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We calculate the reflectivity of light incident upon the exposed face of a semi-infinite crystal, using the
point-dipole model. This requires an accurate solution for the polariton modes near the crystal surface.
The variation of the Lorentz local field, caused by the surface, is included in the calculations. The boundary
conditions for the polariton modes are derived rigorously. This represents the first rigorous microscopic

solution of polariton modes near ideal surfaces.

I. INTRODUCTION

E wish to calculate the transmission and reflection
of light incident upon the exposed face of a semi-
infinite crystal. The crystal is assumed to be mathe-
matically perfect, with atoms situated in their undis-
turbed positions in one half-plane, and no atoms in the
other half-plane. The atoms of the crystal are assumed
to be neutral, polarizable, and infinitesimal in size—i.e.,
the point-dipole model. Each atom sees a local electric
field which is not identical with the applied field, owing
to the Lorentz internal field, which arises because each
dipole is influenced by all the other dipoles. Of course,
the dipoles near the surface must feel a different local
field from those in the bulk, since they mostly have
dipoles on one side which are acting upon them. This
should have an influence upon the optical properties of
the crystal surface. We have calculated the variations
of the local field near the surface and also the optical
properties.

Actually, only the atoms in the one or two layers near
the surface see a local field which is appreciably different
from that of the bulk. This fact comes as a surprise to
those who think of the local field as a long-range effect.
However, this statement is easy to verify. Assume that
we have an electromagnetic wave of frequency w. The
vector potential and atomic polarization at an atomic
site R; are A(R;) and P(R;). Then Maxwell’s equations
in the Coulomb gauge give

P(R) =(w)- [(i/)AR,)
—X' $(R—Ry) - P(R;)], (L1)
VIA (1) -+ (?/c?)A(r)

= (idnw/c)3 - P(R)S(r—R;), (1.2)
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where a(w) is the atomic polarizability,  is the direction
of polarization, and ¢ is the dipole-dipole interaction:

¢(R)=(1—3RR)R3. (1.3)

We simplify the problem by setting the incident light
normal to the surface. We also assume that the surface
was created by cleaving, so the atoms are in planes that
run parallel to the surface. In order to keep the mathe-
matical discussion as simple as possible, we are just
going to discuss the three cubic structures sc, bee, and
fcc. These crystals have sufficient symmetry so that
within a plane all atoms are in equivalent positions.
Denote the various planes by /, where I=1, 2, 3, 4, - --
going inward from the surface. Now P(R;) and A(R;)
need only be described by their value of I, P({) and A (7),
since all values in the same plane are equal. Hence (1.1)
and (1.2) simplify to

P(l) =a(w)[(iw/c)A (1) — (4r/ Vo)zl‘; W(I=1PI)], (14)
(9%/02%) A () +-(?/c*) A (x)

= (idnwa/cVo)Y, P(1)o(x—Ila). (1.5)

The values of v(J) are obtained by summing the dipole-
dipole interaction over all the atoms in the plane:

v() =(V0/47r)z 2-o(R))-2.

We have removed the factor 4w/V,, where Vo is the
volume of a unit cell, so as to make v(/) dimensionless.
The distance between planes is a. Table I shows some
calculated values of v(/) for the various cubic lattices,
where k is in a (100) direction. These were evaluated by
the planewise summation method of Nijboer and de
Wette.:2 This method is described in Appendix A. The

1B. R. A. Nijboer and F. W. de Wette, Physica 24, 422 (1958);
23, 309 (1957).

3F. W. de Wette and G. E. Schacher, Phys. Rev. 137, A78
(1965).
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dipole interaction falls off very rapidly as the distance
between planes increases. In general, one need only to
sum over a few neighboring planes in order to obtain
accurately the Lorentz-Lorenz value of —%. One can
see in Table I that these values do obey

—1=0(0)42 lz:’;1 o).

This verifies our assertion that the local field mostly
comes from nearby planes of atoms.

One can think of 2(J) as simply an interaction term
between planes of polarization. Since this interaction
declines so rapidly with distance, an accurate result can
be obtained by only including the interactions between
a few neighboring planes. That is, little error is incurred
by setting »(/) =0 for all / greater than some number NV
(such as 3 or 4). This simple yet accurate approximation
malkes it possible to solve (1.4) and (1.5). We have done
this and thereby obtained the reflectivity of the surface,
and also the values of P(J) near the surface.

