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A formula for the differential cross section of bremsstrahlung is calculated with the aid of
Sommerfeld-Maue eigenfunctions, i.e. , under the assumption of a pure Coulomb field and low

atomic numbers (eZ«1). This expression is valid for all energies of both electrons and

photons, and it is shown that the previously well-known formulas of Sommerfeld, Sauter,
Bethe, Heitler, Scherzer, and Bethe and Maximon are contained as special cases. Hence
this cross section is correct for high electron energies and, apart from a small spin cor-
rection, for nonrelativistic energies even if 0,'Z«1 is not satisfied. The formula has been
programmed, and in addition total cross sections have been obtained by numerical integration
over the angles of the emitted electrons and photons. Comparison with the Born approxi-
mation allows derivation of the Coulomb correction. Several cases of interest are compared
with experiment, in particular the elementary bremsstrahlung process itself, for which

experimental results are now available.

1. INTRODUCTION

The theory of bremsstrahlung has been the sub-
ject of a large number of papers in which various
energy regions and different types of approxima-
tion for the interaction of the electrons with the
atomic field have been considered. Whereas
presently at any rate the interaction of electrons
with the radiation field can be treated only by
perturbation theory, their interaction with the
field of the atomic nucleus can in principle be
handled rigorously. In the latter case one uses
as eigenfunctions for the electrons the exact
Coulomb solutions for the nuclear electrostatic
field, such that these solutions correspond asymp-
totically to plane waves and incoming or outgoing
spherical waves.

Actually this treatment amounts to summing
over all (infin-itely many) Feynman graphs repre-
senting the interaction of electrons with the nu-
clear field. In this way Sommerfeld' was the
first to calculate the matrix element with Schro-
dinger eigenfunctions for the nonrelativistie case.
For the relativistic energy domain it is also pos-
sible to use the same method at least in principle,
but so far exact solutions for the Dirac equation
including the Coulomb field with the above bound-

ary conditions have only. been found in series
form as a summation over quantum number l. '
Because of the large number of summands ap-
pearing in the matrix element, it would be ex-
tremely troublesome to perform these calcula-
tions numerically.

In fact, Sommerfeld and Maue' have already
given a relativistic eigenfunction which is correct
up to first order in o'Z. Using the Sommerfeld-
Maue eigenfunction, Elwert4 first calculated the
matrix element of the elementary process of the
x-ray emission. His result was only reported4
but not published in detail as the evaluation of the
expression obtained was then (1938) too compli-
cated to be performed. In the present paper we
further develop the above expression for the dif-
ferential cross section and apply it for various
cases of interest. We obtain the formulas of
Sommerfeld, ' Sauter, ' Bethe and Heitler, ' and
Scherzer' as special cases.

The theoretical differential cross section is
compared with new coincidence experiments. The
differential cross section has also been integrated
numerically over the direction of the outgoing
electrons and photons to obtain several compari-
sons between theory and experiment.
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2. CALCULATION OF THE DIFFERENTIAL
CROSS SECTION WITH SOMMERFELD-MAUE

WAVE FUNCTIONS

According to the usual Feynman-Dyson formula-
tion of quantum electrodynamics, for the pro-
cesses in which an atomic field plays a role the
interaction of the electrons with the radiation
field as well as with the atomic field should be
considered as perturbation. In the case of brems-
strahlung, the lowest-order graph corresponding
to the first Born approximation is then of second
order. If one incorporates, on the other hand,
the interaction of the electrons with the atom in
the unperturbed Hamiltonian, the lowest-order
graph is of the first order only. This amounts
to summing over infinitely many Feynman-Dyson
graphs corresponding to the interaction of the
electrons with the atomic field to any order, but
with the radiation field to the first order only.
This equivalence is shown in Fig. 1 in which the
left graph represents the first-order matrix ele-
ment calculated with the aid of the eigenfunctions
of the Hamiltonian mentioned above. The double
lines in Fig. 1 are used to denote electron prop-
agation in the Coulomb field. This treatment
corresponds to Furry's' extension of the Feynman-
Dyson formalism by including the external poten-
tial in the field variables (Furry picture).

