of nuclear charge and the average effect
of the N remaining core electrons.

Analytic representations of atomic potentials
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have already been proposed. Almost all such at-
tempts have made use of analytic approximations
to the potential derived from the statistical model
of Thomas and Fermi'~' (TF). In the simplest
form of this theory, the potential energy of a sin-
gle electron in a neutral atom is taken as ( x) [I+x/(12)2/3)o 772]-3.885

S
(4)

Several analytic forms have appeared in the
literature which fit the numerical output of Bush
and Caldwell to various degrees of approximation.
Sommerfeld' has used

V(r) = —2Zy ( x)/r, (2) More recently, Gaspar' employed the form

where the screening function QTF(x) satisfies the
dimensionless TF equation

xl/2(d2y /dx2) y 3/2
TF TF (3)

where x=rZ'"/g» p, = &(&w)'~'=0. 8853. In the
usual elementary treatment, the screening func-
tion p is assumed to satisfy QTF(0) =1 and

QTF x)-0 as x-~. These equations were first
solved by Bush and Caldwell' with a differential
analyzer. The points in Fig. 1 are interpolated
from their numerical values.

y (x)=e ' "/(1+1.0Sx),

while Teitz' has suggested

q (x)=[1+ (-'..)'&'x]-2.
t (8)

Figure 1 also gives these three functions.
Latter' has given a very precise (0. 3%) fit to

(I5 TF
' in the form of a polynomial of the sixth de-

gree in x'~'. However, his use of six parameters
is unnecessarily cumbersome for the applications
which we envisage.

The shape of the QTF(x) on semilog paper sug-
gested to us that a generalized distribution function
(GDF)' is of the form

l.o 2.0 $.Q x

yGDF(x) =(1+p)/(e + p).

0.1

Such a function has proved useful in representing
atmospheric density distributions when departures
from a simple exponential falloff (P= 0) occur at
small values of x. This function contains a special
cases the Fermi-Dirac function (P& 0) (which is
mathematically the same as Woods-Saxon IPM po-
tential of nuclear physics), the Maxwell-Boltzmann
function (P=O), and the Einstein-Bose function
(P- -1).

For our purposes here, we reparametrize this
function using H = (1+P) ', in which case

QGDF(x) =[H(e —1)+1) (8)

.Ol
O IO l2 x

FlG. 1. Comparison of analytic representations of
the TF screening function. The TF function (Ref. 4)
appears as dots; the legend for various analytic repre-
sentations are indicated in the diagram. The expanded
horizontal scale at the top of the figure refers to the
upper curves. (x is in a.u. )

The solid line in Fig. 1 represents this function
for the parameter values 5 =4. 478 and H =5+1.
It is clear that the GDF function achieves the best
fit to the TF function in the region g =0-8, which
is the major range of interest. The rapid falloff
of the GDF function beyond g =8 poses no problem
in our applications —indeed for some purposes it
is an asset. A minor improvement in the fit may
be obtained if the shape factor H and the scaling
factor 5 are adjusted independently.

Latter has discussed the problem of the asymp-
totic behavior of the TF and Thomas-Fermi-Dirac
(TFD) potentials. Because of this problem, it is
customary to use a TF or TFD potential only out
to the radius r, at which it equals V& = - 2/r, and
to use V= V~ for r& r,. Effectively, one uses the
screening function QTF only for x&x, =r, Z'~'/p,
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and uses Q(x) =Z-' atx&x, . In the present work,
we wished to avoid this ad hoc device, which in-
troduces a discontinuity in the derivative of the
potential at r, . We do this by writing the potential
for an electron in a neutral atom in the form

V(r)= —2r '[(Z —1)Q(r)+1],

where from QTF(x), we evaluate

Q (x, Z)=[y (x)- Z-']/(I -Z-') . (10)

