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Retarded Interactions in Fermi Systems. II. Quasiparticle Lifetimes
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Properties of the inverse lifetime 1/z of quasiparticles in an infInite system of nucleons ("nuclear matter ')
interacting via the exchange of a neutral scalar boson are studied in the dielectric formulation of the many-
body problem. It is shown that the polarization of the nuclear medium plays an essential role in determining
1/v. The presence of the medium mediates the interaction between two nucleons in it through the introduc-
tion of an effective "dielectric constant" for nuclear matter. The interaction becomes "dressed" in a fashion
analogous to, but diferent in its details from, the screening of the Coulomb interaction between electrons
in metals. Calculations of 1/v are made for nuclear matter both in second-order perturbation theory, and
using the fully dressed interaction calculated in the random-phase approximation (RPA) .The RPA estimate
is lower by about a factor of 3 over a wide range of momenta and is in good agreement with empirical
optical-model estimates of 1/v. The second-order perturbation estimate is by contrast entirely inadequate,
emphasizing the importance of taking the polarization effects into account for scattering processes at
actual nuclear densities. The use of a dielectric constant for the medium also introduces another feature
into the properties of 1/r. The behavior of 1/r near the Fermi surface now becomes sensitive to whether
or not the interacting ground state is unstable with respect to a permanent density Quctuation. If it is,
then 1/w behaves like (p —p~) instead of (p —pg)' near the Fermi surface (pg is the Fermi momentum).
This is not a new physical result, but rather a reflection of the inadequacy of the RPA if the system becomes
unstable. It is shown that as the momentum increases the eBect of such an instability, if present, decreases,
and becomes entirely negligible when p&12'pz.

I. INTRODUCTION

N a previous article, ' some properties of a system of
fermions interacting via the exchange of a massive

boson were considered. Such a system is reminiscent of
nucleons in nuclear matter interacting via the exchange
of the various mesons that are thought to provide the
nucleon-nucleon interaction. Of course, restricting the
exchange to one type of boson only is quite unrealistic.
At most we can hope to study the effects of the long-
range part of nuclear forces in nuclear matter Pone-pion-
exchange potential. (OPEP) j in such a model by iden-
tifying the exchanged particle with a pion. Indeed, the
expected feature of the complete collapse in the ground
state of such a system was demonstrated in I. This
difhculty is directly related to the lack of a repulsive
component in the effective interaction. However, some
properties of such a model system are expected to be
less sensitive to the instability problem of the ground
state as far as their qualitative behavior is concerned.
In particular, the Hartree-Fock field of the system is
one such property. ' We calculated this field in I, using
nucleons interacting by exchange of either one neutral
scalar or a triplet of pseudoscalar bosons as an illustra-
tion of the model. It was shown there that the main
effect of explicitly introducing the boson exchange
between nucleons is to produce a frequency-dependent
interaction (i.e., an interaction that is not instantaneous
in time) between nucleons. However, the effects of such
a frequency dependence are essentially controlled by the
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ratio of nucleon kinetic energy to boson rest mass p, and
therefore only show up at energies p. If the exchanged
particle has a mass of a pion (tt US Mev), this is a
relatively high energy for a nucleon in a nucleus.

In analogy with the state of affairs in an interacting
electron gas, ' the interaction between nucleons in
nuclear matter is expected to become "dressed" owing
to the excitation of virtual particle-hole pairs out of the
Fermi sea. This process leads to the usual polarization
cloud that converts a particle into a quasiparticle. Such
quasiparticle states are, of course, not exact eigenstates
of the interacting system; they have a finite lifetime r,
or width' 1/r= —21mZ(p) representing their decay
into more complicated excitations. Here, Z(p) is the
self-energy of a quasiparticle of momentum y. An
estimate of 1/r is interesting for several reasons: (i)
The quasiparticle concept has a we11-defined meaning
only if &~7-&&i, where c~ is the excitation energy; this
condition is density-dependent through the dependence
of r on density (through the Fermi momentum pr) . It
is therefore of interest to investigate the range of
particle energies e~ for which the quasiparticle picture
holds for the present model at actual nuclear densities.
(ii) The width of quasiparticle excitations in real nuclei
can be identified with the magnitude of the absorptive
part of the optical potential. This is known empirically
for nucleon-nucleus scattering over a wide range of
energies4' so that a direct contact with experiment is

'K. Sawada, Phys. Rev. 106, 372 (1957); K. Sawada, K. A.
Brueckner, N. Fukuda, and R. Brout, ibid. 108, 507 (1957).' Units h =c=1 are used throughout.

4 F. Bjorklund, in Proceedings oF the International Coriference
on the Puclear Optical 3Eodel, Florida State University Studies,
Eo. 3Z, edited by A. E. S. Green, C. E. Porter, and D. S. Saxon
(The Florida University Press, Tallahassee, Florida, 1959), p. f.' C. A. Engelbrecht and H. Fiedeldey, Ann. Phys. (N.Y.) 42,
262 (1967).
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possible. (iii) Estimates of 1/r for real nuclear systems
have been essentially restricted to the use of second-
order perturbation theory owing to the complexity of
such systems. e However, in nuclear matter one is able
to go beyond the perturbation calculation result by
summing over a restricted class of interaction diagrams
(polarization or "bubble" diagrams) that describe the
"dressing" process due to the polarization of the
medium, "and give rise to a modified interaction between
nucleons.

