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A shell-model treatment is given for the spectra of the nuclei where there are two protons and two neutrons
outside a doubly closed shell. The only restriction is that like-nucleons are required to occupy the same
angular momentum state. In addition to this general wave function, more restricted wave functions also
are investigated, viz. , the pairing wave function (as least one pair of like nucleons is coupled to zero angular
momentum) which contain no n-p correlations; the quartetting wave function (two unlike nucleons are
first coupled to the maximum angular momentum, then the two pairs are coupled to I, the nuclear angular
momentum) which does contain e-p correlations; and a superposition of pairing and quartetting wave
functions. Results for '4Ti, 64zn, and 204Hg are given. The ground states are reproduced quite well by the
pairing wave function; it seems, however, to fail for the excited states. The overlap between the general
and the quartetting wave function is quite large. Finally, results are also given for the pairing force, which
has only a T= 1 component.

I. INTRODUCTION

"T is well known that the low-lying states of the
.. vibrational nuclei can be very well described by the
pairing-force theory as long as only one shell is open.
If both protons and neutrons are outside of closed
shells then one must expect that the e-p correlations
should play as important a role as the correlations
between the like nucleons. However, they are not
taken into account by the usual pairing force theory.

BrieQy, the difhculties encountered by 3CS-like treat-
ments are the following. As is well known, the BCS
wave function does not have a definite particle number.
It has, however, a good angular momentum. Thus, as
long as in the considered region of the periodic table
the nuclear properties change only slowly with atomic
number, the computed characteristics can be expected
to be of acceptable accuracy. Similarly, the BCS-like
wave functions do not have good isospin when they
include p rt pairing. In con-trast to the particle number,
the isospin impurity is, however, quite important since
the states with higher isospin lie at rather high energy,
i.e., of the order of 10 MeV. In addition, the usual
pairing Hamiltonian contains only T= 1 forces.

An attempt to generalize the BCS method so as to
guarantee good isospin was made by Flowers and
Vujcic. ' Working in the LS coupling scheme they
showed that this requires the abandonment of pairing
in favor of quartetting, i.e., of four-particle correlations.
Such a treatment is, however, quite complicated; this
is exemplified by the circumstance that the required
quasiparticle transformation is nonlinear, as had al-
ready been observed earlier by Bloch and Messiah. '

* Part of this work was submitted by one of us (J. S.) in partial
fulfillment of the requirements of the Ph.D. degree at the Uni-
versity of Maryland, College Park, Md.

f Thecalculations were extended at Frankfurt and were financed
by Bundesministerium Forschungsgemeinschaft and Deutsche
Forschungsgemeinschaft.' B. Flowers and M. Vujcic, Nucl. Phys. 49, 586 (1963).' C. Bloch and A. Messiah, Nucl. Phys. 39, 95 (1962).

Alternatively, one can apply projection methods or
variational constraints to BCS-type wave functions to
obtain good, or at least improved, isospin, in analogy
to the treatments concerning the particle number.
Recent papers on this subject are, e.g., by Ginocchio
and Weneser, ' and by Goodwin, Struble, and Goswami4;
they contain further references.

In this paper, we shall investigate the inQuence of
n pcor-relations in the simplest possible model, viz. , a
nucleus which has two protons and two neutrons out-
side of a doubly closed shell. This is the simplest pos-
sible system in which both the correlations between
like and between unlike nucleons are important. We
shall consider the core to be inert, and we will allow
the particles to populate all states of the open shell,
i.e., we shall use the shell model with configuration
interactions. Thus our Hamiltonian consists of an
average potential which we take to be of a Woods-
Saxon form, and an effective two-body potential. For
the latter we take the force as given by Clark and
Elliott. ' It has a Gaussian radial dependence and
central as well as tensor force amplitudes. Note that
we do not employ the pairing Hamiltonian. In order to
keep the problem to a manageable size, we restrict
ourselves to the case where two like nucleons occupy
the same angular momentum state.