The value of N is the maximum number of neighbor-
ing planes whose interaction is retained in the calcula-
tion. We show that the number of polariton modes? in
the solid is V4-1.

So the inclusion of interactions between distant planes
in the crystal causes additional polariton modes to
propagate in the crystal. Although these extra modes
can be plane-wave-like, for most of the cases we have
examined they have complex frequency—i.e., they are
evanescent. In the optical problem of interest, they will
only exist near the surface. Thus, they have little in-
fluence upon the dielectric properties of the bulk ma-
terial, but they can affect the reflectivity of the solid.

Most of us are familiar with surface modes which are
also usually evanescent in character. The additional
modes in the present problem are not surface modes in
the usual sense. They are really just surface parts of the
modes which exist in the bulk of the crystal. The modes
of the bulk crystal need these surface parts in order to
satisfy the boundary conditions at the surface. Each
time one includes interaction between additional planes
of polarization—say between second, third, or fourth
neighbors—one has imposed an additional boundary
condition at the surface. The new mode one gets for
each additional interaction allows one to satisfy the
additional boundary condition.

This calculation may also be viewed as an investiga-
tion of spatial dispersion®® from a microscopic point of
view. Spatial dispersion applies to phenomena where
the dielectric response function e(r,f) has an » depen-
dence. Or, after Fourier transforming, the dielectric

37. J. Hopfield, Phys. Rev. 112, 1555 (1958).

48S. I. Pekar, Zh. Eksperim. i Teor. Fiz. 33, 1022 (1957); 33,
1056 (1957) [English transls.: Soviet Phys.—JETP 6, 785 (1958);
6, 813 (1958)].

§ J. J. Hopfield and D. G. Thomas, Phys. Rev. 132, 563 (1963);
G. D. Mahan and J. J. Hopfield, ibid. 135, A428 (1964).
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TasLE I. The dipole-dipole coupling »(/) between a dipole and
a plane of dipoles at a distance X =/a away. These sums are for
transverse waves (P_Lk), where P and k are both along (100) di-
rections in these cubic crystals.

sC bce fcc
2(0) —0.35943 —0.17972 —0.25416
2(1) 0.01303 —0.08309 —0.04021
2(2) 2.208(—5) 6.515(—3) 6.368(—4)
2(3) 4.094(—8) —2.463(—4) —7.189(—6)
v(4) 7.642(—11) 1.104(-5) 8.511(—8)
2(5) 1.427(—13) —4.724(—7) —1.000(—9)

function is e(k,w). Spatial dispersion is the & dependence,
which is distinct from ordinary dispersion caused by
the frequency dependence. Since the dipole-dipole in-
teraction acts at a distance, the dielectric response func-
tion is nonlocal. In other words, one cannot determine
the induced polarizability at the surface of the crystal
without determining it everywhere self-consistently.

There is experimental evidence that spatial dispersion
is important in some kinds of optical experiments.5 So
far, most theoretical analyses have been based upon a
continuum model of the dielectric, and certain reason-
able guesses have been made concerning boundary con-
ditions. These calculations have been quite successful
in explaining the relevent experimental data. One of our
results has been to verify the boundary conditions used
previously. In the cases which we consider, the exact
mathematical boundary condition is to set the internal
polarization equal to zero at the crystal surface. This is
what was usually assumed in prior calculations.

Deutsche and Mead® have previously discussed the
solution of the problem we are considering. They did
not discuss the Lorentz local field problem in particular,
but rather the more general problem of the optical prop-
ertiés in the presence of spatial dispersion. Their ap-
proach was to first find the normal modes of the polari-
zation field in the absence of the vector potential—that
is, to solve (1.4) for A(?)=0. Call these normal modes
¥i(k). They then used these modes as a basis for solving
the Eqs. (1.4) and (1.5). Their paper contains a funda-
mental error. They assumed that the normal modes
¥i(k) had to be of the form

Yi(k) =a(k) sin(kl)+b(k) cos(kl).

The modes have this form only when one includes inter-
actions between neighboring planes of polarization
(N =1). Thus, we can use the Deutsche-Mead solution
when we consider this case. But we already have noted
that when one also includes interactions between more
distant planes of polarization, the modes have additional
components which are usually evanescent near the sur-
face. In this case, the normal modes do not have the
form assumed by Deutsche and Mead. On the other
hand, most of their results do not depend upon the

(1.6)

¢ C. W. Deutsche and C. A. Mead, Phys. Rev. 138, A63 (1965).
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specific form of the normal modes, but just that these
modes are an orthonormal set. In fact, we can use some
of their results for our reflectivity calculation.