The Dirac equation for an electron in a Coulomb
field of a nucleus with atomic number Z is

(i n V —P+ e + a/r)+ = 0,

where & is the total energy of the electron in units
of the rest energy mc', a = nZ, n= e'/Sc (Som-
merfeld's fine structure constant), n and P are
the Dirac operators, and r the electron coordinate
in the units of fi/mc. With this notation the Som-
merfeld-Maue function has the form

e = Pre'P [1 —(2/2e)n ~ V]

tron with momentum p. Asymptotically for large
x, +SM behaves like a plane wave plus an out-
going spherical wave. It agrees up to the first
order in &Z with the exact solution of the Dirac
equation. Comparing 4SM with the exact Darwin
eigenfunction, Bethe and Maximon' could show
more precisely that all partial waves with l'
&& a Z are represented correctly.

The matrix element for bremsstrahlung, incor-
porating the interaction with the radiation field to
first order, is

M=CJ+, (n'e )e 4,di, (3)

In our approximation +, is given by the Sommer-
feld-Maue function (2a). 4'2 has to behave asymp-
totically like a plane wave plus incoming spheri-
cal wave, 'y" so we have

@2 =u (p2)N2e
'p' [1+(i/2e2)n ~ &

xF(iae, /p„' 1;ip22'+ ip, ~ r). (2b)

Substitution of (2a) and (2b) in (3) gives

M=Z[u (p, )n e u(p, )f,

+u (p, )(n e )(n ~ f,)u(p, )

+u (p, )(n ~ i,)(n ~ e )u(p, )

+u (p2)f»u(p, )],
where we used the following definitions:

where C= —eK c(2 v/ mc'fi)'". (4)
The subscript 1 refers to the incident electron,

and the 2 to the final electron; k is the momentum
of the outgoing photon in units of mc; and e its
polarization vector; the photon energy is

x F(i /pa;e1; ipi ip ~ r) u-(p). (2a)

Z= (fi/mc) 2cfi, iV,*,
ai aei/Ply a2 ae2/P21

(&)

(S)

Here p is the momentum of the electron in units
of mc, %is a normalization factor, I' is the con-
fluent hypergeometric function with the indicated
arguments, and u(p) is the spinor of a free elec-

f, = fe ~ F(ia„1;iP2r+ip2 ~ r)

xF(ia„'1;ip, i.- ip, ' r)d'r,

I, = — Je F(ia„'1;ip,r+ip, r)

+ ~+~ x[&F(ia„l;ip,i - ip, r)]d2r,
~ M

— J e [&F(ia» 1;iP2r+ ip, r)]

(10)

2. order 3. order xF(ia„'1;ip,r ip, r)d'-2',

FIG. 1. Bremsstrahlung graph of the Furry picture
and the equivalent sum of Feynman-Dyson graphs.

~ ~
I»= J e [n TF(ia» 1;ip22"+ ip, .r)]4 4e,e,
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X n ~ e*[n ~ &F(ia„1;ip, 2 - ip, ~ r)]d'r,

q=p, -p, -k
(i2)

(12)

The integral I, is proportional to (nZ)'. Besides
the part of the matrix element containing I„other
contributions of order (nZ)' have to be considered
for large Z, which result from higher-order
terms of the correct wave functions. Since these
integrals cannot be calculated generally, it is
consistent to leave out the contribution due to I4,
that is, the resulting cross section holds for
small atomic numbers Z. Bethe and Maximon'
have, however, shown that I4 and the other terms
of higher order in aZ are negligible for energies
large compared with the electron rest energy,
and for small angles. Hence the cross section
is valid for all Z in this case. In addition, Som-
merfeld's formula for the nonrelativistic energy
range can be derived from the cross section
given in this paper (cf. Sec. 4). With a purely
electrostatic potential the term due to spin-orbit
coupling is of relative order P&Z. " Thus the
spin-effect correction to the nonrelativistic cross
section is small for p, «1 even if Z is large.
Therefore for large nuclear charges the neglected
terms of the matrix element are expected to be
important only at intermediate energies. The
integrals I„ I„and I, have been evaluated by
parametric differentiation of one scalar integral
which can be computed exactly & "; one obtains