Q(r)=[ff(e —1)+1] ',

where d is approximately the same for all ele-
ments; Fig. 2 shows screening function shapes
for various H.
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We fit QTF(x, Z) by the GDF function, using x as
the independent variable. Fits for a sample of
elements from Z = 5 to 100 showed a rather unex-
pected behavior in the parameters 5 and H: In-
stead of these parameters remaining approximately
constant, they varied approximately as Z' '. This
first observation suggested that we use the radial
coordinate r rather than the scaled radial coordi-
nate x. Accordingly, for further discussions, we
parametrize our modified screening function in
the form

Energy eigenvalues were calculated with such a
potential with d =0. 57 and H=O. 72Z' ' using the
eigenvalue subprogram of the Herman and Skillman
HFS" computer code. The energies were as ac-
curate as those of Latter. However, it became
clear in the course of the study that local changes
in d and H could greatly improve the eigenvalues.

Previously, Stewart and Rotenberg" have noted
that by scaling the radial coordinate of numerically
generated TF potentials differently for each state,
they could greatly improve the accuracy of the
eigenvalues and wave functions obtained from it.
The present analytic framework provides a far
simpler procedure for doing this and should achieve
comparable results. We may also adjust d and H
to a HF calculation such as carried out by Mann. "

Let us first consider the application to the HFS
approximation, i.e. , in which an approximate ex-
change correction is applied based upon the free-
electron gas theory. "

3. ANALYTIC FITS OF HFS SCREENING
FUNCTIONS

HFS self-consistent field calculations have been
carried out by Herman and Skillman" (HS) for
neutral atoms for Z =2-103. They express their
one-electron potential energy in terms of a "nor-
malized" potential U, which is the same as our
P in Eq. (2). These were transformed to modified
screening functions QHS(r) using Eq. (10). For
each Z, values of the parameters H and d were ob-
tained by a least-squares fit of the GDF function
[Eq. (11)] to QHS(r). The values of the d's ob-
tained fluctuated markedly around 0. 8. The re-
sulting values of H tended generally to increase
as a function of N = Z- 1 but displayed local corre-
lations with the fluctuations in d. Empirically it
was found convenient to express H in the form

H =dnN

O

O
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FIG. 2. Shapes of screening functions corresponding
to various H (d=1).

where, when v was fixed at 0. 4, the parameter a
was found to be approximately 1.05 for all ele-
ments. Using this relationship, least-squares
fits were made to obtain new values of d. This
one-parameter description of the HFS screening
function proved to be nearly as accurate as the
one obtained by varying both H and d. Figure 3
illustrates several fits to QHS(r) obtained in our
studies.

Having obtained the parameters for the analytic
IPM potentials, the eigenvalues were obtained for
a sample of elements. Good eigenvalues in re-
lation to the HS-HFS eigenvalues were obtained for
both the two-parameter and one-parameter de-
scriptions. The latter sets were somewhat better,
suggesting that the asymptotic behavior of these
screening functions were, fortuitously, somewhat
better.
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4. EIGEN VALUES

A. Adjustment of IPM Potential Parameters
Using Eigenvalues

As might have been expected, we found that
agreement between our IPM eigenvalues E. and

FIG. 3. Representative fits to modified HFS screen-
ing functions. The dots give the modified HFS screen-
ing functions. The one-parameter least-square fits are
shown as a solid line; the two-parameter results (vary-
ing H and d) are shown by the broken line. (~ is in a.u. )

the HS eigenvalues E (HS-HFS) could be improved
further by determining d and o. from the ~~
(HS-HFS) rather than from the AHF(r) .Thus, we
revised our original estimates of d and o. by a
formal least-squares procedure, minimizing the
sum

y2 = Q. [E.(HS-HFS) —E. ] 2/E (HS.-HFS). (13)j j
Table I gives some representative comparisons
of d and o. obtained from the modified screening
function and from the eigenvalues.