Our method of calculating the reflectivity is much
simpler than theirs. One does not need to find the modes
Yu(k). Nor does one need to solve (1.4) for the polariton
modes. Rather, we show that the boundary conditions
and reflectivity are obtained exactly for any value of N
by solving some simple equations. Since we assume the
interaction between the planes depends only on their
separation, and since we neglect effects like a slight
widening of the lattice near the surface, then standard
methods of difference equations can be used. The
problem separates into first finding the dispersion
in the bulk and then finding and solving the boundary
conditions. These results are presented in Sec. II. In
Appendix B, we derive the functions ¥;(k) for N=1 and
2. Although these are not needed for the optical calcu-
lation, we wish to demonstrate that the Deutsche-Mead
assumption (1.6) was incorrect for N> 2.

II. POLARITON EQUATIONS AND
BOUNDARY CONDITIONS

The basic equations were defined in the Introduction.
They are the coupled equations for the atomic polariza-
tion P(!) and transverse component of the vector poten-
tial 4(J). We prefer to use the transverse electric field
E,(7) instead of the vector potential,

E\(l)=(iw/c)A1),

so that our coupled equations may be written as

P(l)=a(w)[E,(1)— (4x/V ) . :Z_N W)PIHY)], (2.150)
[c*(0%/9x%)+w? | Ey(x)
=(—4nwla/Ve)Y. P(D)o(x—la). (2.2)

In writing these equations, we have obviously chosen to
work in the Coulomb gauge. In this gauge, the trans-
verse field is retarded in time while the dipolar field is
instantaneous in time. Any other gauge could have been
chosen and the results would be the same. For example,
using the Lorentz gauge with retarded dipole interac-
tions leads to exactly the same equations of motion.”?
The Coulomb gauge is particularly appropriate for the
present problem because of the rapid convergence of the
planewise summation method as illustrated in Table I.

In Eq. (2.1), the sum over ! extends to N neighbors.
The value of IV is rigorously infinity except for exclu-
sions caused by the semifiniteness of the crystal, but we
have noted that the values of v(J) fall off very rapidly as
! increases. In practice, we only need to take IV to be

7 G. D. Mahan, J. Chem. Phys. 43, 1569 (1965).
8 A. Lucas, Physica 35, 353 (1967).

G. D. MAHAN AND G. OBERMAIR

183

a small and finite number in order to solve the problem
with numerical accuracy.

Once the value of IV has been selected, then inside of
the crystal there are V4-1 polariton normal modes, as
will be shown very soon. Each mode may be charac-
terized by a refractive index #;, polarization amplitude
P;, and transverse field component E;. Thus,

N41
El(l) — Z E].einjﬂl

i=1

(2.3a)
and

N+1
P@)=3 P,

7=1

(2.3b)

where we have introduced the dimensionless frequency

Q=wa/c. (2.4)
We shall later need to use &=/ Vo, the polarizability
per unit volume. Deutsche and Mead® showed that
solving (2.2) and (2.3) yields

2w Q sinQ

—————P;.
Vo cosQ—cos(n,5)

(2.5)

This result appears somewhat strange until one realizes
that usually Q<«1, so the trigometric functions may be
expanded, and (2.5) is essentially the familiar result

(4n/Vo)P;=(ns—1)E;.

This latter result is what one gets in a continuum ap-
proximation where the lattice discreteness is overlooked.
In order to maintain rigor, the exact result (2.5) will be
employed.

Equation (2.5) expresses E; in terms of P;. This may
be inserted into (2.3a), and the resulting expression for
E,(}) put into (2.1). This gives an equation entirely in
terms of the P;:

o 2 Q(sinQ) g%
Y Pyttt =4ra( 3 ¥ Py
J i cosQ2—cosn,;Q

—lZ v(l’)Pje""i“““") . (2.6
I,]'

This is the polariton equation of motion. There is a
different equation for each value of /. Now in the ideal
case, where the sum over /' in the local field extends over
all other planes of atoms in the crystal, this generates
an infinite set of equations for the infinite set of un-
knowns P;.