The modi6ed, or "dressed" interaction for nucleons
exchanging neutral scalar bosons is calculated in Sec. II.
It is shown that the dressing process leads to an inter-
action of longer range and weaker strength than the
original one, in contrast to what is found in the electron
gas. ' The difference arises because of the attractive
nature of the nuclear interaction in the present model.
The inverse lifetime 1/r is calculated in Sec. III using
(a) perturbation theory and (b) the fully dressed
interaction. It is shown that, while the perturbation
calculation always gives the expected (p —p&)' depend-
ence of 1/r on momentum near the Fermi surface, this
is not necessarily true for the dressed interaction. If the
ground state is unstable against a permanent density
fluctuation (this always happens in the present modeP
if the nucleon-boson coupling is strong enough), an
"instability pole" is present in the dressed interaction
at low incident momentum that forces 1/r to behave
like (p —pp ) near the Fermi surface. At higher momenta
(p&V2pp), this pole does not interfere and the calcula-
tion of 1/r is probably adequate. The calculation of
inverse lifetime is carried out over a wide range of
energies (rnomenta) and a comparison with experi-
mental data is presented.

II. DRESSED INTERACTION

It was shown in I that the interaction between two
nucleons has the form

Vp(pi) =X'Dp(pp)

in a momentum-frequency representation, for the ex-
change of neutral scalar bosons, or

Vp(~) = (f/w)'(~~'&) (&p'&) (&~'&p) Dp(&) (1')

if a pseudoscalar boson is exchanged. In the latter
expression d and ~ refer to the spin and isospin operators
of a single nucleon. Further,

Dp(Pi) =1/(PPP —QpP) (2)

is the propagator, or Green's function, for a boson of
e See, for example, K.A. Brueckner, Phys. Rev. 103, 172 (1956);

K. A. Srueckner, R. J. Eden, and ¹ C. Francis, ibid. 100, 891
(1955); A. M. Lane and C. F. Wandel, ibid. 98, 1524 (1955);
M. Cini and S. Fubini, Nuovo Cimento 10, 75 (1955).

7 P. Nozihres and D. Pines, Quuntues Theory of Liquids (%'. A.
Benjamin, Inc. , New York, 1966};R. D. Mattuck, A Guide to
Peynman Diagrams in the 3/Iany-Body Problem (McGraw-Hill
Book Co., New York, 1967).

momentum k and energy 0&. We assume the relation
Qp= (k'+pp)'~', where y is the rest mass; that is, the
free-boson propagation is governed by a Klein-Gordon
equation. Finally, X and f are dimensionless coupling
constants. The zero frequency limits of (1) and (1')
just reduce to the form of nucleon-nucleon interaction
given by a Yukawa-type' or Chew-Low-type coupling
between mesons and static nucleons, respectively.

Now while (1') is certainly more realistic [being the
origin of the long-range one-pion exchange potential
(OPEP) part of the nucleon-nucleon interaction],
in general, it does not, by itself, allow the well-known
dipole stateN to exist in nuclear matter (see I). On
the other hand, the interaction (1) does, "and produces
this state at the correct excitation energy' for a value of
the coupling constant X (Xp=5) that is known from
shell-model calculations using Yukawa potentials
with adjustable strengths. Therefore, in what follows
we mill calculate with the simpler form of interaction
(1), since this will allow us to compare quasiparticle
lifetimes of a system that possesses at least some
properties expected of nuclear matter.

In I, the Hartree-Fock 6eld generated by (1) was
calculated; that is, we calculated the contribution to
the self-energy Z(p) to first order in the interaction
only, see Figs. 1(a) and 1(b). Higher-order contribu-
tions to Z(p) come from polarization processes of the
Fermi vacuum like those shown in Fig. 1(c).It is well

known' that the contribution from the infinite string of
particle-hole pair excitations Lrepresented as bubbles
in Fig. 1(c)j can be summed in closed form to obtain an
eGective or "dressed" interaction,

liPDp((u)

1+gXPDp(pp) IIp(k, a))
(3)

if the bare interaction is given by (1).Here, IIp(k, ra)

represents the polarization contribution of a "bubble"
with momentum k and frequency eu.

IIp(k, co) = g 2aPpy/(oP pg
—aP) (4)

tv+&l&nz&n

that is made up of all particle-hole pair excitations of
energy or'pp —6p+i, 6p and momentum k. The spin-
isospin factor g (g=4 for nucleons) has not been
included in our definition of IIp(k, rp) contrary to the
usual practice. By analogy with the electron. gas case,
the denominator in Eq. (3) defines a "dielectric con-
stant" for nuclear matter. Since we have only included
excitations of the Fermi vacuum of a special type
(bubbles), the result (3) amounts to calculating the
dielectric constant in the RPA. One writes

Vp&@(co) =X'Dp(pp)/eggs(k, pp),

papg(k, a)) =1+gkpDp(pp) IIp(k, pp) .
8 H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).
9 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
'0 Vf. Srenig, Nucl. Phys. 22, 14 (1961).
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FIG. I. Some interaction diagrams for
the nucleon-boson system: (a) Hartree
and (b) Hartree-Fock contribution to
the self-energy of a nucleon (directed
solid lines) exchanging a boson (dashed
lines) with a background particle or
itself. (c) Particle-hole excitations of the
medium initiated by the incident nucleon
coming into the diagram on the right.
The reversed arrows indicate hole states
in the Fermi sea.

The condition capp(k, 0~) =0 then defines a dispersion
relation yielding the momenta and energies at which the
system displays collective excitations. ~ We already dis-
cussed the question of collective excitations in the
present model in I, where it was shown that (5) con-
tains unstable excitations for certain ranges of momenta
k and coupling constant g)'. These results will be
important for our further discussion. An explicit expres-
sion for IIo(k, co) is available in the literature. r" It is
reproduced in Appendix A for convenience. In Appendix
8, we discuss some analytic properties of cap+(k, id).