After summing the absolute square of the matrix
element M over the spins of the final electron
and the polarization directions of the outgoing
photon, and averaging over the spins of the inci-
dent electron, one obtains

II, I2 e e2 —1—1 1 2 p2

+ (Il, I'+ ll, I') &,e2+ 1+—

—2Re ', -' - (e,e, +1+p, p, )
I2 k I3 k

+2Re (i*-i*) —' P' -- -p~

+2Re(1, p, I2 ~ p2 —1,* ~ p, f ~ p )

P2+2&, Be I,* I3 p, —~

I, kp, k
+2&2Be I, I, p, ———

+ 2 ReI 2
' I 3 p1

' p

f, =2Z, [e2(A, -E,)-e, (A2+a2)],

i, = IC, [qA, + (P/P, + q)a, ],
i, = ff, [qA, + (p/p, —q)E,],

where we used the notations

V- ia, (1 —x)W V- ia2(l —x)W1Dq2&2Dq2

(i4a)

(i5a)

(16a)

This formula has been derived by Elwert4 in
1938. The cross section is given by

do= (22/S)(e /p c)dp MIMI',

in which the density of the final states is

(me')'
dpf =(2 @ ), p2 2d p2k'dA dk.

(26)

(27)

ia, W

D,D2'

D, = 2(e, l'2 —k p, ),

P1P2 P2P1 0

ia2 W' DD'
1 2

D, = 2(&2k —k p, ),

(iSa)

(19)

(2O)

de and dAy are infinitesimal solid angles
around the vectors p, and k.

Normalizing the asymptotic expressions for g,
and g2 to unit amplitude, we have

and
2 —2 7Fa1

IN, I
= 2', /(1 —e ') (26)

Z, = 4vae '(q'/D, ) '( '/D, )

t/' and W are the hypergeometric functions

V=,F,(ia„ia„' 1;x),

W= 2F, (1+ia, &
1+ ia2; 2;x),

(21)

(22)

(29)
2 —27)a2

and IN, I
= 2va2/(1 —e ') .

Substituting Eqs. (4), (7), (14a), (15a), (16a.),
(21), (25), and (27)-(29) in (26), we obtain for the
differential cross section of bremsstrahlung

and p = (p, +p, ) ' —u'.
where x = 1 —I2q2/D, D2 (23)

(24)

s 2@a
2 Pale ' —1 1 —e

&0 ~Z2~P
—2 7t'a2 P p1

All the integrals considered [Eqs. (14a) to (16a)]
are of the order nZ. Thus the corrections to the
matrix element M and to the cross section, due
to the neglected terms, are of relative order aZ.

kdf2dQ dQ [E IA I'+E
P2 1

—2E Re(A*A ) —2F Re(A*B)
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—2' Re(A*B)+ Ii I BI']. (so)

In this formula the classical electron radius
r, = e'/me', and the following definitions are
used:

B =iaW/D, D, ,

2k'
=(4@2—q')q +

D (q) + ) 2 +8k' 4D2~
1

B, = (4 e,e, —q')0, ~ )1, + 2D, ( q, ~ j, —q, ')

'
+D,(6,' —n, 0,) + 2k'(0, 'q, + 1);

~, =kp(n, '-~, ~.)

+ K[k ' pk(pk
'

p~
—k ' p2+Pp ) + 2k ]

—(~P,p, —2k/p, )(k p, +k p, —k'),

~, =kp(n. '-~, ~.)