In our practical approach, where the sum is taken
over a few (V) neighboring planes, the problem can be
solved easily. Far inside the crystal surface, actually for
I> N, the equations for each value of / are the same.
Because of this, it can be shown that Eq. (2.6) is satis-
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fied for each value of j individually:

1 Q sinQ
1= 47ra<— —————
2 cosQ—cos(1;2)

N
—2(0)—2 > 2()) COS(M/J'QZ)) . @7

This unusual looking equation is actually quite familiar.
If we abbreviate

T(k)=v(0)+2 > v() cos(kal), (2.8)

then for Q«<1, (2.7) is just the usual dielectric equation
n?—1=4ra/[1+4ral (k)].

Some plots of 7'(k) as a function of % have been given by
Lucas.? Equation (2.8) would actually be an efficient
way of determining this kind of curve.

Equation (2.7) is essentially an V-1 degree equation
in the variable cos(#;Q). Its N+41 roots correspond to
2(N+1) solutions Z#n;, where j=1, 2, «+-, N+1, of
which one-half must be ruled out. In contrast to an
argument in Ref. 6, this can be done in a well-defined
way if one includes the effect of damping (produced,
among others, by phonon-phonon interactions) in Eqs.
(2.1) and (2.7) by giving the polarizability an imaginary
part:

a(w) =ao(w)+iv(w); a@(w)=a(w)+iv(w).

All roots #; then will be complex, but, since we assume
incident radiation only from &= —, only the modes
which are exponentially damped as x— -+ can be

excited, i.e., T, >0
e] .

This prescription, together with (2.7), specifies the N1
allowed polariton modes #;(w), even in the limit of
vanishing damping v(w) — 0.

We stated above that, for our idealized surfaces, the
problem separates into two parts. The first is to deter-
mine the N+1 polariton modes #;(w) which are obtained
by solving (2.7). The second is the boundary problem,
to which we now address ourselves. There are N+43
amplitudes in the problem: the incident (I) and re-
flected (R) electric field amplitudes, and the N1 set
P;. The value of I is given, so there are N-+2 unknowns.
E and H conservation provide two boundary conditions,
so IV additional boundary conditions are needed for the
reflectivity calculations.

These NV conditions are provided by the special equa-
tions satisfied by the N surface layers. These layers
(I=1,2, ---, N) feel a different local field than layers in
the bulk (> N) because their local-field sum must ex-
clude the absent planes (!<0). They have an equation

N
P(l) =a(w)[E.() — (4r/ Vo)l,g_l oINPTV, (2.9;0)

where the sum starts at 1—/ instead of at —NN as in
2.1).
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The boundary conditions are derived by introducing
fictitious polarizations P(J) at the sites of the absent
planes /<0. At these fictitious sites, P(J) is defined by
(2.3b) with I<0. Next we note that the introduction of
these fictitious layers now makes (2.1;) valid even into
the surface layers /=1, 2, ---, N. This is true because
the eigenvalue condition (2.7) is satisfied for each value
of j. So, in the surface layer, we have two different
equations, (2.1;/) and (2.9;/), which are both satisfied.

By successively subtracting them for each value of /=N,

N—1, --- 1, we obtain the V boundary conditions.
First subtract (2.9:N) from (2.1:N),

0=a(w)[0+(4r/Vo)o(N)P(0)],

with the result
P(0)=0.

The same subtraction for /=N —1 gives
0=a(w){0+4r/Vo)[v(V)P(—1)+o(N -1)P(0)]},
which, together with (2.10), gives
P(—1)=0.
Continuing until /=1, we get
P(m)=0, m=0, —1, —=2, +--, 1—=N  (2.10)
where by P(m)=0 we mean (2.3b)

(2.10")

(2.10")

N+41
P(m)=0= 3 Pjeimni,

7=1

Our interest is in the optical reflectivity. Consider a
wave incident upon the crystal face, and part is reflected
and part transmitted. At the point /=1, the incident
amplitude is Je*® while the reflected amplitude is Re=%,
Deutsche and Mead show by solving (2.2) that

N+1
I=(2isinQ)~! 3 E;(eiri?—¢—i2)

(2.11a)
7=1
and
N+41
R=—(2isinQ)™! X Ej(e*®—e™?)., (2.11D)
=1
Using (2.5), we get
N41
I=3Q2n/Vo) 3, Pi(1—ei0ri—D)-1 (2.11¢)
i=1
N1
R=(—i2rQ/Vy) Y Pi(1—e-®nitD)-1_ (2.11d)

=1

Again these results appear more familiar in the limit
that Q«1:

I=%3 Ei(ni+-1)=Q2x/Vo)X Pin;—1)7,  (2.11e)

R=—%3 Ei(n;—1)=(=2x/Vo)>X Pi(n;+1)"1 (2.11f)
i 7
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The reflectivity problem has N+2 unknowns. The inci-
dent intensity / is known, while the unknowns are R
and the N+1 set P;. They are solved by using the two
equations (2.11c), (2.11d), plus the NV equations (2.10)
which related the P; among themselves.