Let us consider some properties of the dressed inter-
action Vi, &"'(&v) . At low frequencies, ~&&@ one has essen-
tially the static result

Vs'"'(co) Vi, '"'(0) = —(X'/Qg') [1/sap~(k, 0)] (6)

or

in more detail. Now for low momenta (k«2'), the
f'unction IIo(k, 0) possesses the simple expansion (this
expansion is actually numerically acceptable for the
entire range of k values up to about 2', see Fig. 3 in
Appendix A)

(2n-'/nspp) IIo(k, 0) [1——,
' (k'/pp') 7.

Substituting this result into Eq. (7) and regrouping, one
finds that the dressed interaction is still of the Yukawa
type with a modi6ed strength and range:

Vgr"~ (0) = —)~,'/(pP+k'),

D. Pines, 1'he Many-Jjod'y Problem (W. A. Benjamin, Inc.,
New York, 1962).

with

p' —gV(mpi /2~')

I+gX'(m/16m'pF)

(10)

Note that )„();the coupling strength is weakened by
the action of the Fermi sea polarization processes. More
significantly, the dressed interaction has a longer range
1/p„) 1/p. In fact, if the coupling strength X assumes
the critical value

gX2 =gX,2 =

2m'ii'/happ

for a given density (fixed pp), the range becomes
infinite. Larger values of g)P give nonphysical values for
p„' (p„'&0). This is not a real physical eRect; rather it
is an indication that the whole RPA method of calcula-
tion breaks down. For the value (11) of gX' is precisely
the threshold value of the coupling constant for a
permanent density fluctuation (instability) to develop
in the ground state of the system. ' Negative values of
p„~, therefore, simply mean that the polarization effects
"overcompensate" for such coupling constants, pro-
ducing an unphysical situation within the confines of
the RPA.

These properties are in contrast with the electron gas,
where the bare Coulomb interaction 1/k' becomes
"screened" by the polarization processes to become
1/(k'+kpr'), kyar

' being the Fermi-Thomas screening
length or inverse mass of the exchanged phonon. The
difference is due to the basic attractive nature of the
long-range part of the nucleon-nucleon force as opposed
to the repulsive Coulomb force between two electrons.

The situation is somewhat similar if we consider the
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X22—
(1+NB/m(o') '

p2
2 (y43

(1+1&'/mrs') '

but this result is now definitely restricted to long wave-
lengths. Notice that it is rot possible to regain the
static limit (10) by letting co—r0 in Kq. (14); the k-+0
and u&~0 limiting procedures for the function 1IO(k, &o)

do not commute. Qualitatively, we have the same con-
clusions as before; the coupling strength is weakened
(X„'(X'), and the range is increased (1/ri„&1/p). We
notice in addition that the dressing becomes increasingly
unimportant at high frequencies, 'A,—+P and p,,—+p, as
co—+~, but becomes more effective as the particle
density S increases.

IIL SELF-ENERGY AND QUASIPARTICLE
DAMPING

It is well known that the complete contribution to
the self-energy Z(p) from bubble diagrams like those
shown in Fig. 1(c) is obtained by simply replacing the
free-boson line (' dashed) in Fig. 1(b) representing the
free propagator Dr, (a&) by a "dressed. " line representing
the dressed. propagator Dq(a&)ear~ '(k, u&). The calcu-
lation, therefore, completely neglects the contribution
of multiparticle excitations to Z(p). Quinn and Ferrell
have already obtained the relevant formula for Z(p)
using this approximation for the electron gas.'" We
merely quote their result for the imaginary part:

r '= —21m'(p)
= —2 Q' P,'Dr, ((a) Imeap~ i(k, co)]„.. ., „. (15)

k

This formula must be evaluated subject to the following
restrictions: (i) sap~(k, co) is now the causal dielectric
constant that is obtained from Eq. (5) upon allowing
co to acquire a positive imaginary part, co~~+ip, p&0
in that expression. ' (ii) The frequency a& in both Dr, (a&)

and Eapg(k, M) must equal the energy diRerence 6p 6r r,

that a nucleon of energy e~ transfers to the system
during a collision from momentum states y to p —k that
are both empty. (iii) This energy transfer must be

"J.J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958);
see also A. S. Reiner, ib~d. 129, 889 (1963); 138, 3389 (1965).

"dynamic dressing" process at higher frequencies.
Typically, we expect frequencies of interest to lie in the
vicinity of the Fermi energy p~ep of the system, which
is large in relation to the maximum particle-hole energy
er, ——kvr; in the long-wavelength limit, k~0 (vrr p——r /m
is the velocity of a nucleon at the Fermi surface). Then
Lsee Appendix A, Eq. (A12)] for &v))~r„

gIIO(k, or) —g(mpr'/6n') (co&/co)
' = N(—k'/moP), (12)

where X is the particle density. This means that again

y (d)(~)~ ), 2/(~ 2+k2) (13)
with

positive. The last two conditions mean that

p'&
l
p=-k t'. &p" (16)

3Nmh' t' p &' (2pr /p„)

16rryg (pr j 1+(2pr/ri )'
(17)

Thus, 1/r displays the expected (p —pr;) ' behavior near
the Fermi surface. ~ There is one important remark,
however: When the coupling strength g)2 reaches its
critical value gX, given in (11),this expression diverges.
In fact, we shall show in Appendix D that the entire
derivation leading to Eq. (17) becomes invalid when
X&X,. The presence of a permanent density fluctuation
in the ground state then alters the behavior of the
integrand in Kq. (15) in such a way as to make 1/r
behave like (p —pr ) instead of (p —pr ) ' near the Fermi
surface. This result is of course unphysical, but it is an
interesting consequence of the instability of the ground
state against a permanent density Quctuation. However,
its eRects are confined to momenta near pr; only. For
larger values of p/pr the instability problem has a
negligible eRect on the value of 1/r.