B. Adjustment to HF Energies

Using the same weighted least-squares method
and the same starting values, we obtained new

values for d and e by fitting the energies computed
by Mann" from the coupled HF equations. This
is an interesting case, since exchange is repre-
sented exactly in the HF equations. Thus, the
IPM potential for the d's and e's determined from
the Mann-Hartree-Fock (MHF) energies includes
an "average" exchange potential. Since the ex-
change potential embodied in the HS calculations
is now recognized to require modification, "~"
we have concentrated our attention on finding an
IPM simulation of MHF calculations.

By adjusting to MHF energies, we computed a
complete set of d's and cy's for helium through
lawrencium. After these calculations were com-
pleted, we found that setting n =1 caused no sig-
nificant loss of accuracy in the fits to the eigen-
values. Table II presents the values of d for the
best analytic potentials so obtained. Column 5 of
Table III gives a sample set of energies computed
from our analytic potential and the parameter
values of Table II. Column 4 gives the corre-
sponding MHF energies. Column 3 gives HS-HFS
energies. It should be noted that the differences
between our computed energies and the MHF en-
ergies are generally much smaller than the dif-

TABLE I. Comparison of various d and n values obtained by fitting HFS screening functions, HFS eigenv»ues, and

HF {Mann) eigenvalues.

dc

5
10
15
20
30
40
50
70
90

0.877
0.466
0.920
1.140
0.593
0.951
0.846
0.725
1.060

0.977
0.443
1.060
1.080
0.559
1.010
0.789
0.752
l.090

1.120
0.997
1.140
1.010
1.000
1.090
1.000
1.090
1.080

0.780
0.466
0.919
1.170
0.598
0.942
0.841
0.632
0.924

1.02

1.04
1.08

1.05
1.02
1.06
1.03
1.00
1.02

0.979
0.500
0.867
1.154
0.612
0.866
0.841
0.654
0.927

Fit of d to HFS screening functions with G. = 1.05.
Fits of d and n to HFS eigenvalues.

bFits of d and n to HFS screening functions.
Fit of d to HF (Mann) eigenvalues with 0. = 1.00.
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TABLE II. Values of d to fit HF energies (0. = 1.00).
Note for Z= 1 {8), d is indeterminate; for Z= 2 Aie),

d = 0.215. Z Symbol

TABLE II. (continued)

Z Symbol

Z Symbol Z Symbol

3
4
5

6

7
8

9
10

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Li
Be
B
C

N

0
F
Ne

K
Ca
Sc
Tl
V

Cr
Mn

Fe
Co
Ni

Cu

Zn

Ga
Ge
As

Se
Br
Kr

IV

0.563
0.858
0.979
0.880
Q.776
0.708
0.575
0.500

1.006
1.154
1.116
1.060
0.996
0.837
0.866
0.807
0.751
0.700
0.606
0.612
0.631
0.649
0.663
0.675
0.684
0.689

11
12
13
14
15
16
17
18

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Na

Mg
Al

Si
P
S
Cl
A

Rb
Sr
Y
Zr
Cb
Mo

Tc
Ru

Rh

Pd

Ag
Cd
In
Sn

sb
Te
I
Xe

V

0.561
0.621
0.729
0.817
0.868
0.885
0.881
0.862

0.744
0.798
0.855
0.866
0.831
Q.S25

0.855
0.803
0.788
0.737
0.754
0.775
0.810
0.841
Q.S70
0.896
0.919
0.940

ferences between the HS-HFS and MHF energies.
Columns 6 and 7 give the derivative of the energy
with respect to parameters d and o..