We show in Appendix C that the solution of the N+1
equations (2.10) and (2.11c) for arbitrary N in the limit
QK1 yields

(r/VOP=2 TI (e 1)/ (me—r), (212)
m=1 k=7

and that the reflection factor p is given by®

N1 7 —1
p=R/I=—1] . (2.13)
m=1 nm+1

Note that p is the product of reflection factors for the
individual modes; the same, of course, holds for the
reflectivity 7:

N+1

r(@)=|R/T[*=1]

m=1

""'_112 (2.14)

Nem

The problem has been completely solved. One picks
a value of N, and the N+1 refractive indices #;(w) are
found by solving (2.7). The refractive indices can be
inserted into (2.14) to obtain the reflectivity, and the
results (2.12), (2.3), and (2.5) can be combined to find
P(l) and E,(I) anywhere inside of the crystal. The cal-
culation may be made arbitrarily accurate by increasing
the value of V.

III. DISCUSSION

A physical problem was proposed in the Introduction.
The Lorentz local field changes as one gets near the sur-
face of a crystal. Correspondingly, the polarization of
each atom changes as one gets near the surface. These
two effects are interrelated, and must be determined
self-consistently. We have solved this problem, and
shown how these changes affect the reflectivity of the
solid.

We have considered the simple case where planes of
atoms run parallel to the surface. In the monatomic
cubic lattices, each atom in a plane sees the same local
field as all others in the same plane. So the properties of
an atom are specified by the plane, to which we give
the label I=1, 2, 3, 4, - -, where the counting starts
from the surface plane. Furthermore, the equations of
motion can then be written as having an effective cou-
pling between planes. This coupling arises from the
local field potential. We have shown that the coupling
between planes decreases exponentially as the separation
between planes increases. One only needs to include the

SFor N=1, this gives p=(m1—1)(n2—1)/(m:+1)Mme+1).
Hopfield and Thomas also considered this case in Ref. 5. They got
the same answer, except they wrote it as (nt—1)/(n*4-1), where
nt= (nme+1)/(n1+ns).

G. D. MAHAN AND G. OBERMAIR
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coupling between a few neighboring planes of atoms in
ordér to solve the local field problem quite accurately.

If one retains coupling only between N planes while
solving the problem, then there are N-+1 polariton
modes inside of the crystal. Each of these N+4-1 modes
are characterized by a refractive index #;, and these
indices are obtained as the roots to an N1 degree
equation. When we calculated the reflectivity 7, the
surprising result was found that

N1 n;—1)2
rlw)=11 .
j=1 71]"‘1

The net reflectivity is the product of the reflectivity
from each separate mode.

Most of the N+-1 refractive indices are complex. At
most, only one or two of them will have significant real
parts over a given frequency range. Of course, if #; is
totally imaginary, #;=1a, then it contributes nothing
to the reflectivity:

2
=1,

1a—1
1a+1

So if one calculates the reflectance by successively solv-
ing with N=1, 2, 3, etc., then the additional indices
which one gets will probably be largely imaginary so
that the calculated reflectance does not change much as
N is increased. Also note that if the value of #; is com-
plex, then this mode only exists at the surface of the
crystal and does not contribute to P(l) or E(l) as I
becomes large inside the bulk of the crystal.