IV. RESULTS AND DISCUSSION

It is not possible to carry out the integration over k
analytically in Eq. (15) for all values of the momentum.
We, therefore, have rewritten this equation in the form
displayed as Eq. (C4) of Appendix C, which form is
suitable for numerical integration. The value of 1/r
obtained is shown in Fig. 2 as a function of p/pr . For
this calculation, we have taken the previously deter-
mined value of the coupling constant ) '=5, that causes
the dipole state in nuclear matter to lie at the correct

"R. N. Ritchie, Phys. Rev. 114, 644 (1959).

which restricts the sum on k Lthe restriction is indicated
by the prime on the summation. sign in (15)], accord-
ingly. It has been shown by Ritchie" that the result
(15) is equivalent to calculating in second-order per-
turbation theory the total transition rate for particles
of momentum p and energy ep, creating two-particle-
one-hole states of the same total momentum and energy,
via the dressed interaction (3).

A form for 1/r that is convenient for its numerical
evaluation is given in Appendix C. However, for
momenta near pr; only low frequencies a& =a~ —e~ r,((e
enter into (15), and one might as a first approximation
ignore the frequency dependence in

~
cap+(k, co) P alto-

gether. This amounts to using the form (9) for Vq "'(0).
Then the sum on k in (15) can be performed approx-
imately, leading to the result
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I're. 2. Inverse lifetime for quasi-
particle excitations. Three upper curves
are labeled according to the interaction
that was used to ca)culate them. The
lower curve labekd 2'+ gives the
empirical estimate obtained from the
optical-model parameters vsed in Ref. 5.
The circles indicate older optica1-model
and/or theoretical estimates as given in
Ref. 4.

I.O

excitation energy, in addition to assuming p, = 135 MeV
for'j„the exchanged boson, and pl =1.36 fm ' as a
typical value for the Fermi momentum in nuclear
matter.

We have also calculated the contribution to 1/r
coming from a single "bubble" in the chain of Fig. 1(c),
i.e., the second-order perturbation-theory result for 1/r
using the bare interaction X'Dl (&v) instead of the dressed
one. If the static limit of the bare interaction is used,
X'Dl, (0), it is possible to obtain an analytic form for 1/r
for all values of p/p~. However, the result is too com-
plicated to reproduce here and is therefore relegated to
Appendix C. For p near pl, however, this expression
reduces to that given in Zq. (17) with p, and X, re-
placed by their "bare" values p, and ) . Using the values
quoted above for ll, X, and P~, one has

(1/r) b,~1084+/pl —1)' MeV

near the Fermi surface. The entire curve of (1/r)b„,
versus p/pl as given by Eq. (C9) of Appendix C is also
shown in Fig. 2.

A conlpallsoll of 'tile 'two calclllRtlolls of 1/r fol' the
bare and dressed interaction shows the extreme impor-
tance of using the latter at actual nuclear densities. The
effect of the polarization of the medium causes a reduc-
tion of 1/r of about a factor of 3 over most of the
momentum range shown in Fig. 2, By contrast, the
frequency dependence in. Dl, (&o) itself is not important.
The difference between a dressed static and dressed
nonstatic interaction is shown in Fig. 2, the dashed line
indicating where the nonstatic interaction gives results
that are distinguishable from the dressed static inter-
action. One also notes the expected (p —pl )' behavior
of (1/r) b .as opposed to the linear dependence of 1/r
on momentum near the Fermi surface. We have already
commented on the origin and unphysical nature of this
difference. We show in Appendix D that the influence
of the instabihty certainly becomes negligible when
p&42 pl.

Finally, Fig. 2 also shows some empirical values of
1/r Rs deduced from optical-model flttlng of experi-
mental data on nucleon-nucleus scattering, In order to
compare our calculations with the quoted values of 1/r,
two assumptions al'e llecessRly (i) 1/r as calcuia«d in.

nuclear matter can be compared with the optical-model
absorption strength in the interior of a real nucleus.
This means we must only compare with the volume
absorption part of the optical potential. Then 1/r=
2UO, where Uo is the strength of the volume absorption
part. (ii) Since scattering experiments only measure
nuclear potentials at incident energies E;„,in excess of
the binding energy of the incident particle to the target
nucleus, we have to connect the energy ~~ of a nucleon
with momentum y in nuclear matter to E;, in some
way. Assuming that the average binding energy of a
nucleon in a real nucleus is 8 MeV and that ep =39MeV,
for nuclear matter, one has the simple prescription that

@+8+& or p/p g =[1+(8+8;,)/39@'. We
have used this prescription in transferring empirical
values of 1/r (which are given as a function of E;,) to
the momentum scale of Fig. 2.

The empirical data on 2Uo shown in Fig. 2 come from
two sources. The circles show early (~1958) values of
Bjorklund and Fernbach' found by optical-model 6tting
procedures and/or values of this quantity calculated
according to the phase-shift prescription of RiesenfeM
and Watson. '4 These values are to be contrasted with
the recent extensive analysis~ of neutron-nucleus scat-
tering data by Kngelbrecht and Fiedeldey, who And a
considerably smaller value for the volume absorption
strength (the curve marked 2UOEr).

The calculated and empirical values of 1/r are seen
to be in rather good agreement, especially as regards the
older values from Ref. 4. However, in making this
comparison one should always bear in mind that the
calculated, curves do not yet contain the contribution

~4%. S. Riesenfeld and K. M. Watson, Phys. Rev. 102, 1157
(f956).
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from multiparticle excitations that certainly must enter
the picture also. One notes in particular that: (i) The
shape of 1/r as a function of momentum is well repro-
duced"; (ii) the calculation using the bare interaction
is entirely inadequate. This latter result suggests that
the dressing processes are likely to also play an impor-
tant role in real nuclei and require careful consideration
in any attempt to calculate the optical potential for a
finite system of nucleons. For example, within the
framework of the shell model for nuclear structure.