We shall compare the spectra obtained by diagonal-
ization of the Hamiltonian matrix for the following
cases:

(I) The general scheme G: Here the like nucleons
are coupled to all possible intermediate angular mo-
menta. This is the most general wave function within
our restriction.

(II) The pairing scheme I" Here at least one pair

' J. N. Ginocchio and S. Weneser, Phys. Rev. 1'70, 859 (1968).
4 A. L. Goodman, G. L. Struble, and A. Goswami, Phys. Letters

26B, 260 (1968).' J. Clark and J. Elliott, Phys. Letters 19, 294 (1965).
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TAMz I. Single-particle potentials for the nuclei considered.
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of the like nucleons are coupled to zero intermediate
angular momentum.

(III) The quartetting scheme Q: Here each proton-
neutron pair is coupled to the maximum possible angu-
lar momentum. These two stretched" pairs are then
coupled to I, the nuclear angular momentum.

(IV) The E+E scheme: Here the pairing scheme is
supplemented vrith the component of the quartetting
scheme which is orthogonal to the pairing wave function.

(V) The primed pairing scheme P'. This is the
pairing scheme computed with the analogue of a pairing
Hamiltonian, i.e., the shell-model Hamiltonian is muti-
lated by putting all T=o two-body forces equal zero.

The rationale for this choice is the following. As is
well known, the basic building block of the wave func-
tion of a vibrational nucleus is the pair, i.e., a state of
two like nucleons coupled to zero angular momentum.
In a similar way the basic building block of a rotational
nucleus is the quartet. ' Insofar as there seems to bc
COIDpctltion ln Rny nucleus bctwccn thc sphclical Rnd
the deformed shape, it can be expected that these two
tvpes of building blocks might compete, the pairing
dominating in spherical nuclei and the quartetting
dominating in deformed nuclei. Still, the principal ad-
mixture to the dominant coupling scheme could very
mell be the subjugated wave function, i.e., the quar-
tctting scheme in spherical, and the pairing scheme in
deformed nuclei.

The paper is organized as follows. The needed de6-
nitions and formulas are given in Sec. II. In Sec. III,
we give the input parameters, present the level spectra
obtained in the diGercnt schemes, and discuss the
numerical aspects. Ke also give the wave function and
their overlap with the general scheme. The most com-
plete calculations were performed for 44Ti. Some calcu-
lations were also done for 60Zn, "Zn, and "4Hg. In
Scc. IV, wc sunlnlRllzc our study Rlld drRw collchlsions
regarding each scheme.

II. PORMAL DEVELOPMENT

where Ho is the sum of the single-particle operators,

a,= g k, = g (r,+V;),

and V is the sum of the CGective residual two-body
potentials,

V= Q Vy.
j+J

We want the solution to the equation

H%'= Ec,
where 4 is a four-body wave function

%=%(1,2, 3, 4).
As mentioned in the Introduction, we consider the

following approximations.

A. General Scheme G

The most general four-body wave function is

I +M.o.)= z I L(j~j~) "'(k~km) ""j"') (2)

Throughout the paper we denote the proton and neu-
tron angular momentum state by j and k, respectively;
we use the convention of Fano and Racah' to indicate
angular momentum coupling. In Kq. (2),j', jq and k~, km

can independently take all values available in the
major shell. However, as mentioned in the Introduc-
tion, we restrict ourselves to the case jl ——j~ and k~ ——km.

The configuration in which jl/j2 and k~4kq would bc
less important because of the reduced overlap and,
consequently, weaker binding. In any case, the problem
would, in general, be unmanageable because of the
exceedingly large number of possible configurations.
Thus, we take as our most general scheme

Z ~,-IL(j')' '(k')~ ~j"'&
J,k",J' evext

The coefhcicnts y;AJ- are obtained by diagonalizing the
Hamiltonian. The excited states with spin diGcring
from zero are given by the configurations of the type

I
@0)= I L( j') "'(k') ""3"') (4)

We shall restrict our attention to the states with even

angular momentum I. Wc maintain the restrictio of
like nucleons occupying the same angular momentum
state throughout the discussion. The details regarding
the computation of the energy matrix are given in

Appendix S.
Now we consider the other schemes which involve

the superposition of a smaller number of configurations.
Wc wiB compare them with the general scheme G.