Some numerical calculations were performed of the
reflectivity. A simple model of a single oscillator was

used: dra=4mB/[1— (w/w0)?],

and the reflectivity was calculated near its resonance
frequency. Calculations were done for a local theory
N =0, and also N =1. For the latter case, v(1) was taken
to be its bec value of —0.08309. In order that the net
resonance frequency in each case was identical, we set
2(0)=—3 for N=0, and 2(0)+2v(1)=—% for N=1.
The two calculated reflectivities were virtually identical.
They differed at most in the third significant figure, and
graphs of the two calculated reflectivities could not be
distinguished. Since v(1) is largest for the bce case, we
expect this case to show the largest difference from
N =0. Since no significant numerical difference is found
between V=0 and N =1, we conclude that these local
field variations near the surface are not important for
optical reflectivity effects. This result is physically
reasonable after we have shown that the coupling be-
tween planes of atoms falls off so rapidly with distance.
At that point, it is reasonable that only a few surface
planes of atoms will see a local field appreciably different
from the bulk, and the properties of a few surface layers
of atoms do not generally affect the bulk reflectivity
properties.
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Of course polariton effects can still affect the reflec-
tivity from crystals. In the cases for which these effects
have been shown to be important,® there is a large
amount of dispersion in the polarization band. This dis-
persion arises from the effective mass of exciton states,
which is caused by exchange and charge overlap be-
tween neighboring atoms. Our model excludes these
effects, and only considers dispersion from the dipole
field. This type of dispersion is very weak compared to
the effective-mass contribution. This explains why our
reflectivity calculations showed such little polariton
effects. Of course, we could probably include these
exchange-type effects by having »(1) be a parameter
which included these terms also, but we have not yet
tried this extension.

APPENDIX A: PLANEWISE SUMMATION

The method of planewise summation was introduced
by Nijboer and de Wette.! Formulas for a wide variety
of cases have been presented by de Wette and Schacher.?
The formulas needed for our calculation will be sum-
marized here. They have been obtained by using the
method given in these two references.

Basically, one wants to sum the dipole-dipole inter-
actions over all of the atoms in a plane:

V) =3 4(R),

where R;j=(X,p;). The lattice vectors in the plane are
0j, while X is normal to the plane. For the case of present
interest where radiation is normal to a surface, then p;
is in the (¥,Z) plane, and we want the ZZ component
of V. Also, X =la, where ¢ is the separation between
planes and 7 is the number of planes away. Thus,

V()=2-V-2=3 (1=3p.%/p")/ R,

R=[p*+(la)*]'.

Two separate formulas are necessary to obtain the
numbers in Table I. The easiest is when /50. The result
obtained from Refs. (1) and (2) is

V() =02r/A4) Y, (G2/G)eMe cos(go- G),
G0

where 4 is the two-dimensional area of the lattice cell
in the plane being summed, and G are the reciprocal-
lattice vectors of this plane. The vector g, is obtained
by defining Ro=(X,00) as the vector from where the
dipole sum is being evaluated to any atom in the plane.
Then cos(G-Ro)=cos(G-go) is independent of the
choice of atoms in the plane. The dimensionless v(l)
are obtained from V(I) by

o) =x/Vo)~V (D),

where Vo is the volume of the crystal cell.
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Another formula is needed for v(0). It is really not
necessary to evaluate this case, since the result may be
obtained implicitly from the sum rule for cubic crystals:

—1=0(0)42 g o).

Nevertheless, it is usually worthwhile to evaluate »(0)
as a numerical check.

There are two different formulas for 7 (0). One applies
if the point at which the dipole sum is being evaluated
is not a lattice site. Then let go be the vector to any
lattice point from the position where the dipole sum is
desired. Thus,

(1—3 cos?0) T w32
> r (%,—2(9;'— 90)2) -

1
V()=
© 1‘(%){ i (0i—00)? vz 4

~ X G (@ 9@[1*(—%, 8)(1+cos(28)

S,

where 3=G?9%/4, 0 is the angle between Z and g;— go,
while ¢ is the angle between Z and G.

The second formula for ¥ (0) applies when po=0 and
the origin is a lattice point. Here the result is

1 (1—3 cos?6)
V(0)=—=i3 '(G,mes%/7%)
r@lty pi*
VPR Y, S
T T GI:I‘(—%, B)(14-cos26')
nd 3y 44 ¢ L
(1—e?)
— cosZG’]}
3/2

The primes on summation mean the G=0 or p;=0
term is omitted. The parameter » is arbitrary and is
chosen so that both summations converge rapidly. For
computational purpose we note that the incomplete T’
functions are related to complementary error functions:

I'($,%)=Gvn) erfe(v/x)+(Vx)e™
I'(—%, x)=—(2+/7) erfc(V%)+2¢72/+/x.

and

APPENDIX B: SOLUTION WITH E,(1)=0

We will now solve the polarization equations for
E,(1)=0. These provide the normal modes ¥;(k), which
were discussed by Deutsche and Mead.¢ The cases N=1
and N =2 will be treated in detail. Our main intention
is to demonstrate that the form (1.6) assumed by
Deutsche and Mead is not valid for &> 1. This result
invalidates their conclusion that refractive indices are



840

only meaningful when the interaction between planes of
atoms has the form of their equations (58) or (60).