+ ~[k ~ p, (p, ~ p, +k ~ p, +P,') —2k']
(32)

—(~p, p, +2k/P, )(k ~ p, +k ~ p, +k'),
2 2

F= k' k P~ kP2 Pi -P
P P P'P'

x (P,'-P ' k p, k p, )) —kk'p';

j, = p, x k/k, j, = p, x k/k,

(18b)
2k'

k, =(4k.'-P')P, ' ~ ( p (P.' () P,
'

Pk P-)P, ,
2

(31)

p, =p,lsin8, cos(t)„sin8, sing„cos8, j,
p, =P,(sin8, cos(t)„sin8, sing„cos8,],
k=klO, O, 1],

(s4)

and the scalar and vector products by

Px ' P2 =P ip2

x [cos8,cos8, + sin8, sin8, cos(f, —Q, )],

k py kpy cos 6y& k - p, =kp2 cos 82

(p, xk)2 =k2p, ' sin'8, ,

(p, xk)' =k'p, ' sin'8, ,

and the elements of solid angle by

d'o. is the probability that an electron of energy
c, is scattered in the direction of p„and at the
same time a photon is emitted in the direction of
k with the energy k = e, —e, (elementary process
of bremsstrahlung production).

The above formula for d'o imitates Sommer-
feld's nonrelativistic cross section which also
contains the quantities A, and A, . So the transi-
tion to the nonrelativistic limit can be achieved
in a particularly simple way. The other possible
ways of writing the expression (30) using dif-
ferent parameters are more extensive.

If we choose a coordinate system such that its
~ axis has the direction of k then the vectors p,
and p, can be represented by

j, ~ j, = (p, x k) ~ (p, x k)/k

=p, p. -k p, k p. /k';

)(=e, /p, +e, /P, , p= 1/P, +1/P, .

(33)
dA =sin8 d8 dq), dA =sin8 d8 dP . (36)

P2

Because d'o depends only on the difference (t)

= P, —P, of the azimuthal angles, the later inte-
gration over (t, gives simply a factor 2w.

3, BETHE-HEITLER-SAUTER FORMULA (FIRST BORN APPROXIMATION)

In the case of low atomic numbers Z and sufficiently high energies 6, and &„ that is, for a, «1,a, «1,
we can approximate V=1, aS'= 0, and put

[2wa, /(e ' —l)][2))'a,/(1 —e ') ]

approximately equal to one. Then we obtain

&, =1/D, q', A, =1/D, q', B=0,

and the cross section is

(37)

d'cp = (r '/m')o(Z'(P /p )q 'kdkdQ d 0 [(ql'/D ')(4e -' —q')
k P, 1 1

+ (n.'/D. ')(«,' —q') —2(6, ' i./D, D.)(4e,e. q') +(2k'/D, D.)(—6, —6.)'] . (ss)
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This is the bremsstrahlung cross section as calculated by Sauter' and Bethe and Heitler' using the first
Born approximation. If one introduces the coordinate system of Eq. (34), one obtains an expression
which can be integrated over the solid angles dQp and dip in closed form. If the electrons are of high
energies and [ q ~ is not near its minimum value, the expression (38) is in good agreement with (30). In
the short-wavelength limit (e, = l,p, =0) contrary to Eq. (30), the expression (38) gives zero intensity.

4. NONRELATIVISTIC APPROXIMATION

The differential cross section for bremsstrahlung in the case of nonrelativistic energies can be obtained
from Eq. (30) by taking the following limits:

P...-P...«I, I - '()3,'-P:-), I -(P, +P.)'

Here P, and P, are the electron velocities in the initial and final state respectively in units of the velocity
of light. Neglecting terms of the order P' compared with unity, we obtain from Eqs. (30) to (33)

2))a/P) 2wa/P, r,', ~P dk 1

x~ —' ' )'-~ —()- )))' —~ ' )'-) —))-x)))')~P, peak . g P p xk . a
S, pp p, S, pp p2

S, = 1 —k ~ p)/k= 1 —P, cos8„ S,= 1 —k ~ p, /k = 1 —P, cos8, (41)

I', 20 SQ SC Q'W=E
p

+1
1 2 1 2 2 1 2

(42)

Equation (40) agrees with the cross section for bremsstrahlung of nonrelativistic electrons which has
been calculated with Schrodinger eigenfunctions taking retardation into account. Neglecting, in addition,
terms of the order P compared with 1, one gets 8, =8, =1 and obtains

2))'a/p, 2))a/p, r, ' &, p, dkd& d&
1

x~P, ' (V-f—(l-x)W)-P, ' (V-I—(I-x)W)~2.p~Xk . Q p2Xk . a
(43)'pk P, p, k P,

This equation corresponds to Sommerfeld's method of matrix elements M = Jg, r)i), d7' in the earlier non-
relativistic calculation without retardation. '