Consider an even-even nucleus with two protons and
two neutrons, or, alternatively, two proton holes and
two neutron holes, outside a doubly closed shell. The
ground-state angular momentum for this nucleus is
zero. The shell-model Hamiltonian for such a problem is

V=HO+ V, (&)
6 M. Danos and V. Gillet, Phys. Rev. 161, 1034 (1967) .

3.Pairing Scheme P
In the pairing scheme, the ground-state wave func-

tion is obtained by coupling each nucleon pair in-

dependently to zero angular momentum.

( ep)= g ape I I-( j') ~'&(k') ~'~jt''. (5)
~ U. Pano and G. Racah, Irreducible Teesoriul Sefs (Academic

Press Inc. , Nevr York, 1959).
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TABLE II. Single-particle energies for the nuclei considered.

Nucleus Type of nuc]cons The open shell states {energies in MeV) Ref.

44Tj neutrons

protons

2Pl/2

0.0
0.0

2Pl/2

2P3/2

—3.0
—1.8

2P3/2

1f5/2

—3.0
—1.3
if5/2

&fg2

—7.0

5 ~ 3

10

neutrons

protons

neutrons

—1.0
—1.0

7.38

—4.0
—2. 8

3P3/2

8.27

—4.0
—2.3

2f5/2

7.85

0.0
0.0

2f7/2

9.72

ih9/2

10.85

1213/2

9.01

10

204Hg

protons

3$l/2 X

8.03

2~8/2

8 ~ 38

245/2

9.70

ig7/2

11.43

1hll/2

9.37

The excited states with IWO are given by the super-
position of the configurations of the type

I 4'~&=
I C(j') "'(&') "'j"'&+

I C(j') "'(&') "'3"'&

Obviously the I' scheme is a subspace of the G space.
Note that we use 0 for the wave function and C for
the con6guration; the former is a superposition of
several C 's.

C. Quartetting Scheme Q

In order to study the neutron-proton correlations
we introduce a scheme where the nucleons in each of
the two neutron-proton pairs are coupled to the maxi-
mum possible angular momentum. In the ground state
the two pairs are then coupled to zero angular momen-
tum, in general to angular momentum I:

I +o)= 2 O'8'~
I I ( j&) 'x'( j&) 'x'3"'& (7)

j,k;K-j+k

8 is the antisyrrunetrization operator necessary to
ensure the antisymmetry between two identical nu-
cleons. In principle, E can take all values from

I j—k I

to
I j+k I. However, a study of the two-body matrix

X J even

J' I
(j') "'(&')""j"') (3)

The summation in Eq. (3) is restricted to even J
because of the antisymmetry between like nucleons.
The recoupling coefficients are defined in terms of the

elements shows that the most important contribution
should be expected to come from the con6gurations
with E=j+k. In fact, the binding energy in this case
is comparable to the binding energy of the state with
E=O for the case where j=k. If jWk, the state with
E=j+k has the largest binding energy. This is illus-
trated in Appendix A, where the two-body matrix
elements are given for some j and k.

The quartetting scheme thus is the analog of the
I' scheme in the case of identical particles, where the
configuration (j') "' has the largest binding compared
with (j') &~', 7 NO.

Now we shall expand Eq. (7) in terms of the set of
states dined by the general scheme

IL(P)' '(j&)' 'j"')
x

TABLE III. The two-body force parameters (in MeV) .

Nucleus A" A3'

Central

A"
Tensor

+13 +33 Ref.

