
LU M I NESCEN CE FROM Ii CENTERS IN CaO 83i

emphasize that, although the present study gives
interesting and additional information about the elec-
tron-phonon coupling at the defect responsible for the
355.7-nm zero-phonon line, it does not help resolve the
question regarding its likely origin.

Finally, the lifetime of the excited Ii+ center has been
measured in these crystals. Contrary to measurements
made on neutron-irradiated samples, "we 6nd a mea-
surable lifetime of 60 nsec. Compared with the radiative
lifetimes of the F centers in the alkali halides, " this
value for CaO is very short. Presumably this rejects
that both the ground- and relaxed excited-state wave
functions of the Ii+ center in CaO are compact relative
to the alkali-halide Ii centers.

allowed transition is weak, relative to the spin-forbidden
'P —+ 'S transition (629-nm band), is thought to be due
to a V' —+ 'E' radiationless decay process, occurring with
higher probability. The presence of structure in the
zero-phonon line associated with the 'I' ~ '5 transition
is explained as being due to spin-orbit interaction
splitting the 'I' configuration into 'P2, 'I'1, and 'I'0
levels. The spin-orbit coupling constant X is not more
than 9 cm '. Studies of the F~ F+ photoconversion
demonstrate that the 'I' and 'I' levels of the Ii center
are not more than 1.0 and 0.1 eV, respectively, below
the bottom of the conduction band. Apparently, the
electronic states couple mainly to the phonons in the
optic branch for both the F and F+ centers.

IV. CONCLUSIONS

The luminescence measurements discussed here give
information on the nature of the electronic states of the
Ii center in calcium oxide. It is shown that the results
are consistent with the expected two-electron states of
the F center. In particular, it is evident that in emission
the 'I' —+'5 transition occurs at 500 nm. That this

~' F. C. Brown, The Physics of Solids (W. A. Benjamin, Inc. ,
New York, 1967).
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A proof is given that the ground-state energy of a hard-sphere particle in a hexagonal cell near close packing
cannot be larger than it is in a face-centered cubic cell, and the energy dBerence is variationally evaluated.
On the other hand, molecular-dynamics calculations suggest that in the classical region the fcc hard-sphere
crystal is stabilized by an entropy which agrees well with that observed in the hcp to fcc phase transition
in helium.

HE phase diagram of helium shows that the
hexagonal phase is stable in the limit of low

temperature and high pressure. ' Since in this limit the
zero-point energy can be made arbitrarily large com-
pared to the depth of the potential well (i.e., the
attractive part of the potential is unimportant), it
must be concluded that one should be able to prove that
hard spheres are stable in the hexagonal phase near
close packing and at low temperature. The first part of
this paper is devoted to such a proof in a one-particle
approximation. Subsequently, the tiny energy dif-
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ferences between the fcc and hcp ground and 6rst
excited states are numerically evaluated.

One would not expect this energy difference to agree
closely with that observed in the helium transition for
several reasons, although it is within an order of magni-
tude. The energy will be altered by many-body correla-
tions, although the hard-sphere cell model has led to
quite accurate classical results. ' Furthermore, the
experimentally observed energy difference might have a
considerable contribution due to the difference in the
lattice potential energies, though one which cannot be
reliably estimated. Finally, the energy di86rence in a
cell calculation using a more realistic potential, like

2B. J. Alder, W. G. Hoover, and D. A. Young, J. Chem. Phys.
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the Lennard-Jones potential, will be shown to be an
order of magnitude larger and in better agreement vnth
experiment. ' On the other hand, the entropy of transi-
tion is less sensitive than the energy to the presence of a
potential, since a perturbing potential on R hard core
RGects the entropy only to second order. ' Accordingly,
entropies of melting could be accurately calculated for
argon from the behavior of hard spheres. 2 The entropy
of transition for helium which can be shown to result
primarily from many-body contributions then suggests
that one should be able to prove that classically hard
spheres are stable in the fcc phase. This entropy of
transition is evaluated for hard spheres via molecular
dynamics with results to be found in the last part of
this paper. The observed agreement reinforces the
conclusion that hard spheres, like helium, should show
a 6rst-order phase transition between a low-temperature

hcp phase and a high-temperature fcc phase.
FOI' thc pI'oof of thc glcRtel stab111ty of the hexagonal

phase at low temperature, a representative sphere in
the limit of high density is considered as R free particle
con6ned to a twelve-faced cell formed. by the planes
perpendicular to the nearest-neighbor directions at
which the wave function P vanishes. The fcc and hcp
cells have identical volumes and identical shapes both
above and below a close-packed plane of atoms, but the
difference is that in the hcp phase the two halves are
reQected about the close-packed. xy plane, while in the
fcc case Gnc 0'f thc two halves ls 1otRtcd by 60 RboUt thc
s a,xis. This difference in symmetry is sufhcient to show

that the energy of a particle in its ground state in the
hcp CCB cannot be larger than that of a particle in the
fcc cell. The intuitive basis for this deduction is that the
lack of symmetry about the xy plane in the fcc case
puts an extra constraint on the variational calculation
and hence raises its energy, For a rigorous proof, a
trial fllllctloll Phon(S, p,s) 18 adopted fol' tile llcp cell,
which is related to the true ground-state wave function