5. THE SHORT-%WAVELENGTH LIMIT

In the short-wavelength limit of bremsstrahlung, the photon receives the total kinetic energy E, of the
incident electron, and the momentum p, of' the outgoing electron is zero. Then it follows that

q -D„D, 2k, JL(, 2A. (44)

Further a, = ac,/p, goes to infinity and x= 1 —i), q'/D, D, will be zero; because a,x remains finite, the hyper-
geometric functions V and W become the confluent hypergeometric functions Vo and 8'o

V =,E)(ia„i Ia; )-xVo'= E(ia„' I;fk),

W=,E,(1+fa„ 1+ fa» 2; x) -Wo= E(1+ia» 2; i$))

llm Q2x= g 2
q'p2 kp2

One notes that the cross section depends on the direction of the outgoing electron, although it has zero
velocity. Since some of the quantities in Eqs. (32) and (33) tend to infinity, we expediently do not use
formula (30) to perform the limit p, -0 but go back to Eqs. (14a) to (29). From (14a) to (16a) we get
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I = lim I =—1 —-~ (V —ia W)+e 'iaW
K' 2 k ~ p2.

10 1 q2 q2 y 0 1 0 1 y2p 0

p 0 2
(14b)

I,0= lim I,=, q(V0 —ia, W,)+ —+ — q iaW0
k ~p k p,

p 0 " — Pl P2 P22-

and
K q k pI = lim I =~ —(V —ia W )+~ —+~ iaW20 2 q2 g 0 1 0 2y p p 0

p, 0 2
(15b)

Substituting these expressions in (25), we obtain for the differential cross section at the short-wavelength
limit

Y2

e,2+&, +2 (p, xk) ~ (p xk) k' k. p, (p xk)' 2' k'p k

+ 1+——k ~ p au, 5' —ImVW

+ (2e ' —0) p' + '-(p xk) (p xk)-p — ' p2+p2 a2~W ~2
1 pQ $2p2 1 2 pp 0

Putting a, «1 and neglecting terms of order a,' in the bracket of d'o0, one obtains

2
d' = ' 2Z2 ' ~' —+0 —1 dkdQ did

0 m 2', 1 kp, q0 q' k p,

This formula can be derived from the expression given by Scherzer' for the radiation intensity at the
short-wavelength limit if one sums over the bvo directions of polarization.

The argument x of the hypergeometric functions V and 8' is never positive. It is equal to zero at the
short-wavelength limit as well as for

e, (e, —p, cos8, ) —p, (e, cos8, —p, )
(e, —p, cos8, )'+ p,' sin'8,

Ix) is large as compared with unity on the following conditions:
(a) At the long-wavelength limit (p, =p» f2«p2) except q —qmin= p, —p, —k.
(b) At high electron energies (&, »I, e2»1) except q=qmtn.

In both cases we have a, =a, . The case (b) was investigated by Bethe and Maximon. 2 Now we suppose
Ixl »1 in general. It is then convenient to make use of the following transformation for the hypergeo-
metric functions:

V=,E,(ia„ia„1;x) =—(1 —x) ',E,(ia„1—ia„1—ia, +ia„1)'
Ql

2 1 1 1

+- (I-x) ',E,(ia„l —ia„l+ia, —ia„
1 ),

Q2
2 1 2f 1 (50)

W=2E, (1+ ia, &
1+ia2; 2; x) = (1 —x) '2E, (1+ia„1—ia2; 1 —ia2+ia„)'1-x 2 1 lf 2f 2 lf 1

+ & i(1—X) 2E1(1+ia2& 1 —2a1&1+ia2 —ia1& ) &1 —x
(51)
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where G= I'(ia, —ia, )/I'(ia, )1"(-ia, ). (52)

Expanding the hypergeometric functions, E, to the order (1 —x), performing the limit a, -a, and using
the well-known properties of the I' function, one obtains