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86

VI
Cs
Ba
La
Ce
Pr
Nd

Pm
Sm

Eu

Gd

Tb
Dy
Ho

Er
Tm
Yb

Lu

Hf

Ta
W

Re

Os
Ir
Pt
Au

Hg

Tl
Pb
Bi
Po
At

Rn

1.022
1.108
1.150
1.081
0.970
0.938
0.905
0.873
0.842
0.862
0.830
0.754
0.728
0.702
0.677
0.654
0.665
0.672
0.676
0.679
0.680

0.680
0.679
0.661
0.657
0.671
0.690
0.708
0.726
Q.744
0.761
0.777

87
88
89
90
91
92
93
94
95
96
97
98
99

1QO

101
102
103

Fr
Ra
Ac

Th
Pa
U

Np

Pu
Am

Cm
Bk
Cf
Es
Fm
Mv

No

Lw

0.818
0.859
0.899
0.927
0.887
0.880
0.872
0.832
0.822
0.842
0.830
0.790
0.778
0.766
0.754
0.742
0.755

C. Experimental Energies

In addition to obtaining values of d and e, which
give good agreement with the HF energies, at-
tempts were made to find values of d and n that
give the experimental ionization (ESCA)'6 po-
tentials for selected elements. These experi-
mental energies were first averaged to eliminate
spin-orbit splitting. For Z ~ 40, a and d values
were readily found thai provided reasonable agree-
ment. However, for Z «50, relativistic effects
b came appreciable. That these effects cannot be
accounted for in the present nonrelativistic frame-
work, is best seen by considering, as an example,
thorium (Z = 90). The experimental binding en-
ergy of a 1s electron is 8060 Ry, the correspond-
ing HF energy is 7102 Ry, and the unscreened

(hydrogenlike) nonrelativistic energy is 8100 Ry.
Since the form of the potential automatically pro-
vides for some screening, it is not surprising
that so large a binding energy cannot be obtained
for any reasonable set of screening parameters.

As an alternative approach, the relativistic ef-
fects tabulated by HS were subtracted from the
experimental energies for a sample of elements
with Z ~40. Then values of d and e, similar to
those obtained from HFS and HF energies, were
found to give energies in reasonable agreement
with those obtained from the experimental data.
This agreement, however, deteriorates somewhat
for very heavy elements. The experimental ESCA
values averaged over the spin-orbit effect and
corrected for the relativistic terms of HS are
given in column 2 of Table GI.
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TABLE III. Comparison of Energies for Z=10, 20, 30, 40, 50, 70, and 90.