Pr„(a,y,s) of the fcc cell by

F".(~a»s) =41-(~a» l sl)

Ii is an a.dmissible trial function since it satis6es the

hcp boundary conditions. Slllce F ls plecewlse C (tllRt

is, lt ls continuous, bUt hRs R plcccwlsc-continuous

gradient), the expectation value of the Hamiltonian

must be written in a form' equivalent to the customary
one)

HPF]= VF %Fdic

with the integration being over the hexagonal cell.
Since, as is well known, the lowest value of H$Fj is the

energy eigenvalue Zh, ~ of the hexagonal lattice,

&h~&HI:P~"i=HI@ j=~1
4 A. Luntz and S.J. Alder (to be published).
' E. B. Smith and B.J. Alder, J. Chem. Phys. 33, 1439 (1960).
6R. Courgnt and D. Hi}bert) &@bodkin Der 3futhgmufisghee

Fpyssk (Springer-Verlag, Berlin, l93l), Vol. l, p. 398.

TABLE I. Energy levels (In units Gf h~/8m~ts).

fcc ground stRte
fcc triplet excited
hcp ground sta, te
4cp singlet excited
hcp doublet excited

0.860923+0.000001
1.75261 a0.00001
0.860908+0.000007
1.75276 +0.00001
1.75218 +0.00014

Thc deslrcd iDcquallty has bccn pI'ovcD cxccpt fol thc
ldentlty HLPj=HM) wlllcll ls readily plOVR'Me by
vlrtUc of thc symmetry 1Dvolvcd.

Unfortunately, an analogous proof for the relative
energies of the 6rst excited. state cannot be made. The
particle in the cubically symmetric fcc cell has a triply
degenerate excited level. ID the hcp cell, the degeneracy
is split into a singlet whose wave function has a node
on the xy plane Rnd. a doublet vrith nodes on thc other
reAection-syInmetry planes which contain the s axis.
The excited energy levels can be calculated by the same
methods as for the ground state by considering only
either half of the cell sectioned OR by the nodal planes.
However, only for those nodal planes which contain the
s axis is it possible to apply the above incquahty, so
that it is possible to prove only that the fcc triplet
level is an upper bound for the hcp doublet level.

It, is most economical, in fact, to compute any of the
energy levels in the smallest possible subregion of the
cell which by reAections through symmetry planes can
generate thc entire cell. Thus a solution for the fcc
gloUDd stRtc %'Rs soUght ln onc of thc 48 congluent
tetrahedra in which one vertex was at the center of
the cell, one at the center of R face of the cell, and the
remaining two on the adjacent vertices of that face. In
genera, l, subrcgions have faces where thc wave function
must vanish because that face is either part of the face
of the cell or a region which lies on a nodal plane. It
plovcs most CODvcnlcnt to choose as basis funct, lons ln R

variational calculation polynomials in xy2' such that
each polynomial vanishes on the appropriate face.
OD tlM remaining fRccs of thc subrcglon, Do boundary
condltlons Dccd bc imposed~ slncc thc vRllatlonRl plln-
ciple ensures that the normal derivative of the solution
is zero there. ' In general, advantage has been taken of
this fact, although it was found that imposing the nor-
mal derivative condition helped convergence a little.

The basis function Ii hence is R sum of products of
polynomials of the form rsvp:+by+vs+a (which ensure
that F=0 wherever required) and of a"y' s™,where
thc pllmcd RDd UYlprlmcd cool dlnatcs Rl c 11Dcally
related. The sum is ordered in /+m+n, which deter-
mined the number of basis functions. Soro.ctimes the
cholcc of only clthcl cvcD ol odd vRhlcs of ~) f8, R helped
convergence, For these basis functions the matrix
elements of thc free-particle Hamiltonian can bc
evaluated analytically, and the matrix eigenvalue Inust
then bc coIQputcd.
f, The results of these calculations are given in Table I.
The scale of energy is chosen so that Jls/Str'm is unity,



CRYSTAL TRANSFORMATION FOR HARD SPHERES

which corresponds to the ground-state energy of a
free particle in a sphere of radius x inscribed in either
the hcp or fcc cell. In the slightly larger sphere, whose
volume equals that of the cells, the ground-state energy
is (n'/18)'~s=0. 82. The ground-state energy of a
particle in the actual cell must lie between 0.82
and unity, because the spherical shape leads to the
lowest-energy value for any given volume. The lowest
excited level in a sphere is triply degenerate and 2.04
times as high as the ground state; therefore, the values
given in Table I for the ground state and excited states
(also 2.04 times as high as the ground states) are of
reasonable m,agnitude.