/

i'm )(x-(a, (( —x)(a) = - ' i —- ' (ia(i —x)+i —ax —2Re((((a, )j),sinh())a, ) ' 2a, '
mQ, 1 —x

Q2 ~Qg
(53)

sinh())'a, ) ' ln(1 —x) —2y —2 Ref(ia, ) ' 1+a,'1+2
max 1 —x 1-x

Q2 Qg

(54)

iim (((-x),~(a)'-(m(a(a')j=, (" '
) i, ' ' [i ((-*)-ax-aae((, )-aa, *j,

1
Q2 ~ay

(55)

where

g(ja, ) = . ', y= lim (1+—+—+ ~ ~ +——inm) -0.577, y+Reg(ia, ) =a,'r SQa 2 3 m , m rn'+a, '
m-~ I—L

(55)

It is seen from Eqs. (54) and (55) that the terms of the bremsstrahlung cross section (30) proportional to
Re(A, B), Re(22*B), and ~BI are of the order [ln(l —x)/(1 —x)], so that we obtain up to order ln(1 —x)/
(1 —x),

d'a=d'o [ma /sinh(ma )]'
~

V- ia (I-x)W~'8 1 1 1

=d'o {1—[2a '/(1 —x)] [ln(1 —x)+1 —2y- 2Re())(ia )]j.B 1 1

(57)

That is, for 1-x»

land�

(a, —a, )/a, «1, the bremsstrahlung differential cross section in Born approxima-
tion d OB is correct. This is an extension of an earlier result' showing that the Born-approximation
cross section is valid at the long-wavelength limit for nonrelativistic energies. In case (b), i. e. , if one
sets a, =a, =a, the correction factor to d'oB in Eq. (57) is the same as in the work of Bethe and Maxi-
mon (note the different definitions of I)', W, and x). Formula (57) will be used to evaluate the screening
correction to the bremsstrahlung cross section near the long-wavelength limit (cf. Sec. 9).

7. PHOTON AND ELECTRON
DISTRIBUTIONS

The general formula (30) for the differential
cross section has been programmed for a Sie-
mens 2002 computer. The differential cross sec-
tion d'0 was determined for the case when the
electrons and photons are emitted into the same
plane. Then P= (t), —$, =0. It is expedient to
introduce the angles 8, and 88= 81 —82, giving,
with respect to the direction of the incoming
electron, the directions of the emitted photon and
the outgoing electron, respectively. Figure 2
shows isolines of the differential cross section
in the 81 —88 plane for Z=13 and kinetic energies
E, = 180 keV and E, = 90 keV. The diagram repre-
sents the angular correlations of both particles.
One sees that the electrons and photons are pre-
dominantly emitted in the same direction. Ex-
amples of photon and electron distributions are
drawn in Figs. 3 to 11. They correspond to the
intersections (profiles) of relief maps as drawn
in Fig. 2 by planes parallel to 8, or 8e axis. The

photon distributions have the scattering angle 8e
as parameter, and the electron distributions have
the angle 8, as parameter. The curves show pat-
terns directed strongly in the forward direction.
For comparison with experiments in some of the
following figures, Eq. (30) was applied as well,
in order to calculate cross sections for Z = 79,
although the condition O'Z «1 is violated. In Figs.
3 and 4, the photon distributions for E, =300 keV,
E2=170 keV, 88=0', and 88=5' are given. Ad-
ditionally the results of Born's approximation are
drawn for comparison. The position of the maxi-
ma of the distribution curves is very little in-
fluenced, but the absolute values of the cross
section do change. In the main lobe, these dif-
ferences decrease with increasing 6e. Recently
Nakel" ~

"performed coincidence experiments to
observe the elementary process of bremsstrah-
lung with thin targets for the same parameters
as used in Figs. 3 and 4. These measurements
are represented in Figs. 5 and 6. Figure 7
shows an electron distribution in the neighbor-
hood of the long-wavelength limit and its com-