44Ti

6'Zn

5'Zn

—41.5
—37.3
—40

—40

—38.0
—41.3
—20

—24

97.3

100

—26

14.8 —95.1 12.1

0 0

0 0 11
(CAL)

(COP)
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TABI-E Dt. Comparison vrith the results of Ref. 12 and the present results for the 44Ti ground state. Column a: results of Ref. 12 ~ h«e
only the j7I2 shell was considered. Columns b and c: our results where all the shells were considered using the force mixtures given by
Refs. 5 and 11, respectively; however, only the numbers of the fv/2 shell are quoted. Q correlations are obtained by squaring the s&»~
of the amplitudes of the primed columns, which are respectively 96, 61, and 82 j~. I' correlations are obtained by squaring the J=0
amplitude in the unprimed columns and are 58, 85, and 75'P&, respectively.

Amplitudes of the states

a b c
Q correlation amplitudes

a' b1 c

0.7608

0.6090

0.2093

0.0812

0.9243

0.1855

0.1144

0.1434

0.866

0.408

0.145

0.095

0.5166

0.4355

0.0304

0.0004

0.6327

0.1325

0.0166

0.0008

0.5952

0.2923

0.0215

0.0005

9-j coefficients' by

jg hg Ig kg Ig '

where

I Jr J2 I ,

D. I'+R Scheme

In order to investigate the competition between the
pairing and the quartetting scheme, discussed in the
Introduction, we consider a wave function which is a
superposition of pure pairing and pure quartetting.
However, the Q scheme is not orthogonal to the P
scheme. Hence we employ the Schmidt, orthogonaliza-
tion procedure to obtain that part of Q which is orthog-
onal to I',

I
c~&= I c'o&—(c'o I c'~&

I c~&

(1-I (c'~ I C'o& I')'" '

Substituting
I C'o& as expressed in terms of the set

defined in (3), we get

j k K
J111QK.

1%&&= —Q j k K I L(j') ~~~(k') ~"t]~'~&

where E is given by

(13)

I= (2I+1)"'. (1o)

The normalization constant x is given by (C o I
C q &

= 1,
which leads to

j k E '
Jmax

e x
J~, even

III. NUMERICAL RESULTS

In this section, we shall discuss the results of the
numerical calculations. The theory applies to two pro-
tons and two neutrons outside a doubly closed shell,
or two proton holes and two neutron holes. Hence, we
could consider 2o~e 36Ar 44Ti 6o7n 2o4Hg and 2l2Po

However, "Ar and ~Xe are 2s-id shell nuclei; and
hence there are too few configurations available to
make the problem interesting. '"Po has not been com-

puted because the size of the matrix is too large. We
also do some calculations for Zn ln which the p3i2

neutron shell is ulled. We discuss the energy spectra
and the wave functions.

A. Inyut Numbers

There are essentially three types of input numbers:
the diagonal energies, the parameters concerning the
two-body matrix elements, and the parameters which
determine the radial wave functions of the single-

particle shell-model states.

1. I'arumeters or Single-Particle States

To obtain the radial wave functions, one solves the
Schrodinger equation with the potentiap

V (r) = V, (r) n(6/2M— „c)'(1d) (1/r) (d V./dr), (15)

V.(r) = Vo/f1+expL(» —&)/a11.

Thus, the necessary parameters are the well depth Vo,

the diffuseness parameter u, the nuclear radius E, and

the spin-orbit interaction parameter 0.. For each nucleus

they are chosen to reproduce roughly the single-particle
energies. The values used are given in Table I.

Z. SirIgle-I'article ENergies e,o and ego

JI,J=2

The single-particle energies are taken from the work

of Kisslinger and Sorensen. n They are given in Table II
(14) for each nucleus.

J J' I
s R. Caswell and I,. Maximon, National Bureau of Standards

Technical Note 409, 1966 I'unpublished).