The modes ¥;(k) have no physical significance what-
soever. Some mistakenly believe that E,(J) is an
“applied” field, and in the absence of such an applied
field, then ¢;(k) are normal modes of the polarization
field. This is not true. The polarization field is composed
of radiating dipoles which generate their own electro-
magnetic field. The field Ey() enters the definition of
the normal modes (polaritons) whether or not an ex-
ternal source is illuminating the crystal. The proper
physical picture® is that the polariton modes are the
normal modes of the crystal, and shining light on the
sample just excites these normal modes. Determining
the amplitude of these polariton modes is a boundary
problem, and that is the subject of the text of this paper.

The modes of a slab of finite thickness will be dis-
cussed. This is a departure from the text, where a semi-
infinite crystal was treated. The slab has L planes of
atoms (I=1,2, ---, L).

N =1. The normal-mode equations are
Yi=—4ra[v(O)+o(1) W1t ],
Y1=—4ralv(OWr+o(1)y2],
Yr=—4ra[v(O0r+v(1)¥r-1].

The polarizations at each end of the crystal, ¢, and
Y1, obey an equation which is different from any interior
polarization. These two special equations are the bound-
ary conditions. One can alternatively view the boundary
conditions as the assertion that Yo=yr,1=0.

Let us assume that the general solution has the form
of (1.6), which leads to the condition for the eigenvalues
A

11, L
(B1)

1= —47a&(\;)[v(0)+2v(1) coska].

We must now choose &, a(k), and b(k) such that the
two boundary conditions are satisfied, and also the
modes are normalized. From ¢,=0, we get 6=0. From
Yra=0, we get k=ma/(L+1), where a=1, 2, -+, L.
The L choices for a provide the L different normal
modes. The final solution is

vu(k)=[2/(L+1)]"/* sinkl. (B2)

Deutsche and Mead® also describe a method of deriv-
ing the additional boundary conditions needed to evalu-
ate the reflectivity. We applied their prescription to our
case and obtained the boundary condition P(0)=0,
which is what we had already deduced in Sec. II.

N=2. We will now solve (1.4) when there are inter-
actions between neighboring and also next neighboring
planes of polarization. Thus, we keep as finite 2(0), v(1),
and (2), and set the remaining »(/) equal to zero.

The notation is simplified by defining a constant @ and
a function of frequency z(w) as

2a=1(1)/2(2),

(B3)
3(w) = —[2(0)+1/4ra(w) J/v(2).
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Then the equations can be written
=201t M tie,
1#1,2, L—1,L (B4)
w1=2ays+ys3,
22 =201 +¥s) ¥,
W =20 +¥r2)+¥i s, (BS)

wpr=2a¢r 11y .

In this case, there are four special equations: two at
each end of the solid. Note that a solution of the type
(1.6) can no longer work. One can not satisfy these four
special equations with the two constants a(k) and b(k),
especially since one of them is a normalization constant.
However, let us see what happens when sink/ or cosk is
tried as a solution to (B4). Both sine and cosine satisfy
the equation, and produce an eigenvalue relation

2(w) =4a cosk-+2 cos2k. (B6)

For each allowed value of %, this equation determines the
eigenvalue Ay=w. We specify below how the allowed
values of & are found.

Let us turn (B6) around and ask: Given the eigen-
value A\, what is the value of k? Note that this is basi-
cally a quadratic equation for cosk,

cos?k+-a cosk—3%(2+42)=0. B7)

So there are two values of £ which satisfy this relation
for each M. The normal modes at a given frequency are
described by two wave vectors rather than just one.
Thus, the normal modes are really of the form

(k) =a(k) sin(kl)+b(k) coskl
~+c(k) sink’l4d(k) cosk’l, (BS8)

where cosk and cosk’ are the two solutions to the qua-
dratic equation (B7). Although % and %’ both vary with
frequency, they are not independent functions. One
simple way to express their relationship is

—a=cosk-+}cosk’. (B9)

There is a simple way to find both the eigenvalue
equation and also the eigenfunctions ¥:(k). Equations
(B5) are equivalent to the choice of the four boundary
conditions,

O=yo=yY_1=V¥r11=YL42. (B10)

All that one needs to do is to use (B8) and (B10) to solve
for the coefficients @, b, ¢, and d. These conditions, along
with the normalization requirement on ¥;(k), are suffi-
cient to determine all of the coefficients a, b, ¢, and d as
well as providing the eigenvalue condition.