Z =&3, E& = 180keV, E2=90keV

FIG. 2. Isolines of the
differential cross section.
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parison with a measurement of Hub and Nakel. "
The theoretical cross sections given in Figs. 5
to 7 have been corrected for the finite angular
resolution. As the experimental values are only
relative, they have been adjusted at the maximum
of d'o. The remaining "filling up" of the minima
in the experimental photon distributions is prob-
ably due to the thickness of the target. Neverthe-
less the agreement between measurement and
theory is good. Figure 8 shows the increase of
asymmetry in the photon distributions and the
vanishing of the minimum between the two lobes
with increasing 8 . The corresponding electron
dlstrlbutlons for fixed angle 8g are given 1n Fig.
9. Figure 10 shows that the photon distributions
at the short-wavelength limit become broader,
and the minima are "filled up" more. The maxi-
mum values of d'0 are now attained at larger
angles 8, and 8e. The electron distributions at
the short-wavelength limit are very broad and the
maxima are even directed backwards. Details
may bc zen in the work of Haug. " Kith in-

creasing electron energies, the photon distribu-
tions become narrower. An example is given in
Fig. 11.

8. INTEGRATED CROSS SECTION d~0

For the cross section d'o integrated over all
directions of outgoing electrons

do' do'
dkdA dkdQ dO P, '

Pq

more possibilities for comparison with experi-
ment exist. Because the hypergeometric func-
tions V and W occur in Eg. (30) for d'o, the inte-
gral can be computed numerically only. In Fig.
12 the integrated photon distributions have been
plotted for 8 = 8 (0) and 8 = 13 (Al), E, = 45 keV
and hv= 40 keV. These curves agree fairly well
with the experimental data of Hoess" who used a
target of Al, O, . If we exclude angles smaller than
30' in forward direction 8, =0' and angles
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FIG. 3. Theoretical photon distributions for the
electron angle g~= 0 .0 +)0

00 - |0e

8, & 120', his points lie between the computed curves
for both elements. However, the results of the
calculations with the Born approximation are far
off, which is to be expected at these low energies.
It is to be noted that also the nonrelativistic ap-
proximation, Eg. (40), is very bad; the electron
velocity at 45 keV is indeed relativistic. In this
and the following figures the cross section has
been multiplied by k for scaling reasons and di-
vided by Z' to dispose of the main Z dependence.
In the Born approximation d'o/Z' is independent
of Z [see Eq. (38)]. An example of these cross
sections as a function of the photon energy hv
is given in Fig. 13 for the angle 0, = 55'. These
should again be compared with the experimental
points of Roess. " Additional curves for different
values of 6~ are given by Haug i6

At E, = 180 keV and Z = 13 there is very good
agreement between the computed cross sections
and experimental data of Klasmeier" on Al, O»
especially for large angles (Fig. 14). This
agreement, however, gets worse if one goes to
high atomic numbers (Fig. 15).

A comparison of our theory with measurements
of Motz" at energies of the order of magnitude
of the electron rest energy mc' shows noticeable
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FIG. 4. Theoretical photon distributions for the
electron angle 8~= 5 .0

FIG. 5. Comparison between theoretical and observed
photon distributions for the electron angle Oe= 0 .
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FIG. 8. Photon distributions computed from formula
(30) for various electron angles ee.

4 10 bystergd

Z =13, E,=300keV, E2= 100keV

FIG. 9. Electron distributions computed from formula
(30) for various photon angles g~.

10. INTEGRATED CROSS SECTION da

Integrating the cross section d'o over the di-
rection of emission of the photon, one obtains
the cross section

)80'

Z =13, E,=300keV, E~= 0

FIG. 10. Theoretical photon distributions at the
short-wavelength limit for various electron angles 8&.

do' d v
dk dkd& k '

k

which is differential with respect to k only. It is
drawn and compared with experimental values in
Figs. 1V(a) to 17(d) for Z = 13 and 79, E, = 45 and
500 keV. The agreement with the experiments of
Motz and Placious"~" is fairly good for small
energies and for large as well as for small Z.
At E, =500 keV, the agreement is, on the other
hand, satisfactory only for Z = 13, whereas for
Z = 79 the calculated cross section is less than
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I0