The qgaBtative nature of these calculations should be
reemphasized. We have only considered the exchange
of a neutral scalar meson for illustrating the program in
the present paper, and our results are phenomenological
to this extent. The reason for this restriction has been
discussed in Sec. II. More realistically, one would want
to consider the exchange of pions, which are pseudo-
scalar. But then it becomes essential to also consider
the exchange of heavier mesons such as p, co, g at the
very least, in order to reproduce the correct saturation
properties for the ground. state of "nuclear matter. "
This can be done relatively easily within the conhnes
of the present model, and further investigations along
these lines are planned. An indication that such calcu-
lations would be reasonable comes from the work of
Bryan and Scott" on static, one-boson-exchange models
for nucleon-nucleon forces. These authors show that the
exchange of these heavier mesons generates a short-
range repulsive component in the two-body force that
is necessary to fit the two-body scattering phase shifts.
Such a repulsive component in the eGective interaction
of our model would certainly favor saturation, although
it need not be its sole cause. The exchange nature of the
two-body interactions is known to enter the saturation
problem also.

Recently, Brown and co-workers" ~ have explored
the question of three- and four-body forces from a
meson-theory viewpoint. In particular, they conclude
that the effective mass of a virtual meson is essentially
unchanged by intermediate collisions with nucleons
and/or other virtual mesons. Our model has no direct
meson-meson interaction„but predicts the effective
meson mass due to meson-nuclear interactions to be
given by Eq. (10).The ground-state instability problem
unfortunately invalidates this expression for a coupling
constant value of )'=5 that is necessary to give the

"If the calculation of 1/r according to Eq. (15) with 6Rpg
given by Eq. (5) is continued up to very high momenta p 2m
where m is the nucleon mass, a large peak in 1/r develops. This
is brought about by the pole in Dl, (co,l,') = (copl, Ol, ) How-
ever, this pole and the associated peak are completely spurious.
The trouble develops because the nonrelativistic kinematics that
is employed in Eq. (5) for the nucleon motion is not valid near
p=2m. A relativistic treatment of the problem removes the
spurious pole.

'~ R. Bryan and B. L. Scott, Phys. Rev. 135, $434 (1964).
G. E. Brown, A. M. Green, W. J. Gerace, and E. M. Nyman,

Nucl. Phys. A118, 1 (1968).
'8 G. E. Brown, A. M. Green, and W. J. Gerace, Nucl. Phys.

A115, 435 (1968).

correct dipole state energy" in nuclear matter. Thus,
our model is as yet too simple to permit a quantitative
comparison with the results of Refs. 17 and 18.

APPENDIX A' SOME PROPERTIES OF
FUNCTIONS ppp(k, pp)

The function IIp(k, cp) is defined in Eq. (4) of the
text for real values of co. In our applications, we require
the function IIp(k, co+i'), where g is a positive infinitesi-
mal. This function may be written as

IIp(k, cp+iri)

Dcp pp cp ig) —+—(cd p),+cp+ig) j (A1.)
l p+&l&up&u

Both the real and imaginary parts of IIp(k, cp+ig) are
obtainable in closed form from this expression. We have

2'
ReIIp(k, cp+irj) = Q „',= B(k, cp),

II,+i,l&ug&u co I,i, co 2m

(A2)
where

Pp t'cp+kP/2m P
cp —cp&

4k k kpp cp+cp&

pF t cp k /2' cp —cp&—1 ln . (A3)
4k Ic kelp cp+cp&

Here, pi =pz/m is the velocity of a particle at the Fermi
surface, and cp&=kvp k'/2m, cp&=kpp—+k'/2m, the
latter energy representing the maximum particle-hole
energy for 6xed k. The imaginary part also follows from
Eq. (A1) on letting g approach zero. For positive cp

only the erst term in the bracket contributes, and

ImIIp(k, cp+ig) =~
II+~I&u~&~

5(cd —cp pg) =5 Sp(k, cp),

(A4)

where Sp(k, cp) is the so-called dynamic form factor for
the noninteracting Fermi system. Expressions for
Sp(k, pp) are given, for example, in Ref. 4. We specialize
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O

0.5

The latter expression leads directly to the result quoted
as Eq. (12), for

glis(k, cd) g(mpr/2s') (=-',) (kvp/co)'-'== =-iV(k'/mes'),

(A12)

since gPps/6m' is the particle density of a Fermi system
with momentum pp.

l.0
k/pF

2.0

those expressions to our case to find

0(co(co& and k(2pp

FIG. 3. The function B(k, 0) given by Eq. (A6) (solid curve)
compared xvith the quadratic approximation, Eq. (A7) (dashed
curve).

APPENDIX B: ANALYTICITY PROPERTIES
OF sap'(k, ss)

The causal dielectric constant" is given by Eq. (5)
of the text using the deiinition (Ai) for IIs(k, co):

capp(k, cd+irl) =1+gXsDs(cd)IIs(k, cd+iri). (31)
The attachment of iq to co causes the function &~pe ' to
be analytic in the entire upper half ~ plane. ~ This fact
is made use of in obtaining the formula (15) of Quinn
and Ferrell quoted in the text. It can be shown further
that ~apz is also analytic in the upper half co plane
provided that'

2x 2k (kvp 2 p capp (k, 0))0 for all k. (&2)

=0 otherwise.
i

cd& [ (cd(cd&
(A5)

The function B(k, co) has the exact value

B(k, 0) =-'+(1/4*) (1—*') ln. [ (1+x)/(1 —x) ~,

x=k/2p, (A6)

For the electron gas system, this condition is related to
the stability of the system against a background of
positive neutralizing charge. ~ It is interesting to see
that the condition (B2) relates to the stability of the
ground state of the nuclear matter system. To see this
note that

at co =0. 1VIigdalrs notes that B(k, 0) can be adequately
represented in the interval 0&x&1 by

B(k, 0)
(k, 0) 1 (83)

B(k, co) 1+(co/2cds) In
i (co—cds)/(cd+cds) i,

cds =ksp, k((2pp (A9)

that hold, respectively, for small frequencies but any k
and small momenta but any frequency.