This completely specifies how to find the normal
modes for N =2. For N =3, we get a cubic equation for
cosk so there are three wave vectors k, &’ and &”. Corre-
spondingly, ¢,(k) now has six terms and six coefficients
a, b, ¢, d, e, and f. One determines them, as well as the
eigenvalues, by the boundary conditions that 0=y
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=y_1=y¥_s=¢r11=¥r+2=¥r+3. The extension to higher
values of IV is obvious.

The assumption (1.6) of Deutsche and Mead® is in-
correct because they failed to realize that increasing IV
introduced additional wave vectors into the problem.

APPENDIX C: SOLUTION FOR GENERAL N

We wish to obtain the V--1 amplitudes P; by solving
the N+1 equations (2.11c) and (2.10) for m=1,2, - - -,
N. The notation is simplified by denoting X;=e~*%#i for

j=1, 2, , N+1, and Xo=¢""% Then (2.11c) and
(2.10) read
N41 %IV[)
2 (X;=Xo)7'Pj=— (Cla)
4 =1 20X,
an
N1
> Xj#1P;=0, I1=1,2,3,--,N. (C1b)

=1
Let us write these inhomogeneous equations in matrix
form: A-P=0Q,
where 4 is a (NV-+1) square matrix with components
A= (Xj—'Xo)'"l, =1
=X;72 1=2,3,---, N+1

and P=(P;), and Q=—iIV,/(2xQX,)(1,0, - -
solution in terms of the cofactor 4 is

>k AkiQs iIVy Ayj
pP;= = . (C2)
det4 2rQX o detd

,0). The

By expanding A with respect to the first line, we get
det4 in terms of the 4 :

N41

detd = Z (X;—Xo)_lA 1i. (C3)
=1

The determinant of a matrix whose components are
=X, has the value

det| X1 =11 (Xx—X3). (c4)
k>l
The cofactor A1, has this form, except that the 7th row
is absent:
N41

A== JI (Xi—X)).
k>l=1
#1i
Next we multiply (C3) by the factor [Tm (Xn—Xo) and
insert (C5). This term we call D:

(CS)

N+1
D=]] (Xn—2Xo) detd

m=1

*Z (— 1)‘+'H (Xm—Xo) H (Xx—X).

=1 k>l=1
#1
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Combining products gives

D= Z( 1)t H (Xx—X3).
1=1 >#110

This result may be written as a determinant by using
(C4):

0 1 1 1 .. 1
1 1 1 1 ... 1
Xo X1 X2 Xs XN+1
D=— on X12 X22 X‘:;2
Xt
XV Xi¥ X N.+1N
We subtract the second line from the first, then
1 0 0 o - 0
1 1 1 1 ... 1
D= Xo X1 X Xs XN
X2 X2 X2 Xg?
Xo¥ XY Xyyr¥

Again this has the form (C4):

N+1
D= TI (Xix—X3).

k>1=1

Now we are able to evaluate P;. In (C2), we multiply
numerator and denominator by JTm (X»—X,) and get

iIVy 1 w41
Pij=— — II (Xn—Xo)4y;,
2rQXo D m=1
v (Co)
Pi=2 [II (Xm Xo)/II (Xi—X,)].
w{ () m=1

This is the desired result; all polarization amplitudes
are expressed by I and the refraction indices. The reflec-
tion factor p=R/I remains to be calculated. If we start,
for this purpose, from Eq. (2.11f) instead of (2.11e),
everything goes through as above except I — —R and
Xo— Xo*=1/Xo. So instead of (C6) we get

1RV X N+1
Pj=— P [Ex (X'm —Xo*)/H Xe—Xp]1. (C7)

Dividing (C6) by (C7) gives
1 v1/7X,.—X,
I (-2).
X 02 m=1 \X,,—X o*
This is the final result. The reflectivity is the product of

the individual mode reflectivities. For 2&1, we can
simplify this to

N+1 f—1
B
m=1 nm+1

p=