R. Caswell, National Bureau of Standards Technical Note
410, 1966 (unpublished) ."I.. Kisshnger and R. Sorensen, Rev. Mod. Phys. 35, 853
(1963).



g- p CORRELATIONS IN SHELL MODEL 903

SPEC TRA OF Ti 44

(C 4 E mixture)

-23-

4+
4+
2+

2+

0+
+

4+

0
2

0+

0I

-25-

FIG. 1. Energy levels of "Ti as
computed by the difkrent schemes 2g
discussed in Sec. II, using two-body
force mixture given by Clark and
Elliott (Ref. 5).

-27-

0

0+
4+
2+
0'~ 4+
2+
2', 4'

0+

4+
2+
4+

0'

P+R

3. Purumeters Concerning Two-J3ody 3futrix E/emerIts

In the case of ~Ti and 6 Zn these parameters are
taken from the analysis of Clark and Elliotts in which
the authors deduce an eGective potential from shell-
model calculations. They computed 48 shell-model
matrix elements with a two-body potential of the form

V,;=exp (—r'/a')

&& Ig grsyra+ g (gP3Pr3) g. + g (czars) L.SI

vrhere I"~+' '8+' are projection operators; the 2's, 8's,

and C's are constants, and

u= j..8 fm,

S;,=3r'(d; r) (0,'r) —(d;. d,),
S=-', (d;+ d, ), L= r&&p. (1'/b)

Then they compared the matrix elements with those
deduced from known experimental spectra. The mix-
ture constants A, 8, and C were determined by a,

least-squares 6t. In the present work„we have slightly
varied the values of these amplitudes —within the
given error limits —so as to obtain roughly a vibrational
level spacing for the lowest levels.

Ke also use the mixture as given in Ref. 1j.. There

"V. Gil/ef, , A, Qreeg, , and E. Saaderson, Mud. Phyg, 88, jgj,
(&9t|j.
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SPECTRA OF Ti ~~

(CA L MIXTURE)

-20-
—0+

0y
-- ———0+ 0+

0+
0+

-28-

-29-

FIG. 2. 0+ levels of 4 Ti computed with the CAL mixture
(Ref. 11).

B. Discussion of' Results

l. Suclegs ~Ti

the parameters were chosen to give good results for
particle-hole calculations of "C "0, and ' 'Pb, referred
to as COP mixture and of 40Ca which is referred to
as CAI. mixture. The former is used for "'Hg and the
latter for '4Zn. The chosen parameters are given in
Table III for each nucleus.

the 0 and 2+ levels and lifts the spectrum. Thus,
both the effects are repulsive in this case. However, the
general features remain unchanged.

The obtained level scheme is shown in Fig. 1. Only
the states with I=0, 2, and 4 were computed. Perhaps
the most surprising feature of the 6 scheme is the
quasirotational character of the spectrum. It has a
large energy gap, viz. , 3-4 MeV, and a 0-2-4 sequence.
The level spacings are more those of a vibrational
nucleus while the absence of a 0+ and a 2+ state around
the energy of the 4+ level, i.e., of the other members of
the two-phonon excitation, is incompatible with a
vibrational spectrum. On the other hand, a good ro-
tator should also have a E=2 band. There is no trace
of it in the computed spectrum. For a definite inter-
pretation, information on the static and transition E2
moments would be required. Also, the 6+ and 8+
spectra would be useful. Anyway, this is not the central
aim of the present paper.

Taking a look at the approximation schemes one
sees 6rst of all that the usual pairing Hamiltonian, i.e.,
the I"scheme, which has no T= 0 force, is in.extremely
poor agreement with the general scheme. The Q scheme
describes the level. spacing of the first three levels
fairly we11; however, the whole spectrum is shifted
upwards by 2 MeV. Also, the gap is larger by about
2 MeV. The spectrum'-thus shows very strong "collec-
tive" features. If one. considers the first three levels as
an essential feature for the "collective" character, the

Q scheme gives good results. The P scheme does well
in keeping the ground state low enough but the "col-
lective" features are poorly reproduced. The gap is as
bad as that of the Q scheme.