Shell

1S
2s
2P

ls
2S

2p

3S
3p
4s

ESCA

63.70
3.30
1.30

296.80
32.20

25.70
3.20

1.90

HFS

62.99
3.17
1.47

293.50
31.63
26.18
3.88
2.48
0.40

HF

Z= 10, d = 0.500,

65.54
3.86
1.70

Z= 20, d = 1.154,

298.70
33.65
27.26

4.49
2.68
0.39

H= 1.203

K= 3.747

64.24

3.54
1.88

297.40
33.06
28.10
4.09
2.72
0.49

dE/dd

7.20
6.03

6.22

4.68
3.42
3.48
2.07
1.97
0.44

dE/dn

—25.90
-4.66
-5.02

—80.30
-30.90
-35.20
—6.97
—6.60
—0.73

ls
2S

2p
3S
3p
3d
4s

710.00
87.80
76.20

10.10
6.40
0.70

698.40
85.12
75.55
9.79
6.66
1.26

0.62

Z= 30, d= 0.612,

706.60
88.72
77.85
11.28

7.68

1.57
0.59

Z= 40, d = 0.866,

H= 2.352

H= 3.748

705.60
S6.35
77.53
10.50
7.40
1.76
0.72

9.85
19.00
18.60
13.20
13.00
12.20
2.09

-163
~ 72+3
—82.0
—18.8
—19.0
—15.6
—1.45

1S
2S

2P
3S
3P
3d
4s
4p

5s

1290.00
177.60
164.00
30.00
24.30
13.20
3.60
2.00

1291.00
178.00
163.80
29.80
24.36
14.32
4.23

2.73
0.52
0.44

1301.00
182.80
167.00
32.12
26.05
15.05

4.85
2.99
0.62
0.42

1303.00
182.90
169.80
31.97
26.68
16.58
4.35
2.80
0.47
0.44

6.97
12.10
11.90
11.10
11.10
11.40
5.50
4.97
3.08
0.76

—251.0
—127.0
—143.0
-45.0
-47.2
-49.2
—10.5
—9.24
-4.43
—O.S5

ls
2S

2P
3S
3P
3d
4s
4p
4d
Gs

5p

1S
2S

2p
3S
3P
3d

2065.00
307.70
290.90
60.40
52.40
35.40
9.10
6.0V

1.68

4195.00
682.30
671.20
153.90
143.70
111.40

2069.00
307.80
288.SO

60.07
52.09
37.16
9.76
7.06
2.53
0.92
0.44

4190.00
682.90
554.00
153.40
140.00
114.70

Z=50, d= 0.841,

2082.00
314.00
293.00
63.21
54.43
3S.34
11.03

7.95
2.75
0.96
0.50

Z= 70, d = 0.654,

4209.00
692.00
660.40
158.40
143.90
117.20

H= 3.991

2085.QO

313.00
295.60
61.52
53.79
38.77
10.34
7.66

3.03
1.07
0.53

H= 3.557

4216.00
686.50
660.50
152.60
139.50
113.4Q

7.42
18.00
16.20
15.50
15.60
16.2Q

9.35
9.13
8.02
2.59
1.70

14.2
34.2
32.0
38.2
38.4
39.5

-363.0
—195.0
-218.0

77 07

-82.2
—89.0
—22.6
—21.5
-17.0
-3.25
—1.97

—613.00
-364.00
-403.00
—166.00
—177.00
—197.00
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TABLE III. (continued)

Shell

4s
4p
4d

4f
5s
5p
6s

30.30
25.20

13.40
3.10
1.40

HFS

29.59
24.07
14.01
1.18
3.74
2.26

0.38

HF

Z= 70, d= 0.654, H= 3.557

32.19
26.17
15.32
1.47
4.20
2.41
0.36

Z= 90, d=0.927, H=5.580

30.79
25.33
15.11
1.94
3.85
2.27

0.35

dz/dd

27.7
27.4
26.8
24.2
11.4
9.75
0.77

dS/dn

-58.90
-58.90
—56.00
-40.50
—12.80
—10.50
—0.62

1s
2s
2P

3s
3P
3d
4s
4p
4d

4f
5s
5p
5d
6s
6p
6d
7s

7066.00

1253.00
1258.00
313 ~ 80
302.80
241 ~ 70
79.00
71.70
48.40
24.20
16.50
13.50
6.15
3.42
3.05

7078.00
1227.00
1188.00
308.50
289.10
252.50
77.75
68.78
51.99
28.70
17.45
14.00
7.97
2.98

1.97
0.52
0.36

7102.00
1239.00
1196.00
315.00
294.20
255.80
81.46
71.84
54.06
29.43
18.94

15.09
8.283
3.386
2.135
0.592
0.342

7116.00

1235.00
1200.00
311.80
292.70
255.00
81.38
72.52
55.51
31.91
18.54
15.02
8.71
2.90
1.85
0.38
0.34

6.94

23.7
19.4
25.2
24.4
26.1
20.9
21.0
21.0
21.9
13.2
12.9
12.0
5.65

4 ~ 85
2.51
0.67

—893.00
—559.00
-617.00
—286.00
-305 ~ 00
-338.00
—124.00
—126.00
—129.00
-125.00
-43.50
—41.80
-36.30
—10.50
-8.56
-3.52
—0.86

5. SCALING PARAMETER AND

RADIAL ELECTRON DENSITIES

V=V +V =2r-'[NT-Z], (14)

Figure 4 gives the value d obtained by fitting
Mann's energies with o, fixed at 1.00. One sees
only a loose correlation between the minima of d
and the magic numbers. It would appear that d,
which in this parametrization influences both the
scale and shape of the potential, is strongly af-
fected by the middle electrons as well as by the
outer electrons.