The energy eigenvalues given in Table I confirm the
greater stability of hcp, but, as suspected, by an
exceedingly small amount. In order to get that difference
reliably, it was necessary to go to a large basis set and,
amazingly enough, to triple-precision arithmetic—
approximately 42 decimal places —in order to eliminate
difficulties connected with roundoff errors. The larger
300X300 matrices in triple precision could no longer be
contained in the fast core so that it was necessary to deal
in succession with blocks of the partitioned matrix. Table
II illustrates the convergence of the energy eigenvalue
for one of the levels with increasingly larger basis sets.

The weighted mean value of the excited energy levels
of hcp as given in Table I, 1.75237, is also lower than
that of the triplet fcc state, so that this model fails to
show a phase transition to fcc at moderate temperatures.
In the high-temperature or classical limit, the one-
particle model leads to indistinguishable properties
between the two lattices inasmuch as the free volumes
are identical. Hence the question as to which phase is
more stable classically depends on an accurate solution
of the many-body problem.

By means of the numerical method of molecular
dynamics, it has not been possible to detect any
difference which is statisticaLLy reliable. However, in
the solid near the melting point, a difference in pressure,
a difference in the collision rate involving second
nearest neighbors, as well as a difference in location of
the tie line seem to be indicated, which all favor
stability of the fcc lattice. The pressure of the fcc
phase appears to be about 0.01 lower in EV/SkT (or
0.1 jo) in a system of 216 particles with identical
boundary conditions for each phase. If it is assumed that
this absolute difference decreases linearly as the density
increases, the difference in entropy between fcc and
hcp at close packing is about 0.002Ek.

This difference is comparable to the one found
between fcc and hcp in the nearest-neighbor harmonic-
oscillator modeP (0.0015Ãk). One would, in fact, expect
the difference to be slightly larger for hard spheres than
for harmonic oscillators, based on the larger value of
the mean-square displacements of a particle from its
lattice site. This displacement is a measure of the free

~ W. G. Hoover, J. Chem. Phys. 49, 1981 (1968).

TABLE II. Convergence of hcp singlet excited state.

70
95

125
161
203
252
308

Result'

1.752938630
).752863118
1.752825791
1.752803555
1.752788655
1.752778691
1.752772339
1.75276+0.00001

105 SZb

7.5512 2.023
3.7327 1.679
2.2236 1.492
1.4900 1.495
0.9964 1.569

- 0.6352

d

1.752789
1.752771
1.752758
1.752759
1.752761

a The number of terms in the variational function as ordered by the
value of l+m+n."The difference between successive energies.

e The ratio of successive differences.
d The extrapolated energy based on geometric series with quoted ratio.' The error estimate is based on the difference between the extrapolated

value and the most accurate computed value.

volume accessible to a particle, and hence its logarithm
is a measure of the entropy. For harmonic oscillators the
ratio of the mean-square displacement for the fcc
crystal to that of the hcp crystal was calculated to be
1.0065 from the inverse second moment of the fre-

quency distribution. ' For hard spheres this ratio was
found to be 1.02~0.01 from molecular dynamics. These
mean-square-displacement values at least con6rm the
greater stability of the classical hard-sphere fcc crystal.

The experimental difference in entropy for helium,
0.0019Ek, falls gratifyingly in between those for hard
spheres and harmonic oscillators. It can be readily
shown that the first excited state contributes negligibly
to that entropy difference. Furthermore, the correction
for the change of entropy at constant pressure, as
experimentally observed, to that at constant volume,
as calculated, is unimportant.

The above results disagree, however, with the
finding of the classical cell cluster theory, ' which
predicts greater stability of the hcp phase in the close-
packed limit by 0.0008Nk. Although the cell cluster
theory shows that the corrections to the single-particle
cell theory are quite small, the ability to calculate these
corrections reliably has previously been questioned. '
In this regard the only exactly known quantum-
mechanical result is for hard rods where the ground-
state energy of the one-particLe model is 43 that of the
exact solution. In three dimensions an estimate of the
many-body effects in the ground-state energy of helium
has been made from an analysis of experimental data. "
Unfortunately, the calculation of the exact ground-state
energy of the sphere system represents a formidable
problem, and the best hope of proving the existence of
the crystal transformation resides in generalizing the
proof of the inequality given earlier and in",'improving
the accuracy of the results from molecular dynamics.
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