Going to the I'+E scheme does not improve the
low-energy part of the spectrum very much. There
evidently is still insufhcient off-diagonal interaction
between the two lowest 2+ and the two lowest 4+
states. Also, the'higher part of the spectrum". -'is still
very badly reproduced.

SPECTRA OF 2n~'

The Woods-Saxon potential parameters, the single-
particle energies and the two-body force parameters
are chosen as shown in the Tables I, II, and III,
respectively. The justification for the parameters comes
from the fact that the binding energy of ~Ti with
respect to ~Ca is 32.5 MeV, the level spacing between
the lowest 0+ and 2+ state is 0.5 MeV and the single-
particle energy for the fez shell is 8 MeV. These num-
bers agree well with the values inferred from the
experimental spectra of the neighboring nuclei.

%'hile adjusting the two-body parameters to obtain
the level spacing of the lowest levels for the general
case, we found that the inclusion of tensor forces re-
duces the level spacing, and the whole spectrum is
shif ted. upwards ' by, 'about&. 2 MeV. 'Increasing the
T=0 amplitudes also reduces the level spacing between

-16-

-17-

-18-

2+
2+

0+
0+

2+

0+

2+
0+

2
---0+

-20-

-2]- . 0+

-2d-

FIG. 3. Energy levels of 6 Zn. ModiGed Clark and Elliott forces
were employed.



e-P CORRELATIONS IN SHELL MODRI,

%e now go over to the discussion of the wave func-
tions. In Table IV, we list the amplitudes of the
dominant coniguration, viz. , (fr/~), as obtained in the
G scheme, i.e., the coefEcients yq/sr/Iz of Eq. (3).
For purposes of comparison we also list the amplitudes
of Ref. I2 in which only fr~a orbitals were considered.

Now we ask how much quartetting and pairing cor-
relations are present in the general wave function G.
Referring to Kqs. (3), (5), and (8), we have

j k E

SPECTRA OF Hg

I (A I A) I'= —Z i & & v/ar (&8)

I (6 I 6) I'=
I v ~0 I'

J J 0

Z. Xeclels ~Ze

Only the 0+ and 2+ spectra for this case have been
computed. To obtain a level spacing of roughly 1 MeV,
we had to discard the tensor force completely. Here an
increment of the T=O amplitudes also reduces the
level spacing. As seen from Table III, we have taken in

SPECTRA 0/-" Zn

o+ o+
0+

o+

-15-

o +

-T7-

o+
o+

-19-
8 P+8

FIG. 4. 0+ levels of 64Zn computed vrith the CAL mixture
(Ref. 1j.).

"J.McCullen, B. Bayman, and L. Zamick, Phys. Rev. 134,
BiS (1964).

It turns out that both the overlaps are large and of
comparable magnitude for this nucleus. The terms of
the' sum of the right-hand side of (18) are listed. in
the"primed columns of Table IV.

In order to see whether a relatively more attractive
T=O force favors the Q scheme, the calculations for
the I=O spectrum were repeated with CAL mixture. "
Figure 2 shows the 'results and the Q scheme gives
indeed a better description of the ground state than
the I' scheme. However, again the gap is too large in
both these schemes. The P+E scheme begins to 611

in the gap, as it did with the CE mixture. Kith the
CAL forces the Q correlations were found to be 82%,
whereas the I' correlations were //%. Table IV shows
the general wave function and the Q correlations (only
the f»q shell is given) for this nucleus.

FIG. S. 0+ levels of ~o4Hg computed with the COP mixture
(Ref, 11).

this case the T=O amplitudes to be smaller as com-
pared with T= j.. Naturally, this leads to a bad 6t for
the Q scheme since the success of the Q scheme depends
on the large e—p matrix elements for the casej+k =E
and decreasing the T=O amplitudes wiU favor the I'
scheme. From Fig. 3 one sees that the I' scheme does
very well compared to the G scheme. It is not even
necessary to consider the P+R scheme. The I" scheme
does poorly compared with the general scheme also
ln this case.