Z = 79, E, = 4, 54 MeV

k

dt's

Z2 dkdok

rnb
ste rod

I0—

20 40 60 80 100 120 140 160 180
k, keV

FIG. 15. X-ray spectra for Z=79, E~ ——180 keV
for various photon angles 0~, compared with ex-
perimental values.

the measured one by a factor of 2 nearly. It is
to be noted, however, that experiments of Rester
and Dance" result in cross sections da which
are considerably smaller than those of Motz at
energies of the same order of magnitude (1 to
2.5 MeV). Besides the cross sections calculated
with Sommerfeld-Maue eigenfunctions, we have
also drawn the cross sections obtained by multi-

plying those of Bethe and Heitler by the factor
(63) (cf. Sec. 11). Both these theoretical curves
largely agree with one another, ' for Z =13 they
even coincide within the degree of accuracy of
our drawing.

Most of the authors dealing with bremsstrahlung
at the short-wavelength limit have considered the
cross section integrated over the angles of final
electrons and photons, da, /dk. '~ " If Eq. (47)
is integrated numerically over the solid angles
dAP, and dQ~, the results are in good agreement
with theoretical predictions and experimental val-
ues for low atomic numbers Z (cf. Table I). For
hi h nuclear charges the agreement seems to belg
satisfactory if k & —,'. The asymptotic cross sec-
tion for very high electron energies e„kdoo/dk,
is given by Eq. (47) with an accuracy of a5/& up
to Z = 47 (Table II). It is too small by about 33/0

I0 I

0 4
md'k, MeV

FIG. 16. X-ray spectra for Z=79, E~=4.54 MeV for
various photon angles 8~, compared with experimental
values.

for Z = 79 as compared with the results of Jabbur
and Pratt, "which one can assume to be the most
exact asymptotic cross sections.

11. COULOMB CORRECTION

The Born-approximation cross section becomes
wrong in the short-wavelength limit (it goes to
zero! ) because the field of the nucleus strongly
distorts the low-energy wave function from that
of a plane wave. The cross section remains
finite, however, if multiplied by an appropriate
Coulomb correction factor. A factor of this
kind has been derived for nonrelativistic energies
using the formula for the total cross section do
calculated by Sommerfeld and Maue" with the ex-
act Coulomb eigenfunctions neglecting retarda-
tion. Starting from the neighborhood of the long-
wavelength limit, Elwert' has given the following
correction factor
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mation cross section multiplied by
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ment.
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E = (a /a }(1—e ')/(1 —e '). (63)

It agrees very closely up to terms of fourth order
in a, with the correction factor for the short-
wavelength limit. By analytical integration of
the nonrelativistic expression (43) for d'o over
the directions of the final electrons, it has been
shown that the factor (63}is independent of the
direction of the outgoing photon in the neighbor-

hood of the long-wavelength limit. As a, becomes
smaller this range of constancy will become more
and more extended towards the short-wavelength
limit. 4

Our present calculations make it possible to
derive new numerically computed correction
factors E(e,). They are given in Figs. 18 to 21
as functions of 8, for the same parameters as in
Figs. 11(a) to 17(d). In addition the correction
factor I'E is indicated by a mark on the ordinate.

TABLE I. Bremsstrahlung cross sections at the short-wavelength limit.

50 keV
50 keV

500 keV
500 keV

1 MeV
1 MeV

15 MeV
15 MeV

13
79
13
79
13
79
13
79

Zq. (47)

22.1
27.0
1.17
2.09
0.70
1.29
0.52
0.88

(k/Z') d~,/dk (mb)

Fano et al.
(Ref. 24)

21
23

1.3
3.4
0.71
1.8
0.55
1.77

Experimental values (Ref. 24)

(extrapolated)

21 k2
31 k3
1.5 + 0,6
5,2 + 2.0
0.6 + 0.3
1.7 + 0.7

1.47 a 0.44

TABLE II. Theoretical asymptotic bremsstrahlung cross sections at the short-wavelength limit.

13

79

Eq. (47)

0.52
0.92
0.86

(k/Z ) doo/dk (mb)

Jabbur and Pratt (Ref. 25)

0.493
0.971
1.286

Deck et al. (Ref. 26)

0.493
0.943
1.164
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