Two further useful forms of Eq. (A9) are available if
cv and cvI, are very diGerent:

B(k, co) 1—(co/cds) ', cd«cds

B(k, co) —-', (cos/co) ', (A11)

rs A. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 i1958l t Errglish
transl. : Soviet Phys. —JETP 7, 996 {1938)].

B(k 0)~~1—-'x'=1 ——,'(k/pp)' (A7)

This expression was used to obtain Eq. (g) in the text.
The quality of the validity of (A7) is shown in Fig. 3
by comparing it with the exact expression (A6) for
B(k, 0).

Furthermore, B(k, co) possesses the useful expansions

B(k, ~)=B(k, 0) LI —(~/~&) (~/~)) ],
cd(( i cd&

i (cd& (AS)

where ), is the critical coupling constant defined by
Eq. (11) in the text. Now observe that the ratio
B(k, 0)/(1+4'/lc') is a monotonically decreasing func-
tion as k increases, so that (B2) will be satisfied for all
k if it is satisfied at k=0, i.e., if

sapa(0, 0) =1—(lt /'ho )B(0~ 0) &0. (B4)

Since B(0, 0) =1, this means that the condition (B2) is
satisfied for all coupling constants below the critical
value ),. For ) &)I„ the ground-state stability and the
analyticity of e&p+ are violated simultaneously; one
might think of the system as "over reacting" to an
external applied applied field in this case and acquiring
a permanent density Quctuation in the ground state in
the process.

APPENDIX C: EXPLICIT FORMULAS FOR
INVERSE QUASIPARTICLE LIFETIME

(a) For the dressed interaction, we replace ir by —k
in Eq. (18) of the text and go over from a sum to an

"The analogous expression to (81) for capp for an electron
gas is given for example in Ref. 7. We take this opportunity to
correct a misprint of an over-all factor of ~ that is missing from
the center expression in Eq. (5.63), p. 287 of that reference.
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p,'Db(~) ][angl'k'dk d( o8 ) [1+ 1, D( )( p /2x)~(k, )]+[
2 2

~
—2—

(2x)' o

s inte rated numerically to o " '

static interaction case
of the factor

~

C1)];sobtained upon suPP'es"o"

(b) For the bare interaction (static) ~

e ual to unity
sin Db(0) in Place o ~( )

( dk k2D'(0)
2Tl bare x 0

Here 0 ~eprese~ts the angle betwween the variable
k and the fixed vector y that serves as a polarvector an e x

e restrictions on k
b the rime on the

f r the integration over . e res ri
d th variable cosg„b (indicated y p

'

second. integral sign) are best appreciate yted b looking
at Fi . 4. Since [Eq. (16) with k= —]at ig.

p'& lp+I I'&p.', ( )C2

of the vector k must alwayss lie in thethe extremity o
dii and ~+ that share are ion between two spheres of raun p~ an

varying from —k/(2p) to either —(p' —pp'—
'f — (k(p+pp, or —1 if 0(k(p —pp.

Intro ucingd
'

the dimensionless variables

x=cosg„b, y=P/Pp, s=k/P~;

n=ii/ ~. p=pp/2m; y=g)P/167rp, (C3)7

the expression for 1/r becomes

2Ã max f I'I—&2—z2) ~2yz, —I)0

d(cosHyb)SO(k ep tp+b' Cs

est erformed by shiftingThe integration over cose„~ is es p
to the variable~ "

(u'= ~ —~ +i, —— [k'/—2m+ (Pk/m) cos8„b],p p+~

from which it follows that d(cos0„b) = — P= —m k) da)'.

The angular integral then reads

+ max

d(a'Sp(k, o)') . (C6)
k

~ ~(2x)- fdk. Then
' t gral by the usual replacement ~a

X P's'(s+2xy) ' o." s—'+ ——B(x, y, s)
in back atTh.e va Ue 0 co max af '

gain depends on k: Look g
Fig. 4, we find

+ (*»» ') ( ) ~',= (pk/m) —(k'/2m) if 0&k&p —p&

where the limits are now explicit. TThe functions 8 and
C are

=6p —6P if p —pp(k&p+pp.

(C7)
1+*y

B(x, y, s) =-', +(4s) '(x'y' —1) ln e of co', exceeds theIf k&p+pp, the resulting value o co'

1+xy+s—(4s)—'[(s+xy) '—1]ln

C(x, y, s) =x(gX'/Pp') So(k, ep —ep„b).

Using Eq. ~~(A5) the function C has two forms depend-
in on whether s is less than or greater than 2. For (
C(x, y, s)

= (y/s) [1—(s+xy)'] if —(1+s)/y&x& —1 y
= —p(s 2xy) if —1/y&x& —s/2y

=0 otherwise,

while for s) 2

C(x, y, s)
= v/s) [1—(s+xy)'] if —(1+s)/y&x&(1 —s)/y
=0 otherwise,

LL
LV

1
10-

O
CAI—
K

X

o 0,5x
8
IL
Li

2.01.5
l

0.5 1.0

klan

as given by approximation, q.II E.
(D5) Th d h d

(k) Th toff
f — that is considered in the

the exact function co, . e
nd a t ical value o e~—ep a i

d (Dj.o) are indicated.derivation of Eqs. (D9) an
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maximum particle-hole energy &a& and So(k, a&') vanishes
accordingly. Therefore, we may write