The important amplitudes in the G scheme are

I.'(Pw2') "' (P»~') "'3"'=O 36

L(p~/~') "'(P3~') "'j=O.7&.

Thus the PI~s shell plays the major role here.

3. %Nell. us '4'
Only the 0+ spectrum was computed for this nucleus.

The single-particle energies as well as the single-partjcle
parameters are taken to be the same as given for ~Zn.
However, the pq/s neutron shell is now dosed. The
important amplitudes, therefore, are diBerent and the
configurations L(Pg/P) &~~ ( fan/) &~')&0~, where 7=0 and 2,
carry 93%%uo of the total strength of the ground state.

The CAL mixture is used which has a relatively
strong attractive even-triplet amplitude. The Q cor-
relations in the ground state of the general wave
function are 91%, and the I' correlations are I/'P~.
Figure 4 shows that the Q scheme gives somewhat
better results than the P scheme. The I'+E scheme
does very well and the I" scheme gives only two levels
within the chosen energy range.

4. ENckes ~4Hg

The general wave function for the lowest ground
state shows that almost 9/%%u0 of the strength is dis-
tributed amongst con6guraiions involving the s~~~ pro-



J. A. SHAH AND M. DANOS

TAIILE V. The Instrix eientents (( j/ss); JT I
I/'

I (f,/ss); JT)
for 4'Ti.

Central

T=O

Tensor

-0.620

—0.506 +0.001

—0.036

0.665

—0.170

—0.001

to11 stRtc oi tlic PI/s llcutlo11 stRtc. Tilts Is associated
with the fact that the hole energies for these two states
are the lowest.

Now one seesfrom Eq. (8), where I%'o) is expressed
in terms of the complete set, i.e., the G scheme, that if
one of the angular momenta is ~ then the summation
over J is reduced to only one term, viz. , 7=0-and hence
I +o) in this case equals ~ +~). This is the reason why
the 0+ spectra in Fig. 5 show similar behavior for all
thc cases wc have considered. Thcrcforc, further calcu-
lations involving I=2+ and 4+ were not carried out.

TAaLE VI. (g7/2i, s/s, JT
~

I/~ g7/9$»/s JT) as a function of J
for ~4Hg.

T=O

10

—i.397

—0.390

—0.525

—0.406

—0.349

—0.433

—0.266

-0.913

0.712

0, 336

0.233

0.115

0.159

—0.039

0.122

—0.404

IV. CONCLUSIONS

Perhaps the most paradoxical aspect of. the obtained
results is the high content of both the Q and I' cor-
relations in the G wave function, and the rather small
improvement achieved in "Ti when going from the I"
to the I'+E. scheme. The 6rst aspect results simply
from the nonorthogonality of the I' and Q wave func-
tions. The second aspect is associated with the fact
that basically P and Q are quite different coupling
schemes: that part of, say, Q, which is orthogonal to I',
i.e., an E. state, requires more than a two-body re-
coupling to interact with a E state. The G states
supply an assortment of states which can serve as inter-

mediates between the I and the E states thus greatly
enhancing the coupling between these two major com.—

ponents. 'I'his CGect has been observed by Raynal and
Gillet" who investigated the mixing of pairing and
stretch wave functions. As the number of valence
nucleons increases, more and more particles must be
recoupled and the OG-diagonal matrix elements very
soon become negligibly small. Consequently, the states
there degenerate into either a pure stretch or a pure
pairing configuration. The admixture of lllore general
states thus becomes even more important as the num-

ber of valence nucleons increases.
Returning now to the present calculation we see that

dearly a Hamiltonian which does not consider the T=0
forces is quite inadequate. However, the pairing scheme
does very well when employing a force with a T=O
admixture. The importance of the quartetting scheme

TAIIi.z VII. ((i»/ss); J1
~

I/
~

(i»/P); J1) as a function of J
for 04Hg.