Here it must be recognized that the electrostatic
potential arising from a charge density is rather
effectively "filtered" out of the radially fluctuating
components in the density. This is apparent, for
example, in the smooth nature of the HS-HFS screen-
ing functions illustrated in Fig. 3. Accordingly,
two very similar potentials can arise from fairly
different charge densities. The wave functions
and eigenvalues are, of course, responsive to
the potential rather than the density function.

It is constructive to write our analytic potential
in the form

where V„ is the nuclear potential, and Ve is the
potential energy due to the electronic cloud. The
function

Y(r)=1 —A(r)=HT(HT+1) ', (1S)

where T = (e —1) and $ = r/d. To obtain the elec-
tronic part of the radial probability density 4wr'p(r),
we have, from Poisson's equation

CONCLUSION

A simple analytic atomic IPM potential with a

4''p(r ) = —r'V'[NT(r)/r]

= (N/d) $f He /(HT+1)'] [-1+2He /(HT+1)] .
(16)

Figure 5 gives a plot of the radial probability density
divided by N/d as a function of $ =r/d. This
scaling is used to obtain clarity in the face of the
irregularities of d. We see that the increasing
H corresponds to increasing the inner concen-
tration of the electronic cloud.
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FIG. 5. Normalized radial probability distribution
various values of H. The vertical scaling factor +/d
is set equal to unity.

continuous first derivative has been found, which
uses only two parameters. With one parameter
(o.) established for the entire Periodic Table and
one parameter (d) adjusted for each element, we
can fit all bound-state energies within a few per-
cent. The fact that these IPM energies also agree
approximately with the experimental removal en-
ergies confirms the approximate validity of Koop-

mans's" theorem for atoms. For the outermost
states, somewhat greater departures occur, but
one must recognize here that multiplet splittings
are proportionally larger and more varied for
such states.

Figure 6 shows a radial wave function for the
4p state of Ar based upon our IPM potential. It
is shown in comparison with the HF wave function
of Mann and the HFS wave function of HS. The
close similarity of aQ three wave functions is en-
couraging. The scaled TF wave function of
Stewart and Rotenberg, which involves a much
more complex calculation, is practically the same
as our IPM wave function.

Since our IPM central potential is common to
all the electrons in an atom, it provides a com-
plete and orthogonal basis set which should be
helpful for study of residual perturbations. For
some purposes it might be desirable to adjust
the parameters d and a for each l value, which
would permit greater precision yet still preserve
the orthogonality property. This in effect, would
build in nonlocality, which may be a simple way
to approximate remaining exchange and correlation
effects. One can also deal with the spin-orbit
splitting in a similar way. A table of eigenvalues
and eigenvalue derivatives may be used for this
purpose '8

In view of our success with the bound states of
neutral atoms and the apparent versatility of our
analytic form for T, it is not unreasonable to hope
that Eq. (14) might, with minor adjustments in d
and e, be applicable to ions as well.

For excited states, a polarization potential
would probably be needed. We have found a number
of simple analytic potentials which fit our analytic
potential in the range r=0-2 (a,) which go over
asymptotically to Pr '+2r ', where P is the di-
pole polarizability. Excited-state energies using
these potentials are under study.



1S4 ANALYTIC INDEPENDENT-PARTICLE MODEL FOR ATOMS

For scattering calculations, an imaginary po-
tential will also be needed (as in the nuclear opti-
cal model). In addition, dynamical polarization
and exchange terms such as those studied for the
case of e-He scattering by Callaway et al. , "also
arise whose magnitudes might be established
phenomenologically. It is reasonable to hope that
an analytic IPM optical potential along these lines
could be useful for the calculation of approximate
elastic and inelastic electron impact cross sections

which are needed in applications.
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