~',„=co', (k) = min(e„—ep, kp/m —k'/2mI (CS)

for the upper limit in Eq. (C6) .
The region of integration covered in Eq. (C6)

depends on p and k. Since So(k, 40') has a different
functional form depending on where co' lies, the condi-
tions on &u' in (A5) are superposed on the conditions
(CS), and so one finds that the integral (C5) has a

different functional form in the three regimes (i) pp&
p(v2pp, (ii) V2pi (p(3pi, and (iii) 3pp(p of the
momentum p. We write

(C9)

The function I(p/pp) is given by the following forms

(measuring p and p in units of pp):
(i) 1&p(V2, I=Ii(p). Define p» ——1—(2 —p')'I' and

p&
——1+(2—p') '".Then,

1 (1+Ai') (P —1)
(P) i P& 2,+( 1),

1(P'—1)' P& P& 1 (P' —)'+-
a'+P&' w'+P&' 24

1 1 1 1 1 2 1 1
X + +-, +,

P P& P+1 P 13—p'+4 I"+P&' i"+P&' p'+(P 1)' i—"+(P+1)'

P+1 2 1 (P' —1)' ~ (P'-1) (P'+3)
16 p'+ (p+1) ' '+4 3 p4

1 2

16 i4'+4
P& P& (P —1) 1 (P' —1)'+ (P' —1) (P'+3)

i'+p&' i'+p&' I"+(p 1)'—
~ ii'+4„, P —1 1(P'—1)', , P& „,P& 1 (P' —1)' (P' —1)(P'+3) P'+3

, P+1, 2 1 (P'-1) ' (P'-1) (P'+3) 5 P'-
X tan ' —tan ' — +I—,+, + +i4

p p 16 p' p p

tan —1 tan —1 tan —1 tan —1
~

(ii) v2(p&3. Let I=I~(p). Then,

1 (p' —1)' 1 1 1 1 1I (p) =I (p) -A(p —p.) ——
24 p p& p& 3 14+P& P+p&~

P& P& 1 (P' 1)' (5 P') (P' 1 &')+ —ki'
16 v'+p&' 4'+p&' p

, P&, P& (P' —1)' (5 P') (P' 1+4')— —
tan ' ——tan ' —,+, +p

16 p, p p p

Finally, (iii) 3(p, I=I8(p), where

1 1
I4(p) =- ——— +-

3 4'+(p+1)' 4'+(P —1)'
1 (P'-1)'

12 p4

p+1 p —1 "1 (p' —1)' (p'+3) (P' —1+~')+- +- + Si4
16 i4'+(A+1)' i'+(P —1)'

1 1 —1 ' '—1 ' '13 '—1—p' 1 p,
' 4 2

A test for the correctness of these expressions is provided by the fact that they join smoothly at p =&2 and p =3.
Equation (C9) with the appropriate form of I(p) was used to calculate the uppermost curve in Fig. 2.
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APPENDIX D: EFFECT OF AN INSTABILITY IN GROUND STATE ON QUASIPARTICLE LIFETIME

We return to Eq. (C1) of Appendix C and evaluate 1/2 near the Fermi surface. As in Eq. (C6), we transform
the integration on cos8~2 to one on the variable tu' introduced there. If P~P2 the upper limit on pu' is always the
(small) frequency pp

—pu [see Eq (.C7) j, and so one has

m)~
T 1~

22r 2'

s gX2Sp(k, pr')

[Dp '(pu')+gl12(mP2/22r2) B(k, tu') ]2+[urg712Sp(k, tu') j' (D1)

The co' integration may now be performed by evaluating the integrand at some average value co lying in the interval
0&co&@—ep and multiplying by Ep 6p Thus,

nsX' kg
6y 6P

21I P/p p

~gli'Sp(k, ~)
kdk

[Dp
—'(tu)+gl12(mpu/22r2)B(k pI)]2+[urgVSp(k pu) j' (D2)

approximately. Since Sp(k, pI) tu pp
—pu, this equation

ordinarily leads to the usual result that 1/2 (pp p/)'—
or ~(p —pu)' for p near p/. However, this conclusion
is invalidated if the ground state is unstable with
respect to a permanent density fluctuation, as we now
proceed to demonstrate. The point is that such an
instability is always accompanied by a zero' of

Dp-'(pi)+g)2(mp//22r2)B(k pI) (D3)

at pi=pI, (k), say. The "instability root" pu, (k) always
lies below the frequency pu& ——kpu —k'/2m in any event. '
However, our interest is in regions of k where pI, (k) pi,

i.e., where pi, (k) is a very small frequency. Then Eq.
(AS) can be used to obtain a qualitative idea of how
tu, (k) depends on k in such regions. Combining (D3)
and (AS), one finds

1+k2/~2 1/2

tu, (k) (p/&pu&) '" 1—n2
B(k, 0)

1+k2/~2 1/2~ (p/&tu&) 1—12
& (D4)

the latter form making use of the approximation (A7)
for B(k, 0). The function (D4) is shown in Fig. 4
labeled as approximation II. Comparison with the
exact upper bound pu& (dashed curve) shows that Eq.
(D4) is a tolerable approximation for k&1.4p/ up to a
cutoff frequency

(1 ~2) 1/2

[set gX'=20 and calculate g'A, 2= 1.42 from Eq. (11),so
that /2=0. 071].Since tu, (k) pu& near k=0, Eq. (D4)
is numerically unreliable for small wave numbers. How-
ever, the qualitative conclusion pu, (k) kpu that it leads
to is correct as we now show. Since small wave numbers
are at issue, we use the approximation (A9) for B(k, tu)

instead in Eq. (D3) to find that

pu, (k) kpp tanh[1 —I22(1+k2//12) g (D5)

or tu, (k) =0.73k2I/ near k=0, if a=0.071. Therefore,
approximation II is still qualitatively correct near k =0,

The function (D5) is also shown in Fig. 4 as approx-
imation I. It is of course only numerically reliable for
k((2pu.