—0.299

+0.026

+0.040

+0.046

+0.061

+0.078

+0.089

depends upon the following two factors: (I) The shells

that play the major role in the nucleus have high
angular momentum. (2) The attraction of the T=O
amplitudes is much stronger than that of the T= j
amplitudes.

It ls lIltclcstlng to note that, thc fact that, thc two"
body matrix elements show the maximum binding for
the maximum angular momentum has a purely geo-
metric origin, but whether the Q scheme is important
or not, depends partly on the chosen force parameters.

In "Ti, the important shell is fI/s and hence the first
criterion is satished but not the second. To verify our
observation the calculations were repeated with the
CAI. mixture which satis6es the second criterion. Then
the Q correlations in the general wave function were

82%, and the I' correlations 'I5%.
In "Zn, the important shell is ps/s and hence neither

of the criteria is satis6ed; the results, therefore, show

that the Q scheme is not satisfactory. In s4Zn, the fs/s
neutron state becomes important since the ps/s neutron
state is closed. Hence, both criteria are satisfied and
the Q scheme reproduces the first four levels very well.

In 's4Hg, the important shells are st/s and Pi/s and

"V. Gillet and J. Raynal, Nucl. Phys. A122, 193 t', 1968).
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hence the pairing scheme does very well.
Going to the I'+If scheme, we usually get a better

agreement for one or two higher levels; it does especially
well in 64Zn.

In conclusion, it seems that the Q configurations
play quite an important role and that it is essential to
consider the proton-neutron correlation also in spher-
ical nuclei.
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APPENDIX A

The matrix elements of 'Ti for the configuration

I f7/s j '~' vary with J as shown in Table V. The two-
body force parameters are discussed in Sec. III. Thus

we see that the only two important matrix elements
are the ones with J=O and J=J =7 which supports
the assumption j+k= X; also, the f f7~a'] "' '1= O

matrix element is the largest.
In order to show that the overlap is not small even

in the case when neutron and proton orbitals are difer-
ent, the matrix elements for "4Hg are given in Tables
VI and VII. F7~2 is a proton state and i~sf2 is a neutron
state for this nucleus.

Thus Tables VI and VII show the following features
noted in Secs. I and II:

(1) Neutron-proton matrix elements —when they
occupy diferent orbitals —are not any smaller than
the similar matrix elements of like nucleons (Tables
VI and VII).

(2) The sta, te with 2=j+k has the largest binding
energy.

(3) In most cases the T=O matrix elements are
larger than the T=1 matrix elements.

APPENDIX 3
The 0+ energy matrix in the general case was computed as follows:

(+0 ~ & ~ cg)= Z (L( j') "'(k') "'j"'
I &

I L( j")"'(k") '"'3"')
J,J~

= (2eP+2es')8~~'~»+ 2 (L( j') "'(k') "'j"' V
I I:(j")"'(k') ""3"')

Now, V= V„„+V»+4V„~.For example, the second term will be

&(i') "'
~ V.n I (j")"")8»"f»+((k')"'

~ V- I
(k") "")8~:~»

+4 g k k J k' k' J'
(I ( jk) '~'( jk) '~]j"'

I V» I
L'( j'k') '~'( j'k) '~"jlol),

L L 0 L' L' 0

where the third term has a recoupled form of the original and reduces to

4 g k k J k' k' J' (( jk) '~l
I V

I ( j'k') '~'l)or. r. f» or,s.

L L 0 L' L' 0

Thus, in this case the neutron-proton pair is coupled to all possible intermediate angular momenta. The general-
ization of this to the case of the pairing and the quartetting scheme is trivial. Note that by similarity the latter
also has all possible intermediate angular momenta in the V„„matrixelements. These formulas can be easily
extended to the cases of I=2+ and 4+. The details are given in Ref. 14. The two-body matrix elements were com-
puted with the method described in Ref 15.

~4 J. Shah, thesis, University of Maryland, 1967' (unpublished)."I.Shah, University of Maryland Technical Report No, 688, 1967 (unpublished),