Figure 4 shows that if the energy difference e~ —ep&
p/&, both zeros of pI, (k) = pp

—p/ occur in the integration
over in Eq. (D2). To see what effect this has, rewrite
Eq. (D2) in the form

1/2 = (Xpm/22r2P/p) (2„—2/ ) Xintegral,

where

(D6)

integral = urgX2Sp(k, pu)

$2[p/2 ~ 2(k) ]2+[~gg2S (k ~) ]2 ~

(D7)

This is much smaller than the integration interval
4pu (p, /4pu ~10 ) because of the controlling factor
(p —pu)/k, . The width at the other root of tu=tu, (k)
gear k =0 is, by contrast, of the order of tQe int:erval of

using the abbreviation $=/12B(k, 0)/n2p/&tu& We n. ow
proceed to show that this integral is approximately
constant instead of varying like e~ —e&, if the system
possesses an instability. The main contributions to this
integral come from values of k where pi, (k) =pu, which,
for small ~e~—eg a,re either k 0 or k~k, . Let us
obtain the contribution from the region around k, 6rst.
To this end, expand as follows:

tu2 —tu, (k) '~~—(k' —k,') (Bpu, '/Bk') 2
——(1/&) (k' —k,') .

The last step follows after using Eq. (D4) for p1.2(k).
Hence, the:integral in (D7) becomes

urg) 'Sp(k, tu)

(k' —kP) 2+[urgX2Sp(k pu) j' DS

if the integration is performed approximately by allow-
ing k to range from —pp to + pp. This is permissible,
since the integrand in (D8) is a Lorentzian (in k' space)
with a half-width

y.2 =22rgX2Sp(k. , p/) =F2 —— F2
m tu mpp p —pp1

2ur k, 22r k. j
(D9)
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integration,

yo' gX'(mph/2~) 4pi, ", (D 10)

since a&. (k)/k~v~ is independent of k in this limit.
Therefore, only the region around k=0, contributes
significantly giving a factor —,7r according to (D8), so
that

1/r (X're/27r'pp) (ep ~p) ', m--

= (l~2/4n-) (p —pi;), or 113(p/pi; —1) MeV.

(D11)

The above estimate compares favorably with the value
144(p/pp —1) MeV obtained by numerical integration
of Eq. (C1) near p= p~. This agreement indicates that

the interpretation of the origin of the unphysical p —pp
behavior of 1/r near the Fermi surface is indeed correct.

As e~ —e~ increases, Fig. 4 suggests that the ratio ~/k
increases; the widths p' grow and the instability becomes
less important, until at e~—ep = (~&),„=e~ or p =&2p~,
when the equation &v =co, (k) certainly has no real roots
any more, and the effect of the instability becomes
negligible.

Finally, we remark that variational treatments of the
unstable ground state have been devised" that remove
the instability. What role, if any, the root co.(k) has
when this is the case has not been investigated yet.

"K. Sawada and N. Fukuda, Progr. Theoret. Phys. (Kyoto)
25, 653 (1961); C. 3. Dover, Ph. D. thesis, Massachusetts
Institute of Technology, 1967 (unpublished) .
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The width of the 3.68-MeV level of C'3 has been measured and found to be I'=0.44~0.04 eV. After cor-
rection for the E' dependence, this is 0.59 times as strong as the mirror trans'ition in N", in agreement with
Morpurgo's prediction of approximate equality for 351, AT=0 transitions in mirror nuclei. The C" width
was obtained from a comparison of the resonant scattering of bremsstrahlung by C" with that by the 3.51-
MeV level of P" and the 3.56-MeV level of Li'. The widths of the P" and Li' levels were measured in self-
absorption experiments, and found to be 52&8 meV and 8.1~0.5 eV, respectively. A limit on the energetically
allowed but spin- and parity-forbidden decay of the Li level to n+a was established as F &&1.3 eV.

INTRODUCTION

~ ~HE rules of Morpurgo concerning the relative
strengths of y transitions between corresponding

states of mirror nuclei follow directly from charge
independence or charge symmetry, ' ' principles so well
established on other grounds that the rules seem to be
referred to most frequently when used as an aid in
correlating mirror levels, with no great experimental
effort being devoted to their verification. It would seem,
however, that any experimental results might challenge
the theorists to construct more accurate and detailed
wave functions. AVe have previously shown, ' for example,
that corresponding E1 transitions in C" and N", which
should be equal, according to Morpurpo's predictions,
differ by a factor of 2. This difference is qualitatively
understandable, but would seem to be worthy of a more

' ('. 51orpurgo, Phys. .kev. 114, 1075 (1959).' W. M. McDonald, in Nuclear Spectroscopy, Part 8, edited by
F. Ajzenberg-Selove (Academic Press Inc. , New York, 1960) .' S. W. Robinson, C. P. Swann, and V. K. Rasmussen, Phys,
Letters 268, 298 (1968).

detailed study. YVarburton et a/. 4 discuss a similar case
in N"-0".

The subject of the present paper is an 3II1 (AT =0)
transition in the C"-N" pair. Here Morpurgo has shown
one can deduce both the isospin-independent and the
isospin-dependent parts of the matrix element from
comparison with experiment.

Our measurements are concerned primarily with
using resonance-fluorescence techniques to measure the
width of the 3.68-MeV level of C". Since samples of C"
large enough for a self-absorption measurement are not
easily available, the scattering was compared with
scattering by the 3.56-MeV level of I.i' and the 3.51-
MeV level of P", for which accurate widths could be
established by self-absorption measurements.

EXPERIMENTAL DETAILS

l. h.e 1)hoton beam for ol.ir resonaiice Huorescence
iiieasurenients is produced when the electron beani

4 E.K. Karburton, J.W. Olness, and D. E. Alburger, Phys. Rev.
140, 81202 (1965).


